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Abstract 

Researchers are currently investigating applying benefit, or utility functions for allocating resources in limited, soft real 
time systems [1,2,3]. While the future of real-time computing research and practice will likely exploit the utility of benefit-
based models, this will not occur until a suitable system level benefit framework has been defined. This paper provides an 
overview of ongoing work to develop such an initial framework that can formalize the use of benefit functions in complex 
real time systems.  It is easily shown that this framework can support traditional hard/firm/soft real-time paradigms as well 
as support newer proposed models for future real time operation [5,6].   We also show that our proposed framework 
unifies composition of benefit values derived from heterogeneous perspectives, including those derived from the 
application perspective. 
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1: Introduction 

Many researchers have been investigating mechanisms for better supporting soft real time processing [1,17,18,19,20,21,22] 
where some or all of the applications can miss deadlines and still perform satisfactorily.  This type of situation can occur 
when the worst-case resource requirements of all running applications cannot be simultaneously met.  This scenario has 
become more common as embedded systems designers have distributed previously stand-alone systems.  This networking 
can introduce asynchrony and non-stochastic data loading and subsequent processing requirements.  In these new systems, 
it is the responsibility of the applications to run correctly with less than optimal allocated resources.  Additionally, the 
resource allocation may be time varying based on changing mission scenarios or faults. 

New operational modes are being employed that allow applications to specify their relative importance within the overall 
system in terms of utility or benefit.  This benefit can then be used by the system to guide the dynamic allocation or 
assignment of resources that seeks to optimize the global system benefit.  Different approaches are being investigated to 
represent application benefit to resource allocation managers.  It is the applications’ responsibility to decide the best usage 
of limited resources.  Some applications may choose not to alter their prescribed processing, which can lead to missed 
deadlines.  Other applications may choose to alter their processing in order to return degraded results without missing 
deadlines.   Hybrid solutions are also possible.  In each of these cases, the application requires a mechanism to establish its 
degraded but achieved benefit or utility to the overall system.  

Benefit is defined in [1] as varying functions representing the value to a system for completing a process at a certain time. 
In [1], benefit functions were used as alternative scheduling algorithms for optimization in systems running soft real time 
processes.   Figure 1 shows generic time varying benefit curves.  The first benefit curve shows the benefit of performing 
some task is constant in the specified time interval between tstart and tend, and executing the task outside this window does 
not return any benefit.  The second curve shows a constant benefit between tstart and t1, and a diminishing benefit between t2 
and t3.   

tstart tend

Benefit
of Task B(Ti)

tstart

B(Ti)

t2 t3  

Figure 1:  Benefit Functions 

Researchers [16] have continued to extend Jensen’s original definition of time varying benefit functions into the realm of 
dynamic real-time scheduling decisions for soft real time processes.   The base notion of a benefit function has been 
extended to control the dynamic allocation of resources based on overall achieved system benefit.  In this interpretation, 
benefit relates the quality of the output of an application achieved by running with a given resource allocation. The 
differing quality of output is a result of running different algorithms at each resource allocation, or a difference in the 
resources allocated and not a result of missing deadlines by greater or lesser amounts.  A missed deadline is used to 
indicate that an application is not satisfactorily executing its algorithm within allocated resources and triggers changes in 
algorithm or resource allocation to correct the problem.  

At the lowest level of abstraction, benefit can be viewed as a function of time, where applications have varying benefit 
based on the time instant at which they complete their processing relative to their deadlines.  If bi(r) is the benefit function 
for application i as a function of the amount of allocated resources and ri(t) is the actual resource allocation provided to the 
application I at time t, then we can define Bi(t) = bi(ri(t)) to be the actual benefit provided by application i at time t, or the 
output benefit of application i.  Given the output benefit of applications over a span of time, we define our specific benefit 
metrics as follows.   

At any particular time t, Bi(t) is the instantaneous benefit of application i.  During any interval of time (t1, t2), the total 
benefit is defined as  

Bi (t1,t2) = 
�
Bi(t)dt. 
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With functions on discrete values, the benefit curve from t1 to t2 is a step function with m distinct intervals starting at times 
tj and the integral is a discrete sum,  

Bi(t1,t2) = �  Bi(tj) x (tj+1 - tj) 

The average benefit Bi(t1,t2) from time t1 to t2 is simply (1/t2-t1)Bi(t1,t2).  The instantaneous, total, and average benefit for a 
set of running applications B(t), B(t1,t2), and B(t1,t2) are simply the sum of the individual application benefits.  

Benefit gives a good, but incomplete, indication of the quality of the output of a process.  In particular, moving from one 
output benefit to another may indirectly affect the quality of an application.  As an example, a video player that 
continuously runs at 15 frames per second may be preferable to one that alternates between 0 and 30 frames per second 
every few seconds, even though their average benefit will be the same.  To measure this variation between levels we define 
the instability of each application as follows. 

At any time t, the instantaneous instability of application i is the slope of the curve of the output benefit, thus Ii(t) = |B’
i(t)|.  

For applications defined on discrete resource amounts, the slope is infinite during the transition from one level to another 
and 0 at all other times.  We therefore define the instantaneous instability to be |Bi(t)-Bi(t+� )| for some suitably small � . 
During the interval of time (t1,t2), the total instability is defined as Ii(t1,t2) =  

�
 I i(t)dt.  As above, for applications defined on 

discrete resource amounts the benefit curve from t1 to t2 is a step function with m distinct intervals each starting at time tj, 
and the integral is a discrete sum, Ii(t1,t2) = � I i(tj).  Conceptually, the instability of an application from time t1 to t2 is simply 
the amount of benefit change during that time.  The average instability I(t1,t2) of application i from time t1 to t2 is (1/t2-
t1)I i(t1,t2).  Instantaneous, total, and average instability for a set of running applications (I(t), I(t1,t2) and I(t1,t2) are defined 
as the sum of the values for the individual applications. 

Although benefit models have been shown to be effective [4][7][9] for the integration of small numbers of processes, they 
have not been applied to the integration of large numbers of processes in complex relationships.  Previous investigations of 
benefit functions have focused on developing static benefit functions that can be used to direct scheduling of application 
processes based on projected resource availability.  These static functions can be used to relate potential benefit based on 
projected resources.  By its nature, this approach is based on a priori  knowledge of available resources.  This assumption 
has been adequate for legacy embedded systems, where worst case execution times are known, and schedules can be 
developed to support the worst case execution times.  Modern systems are now incorporating more networked capabilities, 
allowing data sharing and data fusion between subsystems.  While this promises increased capabilities in the form of better 
knowledge formation, it also has introduced more non-determinism in resource availability.    This non -determinism 
challenges the basic assumption of a priori knowledge of resource availability.  Dynamic monitoring techniques are being 
investigated to determine the instantaneous resource availability in order to direct scheduling.  

The abstract notion of benefit can certainly extend to these new complex systems with many layers and many different 
types of benefit [10][8][13].  These include application notions of benefit, single system notions of benefit involving 
resource tradeoffs within that system, and aggregate system notions of benefit involving tradeoffs across systems and based 
on complex relationships between the systems and between the applications running on those systems.  In such complex 
systems, one cannot simply maximize the benefit of each individual application and system and hope to achieve optimal 
system performance. 

Without loss of generality we develop a framework for representing benefit that interprets the traditional concepts of 
“hard”, “soft”, and “firm” within an algebraic framework supporting composition of different levels of benefit abstraction.  
Our framework encourages the premise that at any instant of time benefit within a complex enterprise system is a function 
of many interrelated entities that vary according to complex rules and interactions among different subsystems.   

The different levels of abstraction at which a calculated benefit can affect aggregate system behavior is easily understood.  
At the lowest level of abstraction benefit can be viewed as a function of time, where applications have varying benefit 
based on the time instant at which they complete their processing relative to their deadlines.  However, benefit may also be 
viewed as a function of the completion times and the resources allocated to the processes, as a function of resources 
allocated and of the quality of the output produced at that resource level, or solely based on the quality, frequency, or other 
properties of the output. 
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The perspective from which benefit is calculated is also important.  Benefit may be calculated from the application 
perspective.  It may also be calculated from the single system perspective, from which summed benefit of the set of 
applications is the important measure, but spare resources may also be important.  In this case, the spare resources 
themselves can be characterized with a benefit function and included in the calculations [8]. From a complex system 
perspective, however, there are many tradeoffs to be made in terms of CPU usage, network bandwidth, individual system 
capabilities, etc., and simply summing the benefit of the individual systems will not capture all that matters in such a 
complex system.[13]  Finally, there is also a notion of end-user benefit in many systems, and what the user actually cares 
about may differ markedly from what has been specified by the developer. 

Because the abstract notions of benefit differ in important respects and because many different notions can be expected in 
complex real-time systems of the future, we believe that it will not be possible to maximize benefit through a simple 
optimization as is done in current soft real-time systems.  Accordingly, we are developing a framework for describing, 
composing, and combining many notions of benefit with the goal of being able to optimize benefit in highly complex real-
time systems. 

2: Formalizing Benefit 

We define a value of benefit associated with attempting to meet some specified objective as a point in the interval: 

bi = [l i, 0, ui]  such that li ≤ 0 and  0  ≤ ui 

For observed objective i, bi = 0 denotes a quiescent state associated with the objective exactly meeting a specified 
requirement.   If the benefit value bi > 0, this denotes that the objective is not only meeting its requirement, but is also 
providing additional capability beyond its minimum.  If the value bi < 0, this denotes the objective has dropped below its 
minimum requirement, but is still returning a diminished benefit value.  For a traditional “hard” real time objective, a 
limitation on the acceptable value of benefit can be interpreted as interval [0, . . +∞].  For “soft” real time objectives, the 
benefit value bi can assume any value within the interval [-∞, . . 0 . .+ ∞].  The lower and upper limits, li, ui respectively, 
quantify limits for benefit optimization calculations.  li represents the lowest allowable value of benefit that the objective is 
allowed to return.  ui represents a point at which the value of benefit returned is at the upper limit and any additional benefit 
is superfluous or unachievable.  Optimizing benefit is viewed as conditionally maximizing the value of the benefit vector 
subject to each benefit value being in li ≤ bi ≤ ui.   

As a simple example, we can optimize benefit by summing the individual values as: 

Max B = Max { Σ bi | li ≤ bi ≤ ui}  

Where our search space is bounded by 

Σl i  ≤  Σ bi  ≤ Σui. 

More complex benefit calculation functions based on heuristics appropriate for a specific system can also be used.  Using 
the definitions above, we can compose a benefit vector B = <b0, b1, b2, . . . bn> with defined associated limit vectors 

L = <l0, l1, . . . ln> and U = <u0, u1, . . . un>. 

It should be noted that algorithms used to optimize benefit should be relatively insensitive to small changes in benefit 
values.  Otherwise, small fluctuations in benefit may cause large changes in the manner of pursuing system objectives.[23]  
To accomplish this, we can include a term in the benefit vector representing the value of doing nothing. 

Our definitions support hierarchical composition of benefit vectors, and allow abstract composition and optimizations to be 
performed. 

As discussed above, a simple way to compute maximum benefit in hierarchical systems is to sum the individual vectors.  
For example, we can sum each objective, i, in each subsystem, j: 

Max B = Max {Σ Σ bij | li ≤ bi ≤ ui }  
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To ensure that we give more resources to specific individual objectives, we can associate a weighting factor (importance, 
otherwise known as significance in [14] and priority in [15]) for each objective in the summation: 

Max B  = Max {Σ Σ wijbij | li ≤ bi ≤ ui }  

Another simple way to compute maximum benefit in a hierarchical system that ensures at least some amount of 
performance in each objective is to maximize the minimum benefit: 

Max B = Max { Min { Min{ b ij | li ≤ bi ≤ ui } } }  

It is worth noting that benefit functions can be used for analysis during the initial system design by monitoring the system’s 
ability to meet each specified lower level of benefit. 

Also, slack can be added to the benefit vector to assure that every resource is used at the minimal amount.  This allows the 
system to handle a sharp increase in resource utilization in a graceful manner. 

2.1: System Definitions Using Benefit 

We provide the following definitions for our benefit framework. 

Definition 1: A “Hard” real time system is defined as 

Hsys  = { ∀ i | li = 0} 

Simply stated, a hard real time system is a system such that the minimum acceptable levels of benefit are not allowed to be 
negative. 

Definition 2: A system is quiescent if 

Quiescentsys = {∀ i | bi = 0} 

A system is in a quiescent, or steady state, when all measurable benefit is exactly returning the expected benefit value. 

Definition 3: A system’s performance is formally correct if 

∀i | b i ≥ li  for all time t. 

This definition relates the system’s ability to always meet minimal acceptable levels of performance. 

Definition 4: A system is under-constrained if 

Σbi ≥ 0  and  ∀i  bi ≥ li. 

This denotes that the system is meeting each individual benefit minimum, and the aggregate is providing additional benefit 
beyond the quiescent capabilities for which it was designed.  This is characteristic of a system with excess capacity. 

Definition 5: A system is over-constrained if 

Σbi ≤ 0  and  ∀i  bi ≥ li 

Note that a system may be over-constrained, but still adhere to a formally correct performance behavior.   

Lemma 1: A system with all benefit values classified as “hard” cannot be over-constrained and still formally meet its 
performance requirements. 
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3: Application Examples 

The utility of benefit functions allows their use within a system to reflect the specific operational paradigm of the system 
without loss of generality.  Consider the following example of a function that acts as a “bridge” node within a distributed 
system.  This function is a periodic task that attempts to transmit as many messages as possible between two messaging 
channels within a given time limit.  Once the task has reached the time limit, a benefit value is calculated based on the 
number of messages it successfully transmitted.  This capability is obviously dependent on the availability and performance 
of the interconnection networks, and may vary with time.   

Function Bridge 
Benefit = 0; 
while(true){ 
cnt = 0; 
while(current_time < limit){ 
 buffer = receive(ch1) 
 send(ch2,buffer) 
 cnt += 1; 
} 
if (cnt == max) IPC.benefit = 0; 
elseif(cnt < max) IPC.benefit = -∆; 
else IPC.benefit = +∆; 
next_time = limit + interval; 
suspend(next_time); 
} 

In this example, each process defines a benefit ∆, representing the relative benefit to the system for over or under 
performing.  Note that in this example, the function is not allowed to change the lower limit of acceptable performance.  
Instead, the lower limit is set by the system at initialization, and is maintained by the separate IPC benefit monitor as 
shown below.  In this mode, the tasks are passive and only report achieved benefit.  Resources are allocated by the IPC 
monitor based on measured benefit from all functions performing messaging operations.  The specific allocation scheme is 
dependent on the system.   

_IPC_Performance_Monitor 
If(benefit[task] < l[task]){ 
 if(excess > ∆){ 
  resource[task] += ∆; 
  excess -= ∆; 
 } 
 else 
  task_lowest = f(greatest_excess); 
  resource[task_lowest] -= ∆; 
  resource[task] += ∆; 
 } 
elseif(benefit[task] > l[task]) 
 resource[task] -= ∆; 
 excess += ∆; 
} 
else(benefit[task] == l[task]); 

In this simple example, the IPC Performance Monitor maintains a variable that represents the current excess capacity of the 
resources, and optimizes the excess capacity.  If a task reports additional benefit, the monitor will decrease the resource and 
increase excess capacity.  This simple algorithm optimizes the systems ability to meet minimal requirements and respond 
to dynamic fluctuations in requests. 

This example shows a simple linear combination of benefits.  The advantage of using this approach allows the application 
of more complex and system specific methodologies for combining and calculating individual and system benefits. 
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3.1: Image Processing System 

As stated in the introduction, benefit may be viewed as a function of resources allocated and of the quality of the output 
produced at that resource level.  In the following example we apply this view of benefit from an application perspective, 
and then combine the benefit derived from each application to view benefit from a system perspective. 

The Image Processing System (IPS) [11,12] is a simulated satellite system that has four applications:  a Camera Simulator 
(CS), an Image Processing Agent (IPA), a Compressor Agent (CA), and a Download Agent (DA).  The Camera Simulator 
produces images of the earth at some specified resolution and image rate.  These images are processed by the Image 
Processing Agent to determine the cloud cover percentage of the image.  If the cloud cover percentage is high, the image 
yields little scientific benefit, and it would be preferable for the Compressor Agent to either discard the image or use lossy 
compression before storing the image in the onboard storage buffer.  The Download Agent is simply responsible for 
downloading the images with highest scientific benefit from the satellite to the ground when network downlink time is 
available.  We will ignore the Download Agent application in the rest of this paper for the purpose of simplicity. 

 
 

 
Figure 2:  Image Processing System Prototype 

 

We now introduce the term service level parameter.  A service level parameter is a parameter to an application or system 
that can have an impact on both how many resources are used and how much scientific benefit is achieved for the user.  
There are two types of service level parameters: mutable and immutable.  A mutable parameter is one such that an external 
resource manager can adjust its value to achieve desired results.  An immutable parameter is usually fixed by an 
application at run-time or is a function of data-dependent input.  If enough resources are present in the system, the mutable 
service level parameters would always be set to their best level.  The presence of mutable service level parameters allows a 
resource manager to cause an application to use less resources in the case of an overload or to meet real-time constraints. 

In our example, the resolution and the rate that the Camera Simulator sends images can be set by a resource manager.  The 
pixel percentage service level parameter can also be set to change how many pixels the Image Processing Agent will 
process when determining cloud cover.  The compression percentage can be set to change the type of compression to be 
performed by the Compressor Agent.  All of these changes can affect the resource usage and the derived user benefit.  Also 
note that the cloud cover percentage of the image cannot be controlled by the resource manager, but does affect the 
scientific benefit of an image and the compression algorithm used. 

ips.sl_parameters={image_interval,resolution,cloudcover_%,pixel_%,compression_%  } 

We define each service level parameter as a tuple that defines 1) whether it is mutable or immutable, 2) whether it is 
continuous or discrete, and 3) the values that the parameter can assume.  The image_interval parameter is measured in 
seconds and represents how often a new image should be taken. 
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ips.sl_parameters(image_interval) = < MUTABLE, CONTINUOUS, [30, 60] > 
 
ips.sl_parameters(resolution) = < MUTABLE, DISCRETE, { LOW, HIGH } > 
 
ips.sl_parameters(pixel_%) = < MUTABLE, CONTINUOUS, [0, 100] > 
 
ips.sl_parameters(cloudcover_%) = < IMMUTABLE, CONTINUOUS, [0, 100] > 
 
ips.sl_parameters(compression_%) = < MUTABLE, CONTINUOUS, [0, 100] > 

We will now tie this example system to our proposed benefit framework.  For this example, we are assuming that each 
service level parameter independently affects benefit.  This assumption is for simplicity, and we are researching other 
alternatives for combining service level parameters.  Another simplifying assumption we make is that the benefit of each 
service level parameter can be linearly mapped to a benefit range. 

In order to know what combinations of service level parameters yield the most benefit, a user must specify the benefits for 
each service level parameter.  As this framework proposes, the scientist defines that each service level parameter maps onto 
a range [li, 0, ui] such that li ≤ 0 ≤ ui, and defines the quiescent value in that range.  For continuous, immutable service level 
parameters, the quiescent value = li = 0, and u i = 1.  The  parameter values will map linearly onto this interval.  For 
continuous, mutable service level parameters, li = -1 and ui = 1.  The parameter values will be divided into two sections, the 
group below quiescent, and the group above quiescent.  These values will map linearly onto their respective benefit 
intervals.  For discrete service level parameters, the complete mapping from value to benefit must be specified. 

ips.sl_parameters(image_interval).value = 60 �  li = -1 
ips.sl_parameters(image_interval).value = 45 �  qi = 0 
ips.sl_parameters(image_interval).value = 30 �  ui = 1 
 
ips.sl_parameters(resolution).value = LOW �  li = qi = 0 
ips.sl_parameters(resolution).value = HIGH �  ui = 0.1 
 
ips.sl_parameters(pixel_%).value = 0 �  li = -1 
ips.sl_parameters(pixel_%).value = 50 �  qi = 0 
ips.sl_parameters(pixel_%).value = 100 �  ui = 1 
 
ips.sl_parameters(cloudcover_%).value=100 �  li = qi = 0 
ips.sl_parameters(cloudcover_%).value = 0 �  ui = 1 
 
ips.sl_parameters(compression_%).value = 100 �  li = -1 
ips.sl_parameters(compression _%).value = 75 �  qi = 0 
ips.sl_parameters(compression _%).value = 0 �  ui = 1 

The second step is defining what parameters affect each application.  The Camera Simulator is affected by resolution and 
image_interval.  The Image Processing Agent is affected by resolution and pixel_percentage.  The Compressor Agent is 
affected by resolution, cloudcover_%, and compression_%. 

Now that we have defined the affect of service level parameters on the benefit to the user, we will apply the two 
hierarchical methods introduced in section 2 to derive both individual application and system benefit values, and compare 
the results of using each method.  To do a comparison we must choose some setting of the service level parameters. 

ips.sl_parameters(image_interval).value = 45 
ips.sl_parameters(resolution).value = LOW 
ips.sl_parameters(pixel_%).value = 75 
ips.sl_parameters(cloudcover_%).value = 40 
ips.sl_parameters(compression_%).value = 60 

Applying the first hierarchical technique (average), we have the following application and system benefits if we assume 
that all wi = 1: 

ips.cs.benefit = (0 + 0)/2 = 0 
ips.ipa.benefit = (0 + 0.5)/2 = 0.25 
ips.ca.benefit = (0 + 0.6 - 0.2)/3 = 0.13 
ips.benefit = (0 + 0.25 + 0.13)/3 = 0.13 
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Now applying the second hierarchal technique (min), we have the following benefits: 

ips.cs.benefit = min(0, 0) = 0 
ips.ipa.benefit = min(0, 0.5) = 0 
ips.ca.benefit = min(0, 0.6, -0.2) = -0.2 
 
ips.benefit = min(0, 0, -0.2) = -0.2 

As you can observe, the first approach indicates the collective values of the service level parameters produces benefit that 
is above the quiescent state of the system.  However, the second approach indicates that the service level parameter settings 
yield a benefit that is significantly below the quiescent state.  Depending on the characteristics of the real-time system 
being modeled, one of these algorithms may more accurately compute the perceived user benefit.  It appears that the first 
approach may be more useful for systems with soft constraints, and the second approach may be more useful for systems 
with hard constraints. 

Another important observation is that if all the service level parameters are equal to their respective quiescent values, then 
the application and system benefit are also at their respective quiescent values regardless of the hierarchical technique used.  
This behavior is a desired property of any hierarchical technique that could be used. 

4: Conclusion 

While the future of real-time computing research and practice will likely exploit the utility of benefit-based models, there 
are many issues, which must be resolved. This paper provides an initial framework to formalize the use of benefit functions 
in complex real time systems. It is easily shown that this framework can support the traditional hard/firm/soft real-time 
paradigms as well as supporting new models for real time operation.   We provided a framework that unifies the various 
types of benefit, including those from the application perspective. 
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