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Abstract

Non-volatile storage technologies such as flash mem-
ory, Magnetic RAM (MRAM), and MEMS-based storage are
emerging as serious alternatives to disk drives. Among these,
MEMS storage is predicted to be the least expensive and high-
est density, and at about 1 ms access times still consider-
ably faster than hard disk drives. Like the other emerging
non-volatile storage technologies, it will be highly suitable
for small mobile devices but will, at least initially, be too
expensive to replace hard drives entirely. Its non-volatility,
dense storage, and high performance still makes it an ideal
candidate for the secondary storage subsystem. We examine
the use of MEMS storage in the storage hierarchy and show
that using a technique calledMEMS Caching Disk, we can
achieve 30–49% of the pure MEMS storage performance by
using only a small amount (3% of the disk capacity) of MEMS
storage in conjunction with a standard hard drive. The result-
ing system is ideally suited for commercial packaging with a
small MEMS device included as part of a standard disk con-
troller or paired with a disk.

1. Introduction

Magnetic disks have dominated secondary storage for
decades. A new class of secondary storage devices based
on microelectromechanical systems (MEMS) is a promis-
ing non-volatile secondary storage technology currently be-
ing developed [3, 24, 26]. With fundamentally different un-
derlying architectures, MEMS-based storage promises seek
times ten times faster than hard disks, storage densities ten
times greater, and power consumption one to two orders of
magnitude lower. It is projected to provide several to tens of
gigabytes of non-volatile storage in a single chip as small as
a dime, with low entry cost, high resistance to shock, and po-
tentially high embedded computing power. It is also expected
to be more reliable than hard disks thanks to its architectures,
miniature structures, and manufacture processes [4, 9, 21].
For all of these reasons, MEMS-based storage is an appeal-
ing next-generation storage technology.

Although the best system performance can be achieved by
simply replacing disks with MEMS-based storage devices,
the cost and capacity issues prevent it from being used in
computer systems. It is predicted that MEMS is 5–10 times

more expensive than disks. Its capacity is initially limited
to 1–10 GB per media surface due to the performance and
manufacture considerations. Therefore, disks will still be the
dominant secondary storage in the foreseeable future thanks
to their capacities and economy. Fortunately, MEMS-based
storage shares enough similar characteristics with disks,such
as non-volatility and block-level data accesses, while provid-
ing much better performance than disks. It is possible to in-
corporate MEMS into the current storage system hierarchy to
make the system as fast as MEMS and as large and cheap as
disks.

MEMS-based storage has been used to improve perfor-
mance and cost/performance in the HP hybrid MEMS/disk
RAID systems, proposed by Uysalet al. [25]. In this work,
MEMS replaces half of the disks in RAID 1/0 and one copy
of replicate data is stored in MEMS. Based on data access
patterns, requests are serviced by the most suitable devices to
leverage fast access of MEMS and high bandwidth of disk.
Our work differs in two aspects. First of all, our goal on
storage architectures is to provide a single “virtual” storage
device with the performance of MEMS and the cost and ca-
pacity of disk, which can be easily adopted in every kind of
storage systems, instead of just RAID 1/0. Secondly, our ap-
proach is using MEMS as another layer in the storage hier-
archy, instead of disk replacement, so that we can mask the
relatively large disk access latency by MEMS while still tak-
ing advantage of the low cost and high bandwidth of disk.
Ultimately, we believe that our work complements theirs and
could even be used in conjunction with their techniques.

We explore two alternative hybrid MEMS/disk subsys-
tem architectures:MEMS Write Buffer(MWB) and MEMS
Caching Disk(MCD). In MEMS Write Buffer, all written
data are first staged on MEMS, organized as logs. Data logs
are flushed to the disk during disk idle times or when neces-
sary. The non-volatility of MEMS guarantees the consistency
of file systems. Our simulations show that it can improve the
performance of a disk-only system by up to 15 times under
write dominant workloads.

MEMS Write Buffer is a workload-specific technique. It
works well under write intensive workloads but obtains fewer
benefits under read intensive workloads. MEMS Caching
Disk addresses this problem and can achieve good system
performance under various workloads. In MCD, MEMS acts
as the front-end data store of the disk. All requests are ser-
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Figure 1. Data layout on a MEMS device.

viced by MEMS. MEMS and disk exchange data in large
data chunks (segments) when necessary. Our simulations
show that it can significantly improve the performance of a
disk-only system by 5.6–24 times under various workloads.
MCD can provide 30–49% of the performance achieved by a
MEMS-only system by using only a small fraction of MEMS
(3% of the total storage capacity).

In this research, MEMS is treated as a small, fast, non-
volatile storage device and shares the same interface with the
disk. Our use of MEMS in the storage hierarchy is highly
compatible with existing hardwares. We envision the MEMS
device residing either on the disk controller or packaged with
the disk itself. In either case, the relatively small amountof
MEMS storage will have a relatively small impact on the sys-
tem cost, but can provide significant improvements in storage
subsystem performance.

2. MEMS-based Storage

A MEMS-based storage device is comprised of two main
components: groups of probe tips calledtip arrays that are
used to access data on a movable, non-rotatingmedia sled. In
a modern disk drive, data is accessed by means of an arm that
seeks in one dimension above a rotating platter. In a MEMS
device, the entire media sled is positioned in thex andy di-
rections by electrostatic forces while the heads remain sta-
tionary. Another major difference between a MEMS storage
device and a disk is that a MEMS device can activate mul-
tiple tips at the same time. Data can then be striped across
multiple tips, allowing a considerable amount of parallelism.
However, the power and heat considerations limit the number
of probe tips that can be active simultaneously; it is estimated
that 200 to 2000 probes will actually be active at once.

Figure 1 illustrates the low level data layout of a MEMS
storage device. The media sled is logically broken into non-
overlappingtip regions, defined by the area that is accessible
by a single tip, approximately 2500 by 2500 bits in size. It
is limited by the maximum dimension of the sled movement.
Each tip in the MEMS device can only read data in its own tip
region. The smallest unit of data in a MEMS storage device
is called atip sector. Each tip sector, identified by the tuple
〈x,y,tip〉, has its own servo information for positioning. The
set of bits accessible to simultaneously active tips with the
samex coordinate is called atip track, and the set of all bits
(under all tips) with the samex coordinate is referred to as a
cylinder. Also, a set of concurrently accessible tip sectors is

Table 1. Default MEMS-based storage device
parameters.

Per-sled capacity 3.2 GB
Average seek time 0.55 ms
Maximum seek time 0.81 ms
Maximum concurrent tips 1280
Maximum throughput 89.6 MB/s

grouped as alogical sector. For faster access, logical blocks
can be striped across logical sectors.

Table 1 summarizes the physical parameters of MEMS-
based storage used in our research, based on the predicted
characteristics of the second generation MEMS-based storage
devices [21]. While the exact performance numbers depend
upon the details of that specification, the techniques them-
selves do not.

3. Related Work

MEMS-based storage [3, 15, 24, 26] is an alternative sec-
ondary storage technology currently being developed. Re-
cently, there has been interests in modeling the behavior of
MEMS storage devices [8, 10, 13]. Parameterized MEMS
performance prediction models [6, 22] were also proposed to
narrow the design space of MEMS-based storage.

Using MEMS-based storage to improve storage system
performance has been studied in several researches. Simply
using MEMS storage as disk replacement can improve the
overall application run-time by 1.8–4.8 and the I/O response
time by 4–110; using MEMS as a non-volatile disk cache
can improve I/O response times by 3.5 [9, 21]. Schlosser
and Ganger [20] further concluded that today’s storage inter-
faces and abstractions were also suitable for MEMS devices.
The hybrid MEMS/disk array architecures [25], in which one
copy of replicate data is stored in MEMS storage to lever-
age fast accesses of MEMS and high bandwidth of disks, can
achieve most of the performance benefits of MEMS arrays
and their cost/performance ratios are better than disk arrays
by 4–26.

The small write problem has been intensively studied.
Write cache, typically non-volatile RAM (NVRAM), can
substantially reduce write traffic to disk and the perceivedde-
lays for writes [19, 23]. However, the high cost of NVRAM
limits its amount, resulting in low hit ratios in high-end disk
arrays [27]. Disk Caching Disk (DCD) [11], which is archi-
tecturally similar to our MEMS Write Buffer, uses a small
log disk to cache writes. LFS [17] employs large memory
buffers to collect small dirty data and write them to disk in
large sequential requests.

MEMS Caching Disk (MCD) uses the MEMS device as
a fully associative, write-back cache for the disk. Because
the access times of disks are in milliseconds, MCD can take
advantage of computationally-expensive but effective cache
replacement algorithms, such as Least Frequent Used with
Dynamic Aging (LFUDA) [2], Segment LRU (S-LRU) [12],
and Adaptive Replacement Caching (ARC) [14].
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Figure 2. MEMS Write Buffer.

4. MEMS/Disk Storage Subsystem Architec-
tures

The best system performance can be simply achieved by
using MEMS-based storage as disk replacement thanks to
its superior performance. On the other hand, disk has its
strengths over MEMS in terms of capacity and cost per byte.
Thus, we expect that disk will still play important roles in sec-
ondary storage in the foreseeable future. We propose to inte-
grate MEMS-based storage into the current disk-based stor-
age hierarchy to leverage the high bandwidth, high capacity,
and low cost of disks and the high bandwidth and low latency
of MEMS so that the hybrid systems can be roughly as fast
as MEMS and as large and cheap as disk. The integration
of MEMS and disk is done at or below the controller level.
Physically, the MEMS device may reside on the controller or
as part of the disk packaging. The implementation details are
hidden by the controller or device interface and from the op-
erating system point of view this integrated device appearsto
be nothing more than a fast disk.

4.1. Using MEMS as a Disk Write Buffer

The small write problem plagues storage system perfor-
mance [5, 17, 19]. InMEMS Write Buffer(MWB), a fast
MEMS device acts as a large non-volatile write buffer for the
disk. All write requests are appended to MEMS as logs and
reads to recently-written data can be also serviced by MEMS.
A data lookup table maintains data mapping information from
MEMS to disk, which is also duplicated in MEMS log head-
ers to facilitate crash recovery. Figure 2 shows the MEMS
Write Buffer architecture. A non-volatile log buffer stands
between MEMS and disk to match transfer bandwidths of
MEMS and disk.

MEMS logs are flushed to disk in background when the
MEMS space is heavily utilized. MWB organizes MEMS
logs as a circular FIFO queue so the earliest-written logs are
cleaned first. During clean operations, MWB generates disk
write requests, which can be further concatenated into larger
ones if possible, according to the validity and disk locations
of data in one or more MEMS logs.

MWB can significantly reduce disk traffic because MEMS
is large enough to exploit spatial localities in data accesses
and eliminate unnecessary overwrites. MWB stages bursty
write activities and amortizes them to disk idle periods thus
disk bandwidth can be better utilized.

segment n
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DiskMEMS
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Figure 3. MEMS Caching Disk.

4.2. MEMS Caching Disk

MEMS Write Buffer is optimized for write intensive work-
loads so it can only provide marginal performance improve-
ment for reads.MEMS Caching Disk(MCD) addresses this
problem by using MEMS as a fully associative, write-back
cache for the disk. In MCD all requests are serviced by
MEMS. The disk space is partitioned intosegments, which
are mapped to MEMS segments when necessary. Data ex-
changes between MEMS and disk are in segments. As in
MWB, data mapping information from MEMS to disk is
maintained by a table and is also duplicated in MEMS seg-
ment headers. Figure 3 shows the MEMS Caching Disk
architecture. The non-volatile speeding-matching segment
buffer provides optimization oppotunities for MCD, which
will be described later.

Data accesses tend to have temporal and spatial locali-
ties [16, 19] and the amount of data accessed during a period
tends to be relatively small compared to the underlying stor-
age capacity [18]. MEMS Caching Disk can hold a significant
portion of the working set thus effectively reduce disk traffic
thanks to the relatively large capacity of MEMS. Exchang-
ing data between MEMS and disk in large segments can bet-
ter utilize disk bandwidth and implicitly prefetch sequentially
accessed data. All of these improve system performance.

The performance of MCD can be improved by leveraging
the non-volitile segment buffer between MEMS and disk to
reduce unnecessary steps from the critical data paths and re-
laxing the data validity requirement on MEMS, which result
in three techniques described below:

4.2.1. Shortcut MEMS Caching Disk buffers data in the
segment buffer when it reads data from the disk. Pending
requests can be serviced directly by the buffer without wait-
ing for data being written to MEMS. This technique is called
Shortcut. Physically, Shortcut adds a data path between the
segment buffer and the controller. By removing an unneces-
sary step in the critical data path, Shortcut can improve re-
sponse times for both reads and writes without extra over-
heads.

4.2.2. Immediate Report MCD writes evicted dirty
MEMS segments to disks before it frees them to service new
requests. Actually, MCD can free MEMS segments as soon
as dirty data is safely destaged to the non-volatile segment
buffer. This technique is calledImmediate Report. It can
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Table 2. Workload Statistics.
TPCD TPCC Cello Hplajw

Year 1997 2002 1999 1999
Duration
(hours) 7 2.5 12 2
Num. of
requests 238,971 1,246,763 1,088,407 308,788
Percentage
of reads 100% 52.1% 28.7% 60.3%
Avg. request
size (KB) 39.9 8 7.2 7.6
Working set
size (MB) 1,242 1,006 775 376
Logical
sequentiality 72.7% 0 7.4% 14.3%

improve system performance when there are free buffer seg-
ments available for holding dirty data; otherwise, buffer seg-
ment flushing will result in MEMS or disk writes anyway.

4.2.3. Partial Write MCD reads disk segments to MEMS
before it can service write requests smaller than the MCD
segment size. By carefully tracking the validity of each block
in MEMS segments, MCD can write partial segments with-
out reading them from disk first, leaving some MEMS blocks
undefined. This technique is calledPartial Write, which re-
quires a block bit map in each MEMS segment header to keep
track of block validity. It can achieve similar write perfor-
mance as MEMS Write Buffer.

4.2.4. Segment Replacement PolicyTwo segment re-
placement policies are implemented in MCD: Least Recently
Used (LRU) and Least Frequently Used with Dynamic Aging
(LFUDA) [2]. LRU is a commonly-used replacement pol-
icy in computer systems. LFUDA considers both frequency
and recency in data accesses by using a dynamic aging factor,
which is initialized to be zero and updated to be the prior-
ity of the most recently evicted object. Whenever an object
is accessed, its priority is increased by the current aging fac-
tor plus one. LFUDA evicts the object with the least priority
when necessary.

5. Experimental Methodology
Because MEMS storage devices are not available today,

we implement MEMS Write Buffer and MEMS Caching Disk
in DiskSim [7] to evaluate their performance. The default
MEMS physical parameters is shown in Table 1. We use the
Quantum Atlas 10K disk drive (8.6 GB, 10,025 RPM) as the
base disk model, whose average seek times of read/write are
5.7/6.19 ms. The disk model is relatively old and its maximal
throughput is about 25 MB/s, which is far below what mod-
ern disks can provide. To better evaluate system performance
under modern disks, we change its maximal throughput to 50
MB/s while keeping the rest of disk parameters unchanged.

We use workloads traced from different systems to exer-
cise the simulator. Table 2 summarizes the statistics of the
workloads.TPCDandTPCCare twoTPCbenchmark work-
loads, representing workloads for on-line decision support
and on-line transaction processing applications, respectively.
Celloandhplajware a news server and a user workloads from

Hewlett-Packard Laboratories, respectively. The logicalse-
quentiality is the percentage of requests that are at adjacent
disk addresses or addresses spaced by the file system inter-
leave factor. The working set size is the size of the uniquely
accessed data during the tracing period.

6. Results

Because the capacity of Atlas 10K is 8.6 GB, we set the
default MEMS size to be 256 MB, which corresponds to 3%
of the disk capacity. The controller has 4 MB cache by default
and employs the write-back policy. The non-volatile speed-
matching buffer between MEMS and disk is 2 MB.

6.1. Comparison of Improvement Techniques in
MEMS Caching Disk

We studied the performance impacts of different improve-
ment techniques of MEMS Caching Disk (MCD) under var-
ious workloads, as shown in Figures 4(a)–4(d). The tech-
niques are Shortcut (SHORTCUT), Immediate Report (IRE-
PORT), and Partial Write (PWRITE) (described in Sec-
tion 4.2). The performance of MCD with all three techniques
disabled is labeled as NONE and with all three techniques en-
abled is labeled as ALL. For each of the experiments, we used
a segment size that was the first power of two greater than or
equal to the average request size. We discuss the segment size
choice in more detail in Section 6.3.

Immediate Report can improve response times for write-
dominant workloads, such asTPCC (Figure 4(b)) andcello
(Figure 4(c)) by leveraging asynchronous disk writes. Partial
Write can effectively reduce read traffic from disks to MEMS
when the workloads are dominated by writes and their sizes
are often smaller than the MEMS segment size, such ascello:
52% of its write requests are smaller than the 8 KB segment
size. Performance improvement by Shortcut heavily depends
on the amount of disk read traffic due to user read requests
(TPCD, Figure 4(a)) and/or internal read requests generated
by writing partial MEMS segments (cello, Figure 4(c)). The
overall performance improvement by these techniques ranges
from 14% to 45%.

6.2. Comparison of Segment Replacement Policy

We compared the performance of two segment replace-
ment policies, LRU and LFUDA, in the MEMS Caching Disk
architecture. We found that in general LRU performed as well
as and, in many cases, better than LFUDA. Based on its sim-
plicity and good performance, we chose LRU to be the default
segment replacement policy in the future analysis.

6.3. Performance Impacts of MEMS Sizes and Seg-
ment Sizes

The performance of MCD can be affected by three fac-
tors: the segment size, the MEMS cache size, and the MEMS
cache utilization. A large segment size increases disk band-
width utilization and facilitates prefetching. However, it in-
creases disk request service time and may reduce MEMS
cache utilization if the prefetched data is useless. A large
segment size also decreases the number of buffer segments
given that the buffer size is fixed, which can have an impact

104



NONE SHORTCUT IREPORT PWRITE ALL

R
es

po
ns

e 
T

im
e 

A
ve

ra
ge

 (
m

s)

0

1

2

3

4

5

6

4.97

3.99

4.97 4.97

3.99

(a) TPCD Trace

NONE SHORTCUT IREPORT PWRITE ALL

R
es

po
ns

e 
T

im
e 

A
ve

ra
ge

 (
m

s)

0

1

2

3

4

5

6

3.8 3.73
3.16

3.8

3.1

(b) TPCC Trace

NONE SHORTCUT IREPORT PWRITE ALL

R
es

po
ns

e 
T

im
e 

A
ve

ra
ge

 (
m

s)

0

1

2

3

4
3.64

2.74
3.06

2.69

2.01

(c) Cello Trace

NONE SHORTCUT IREPORT PWRITE ALL

R
es

po
ns

e 
T

im
e 

A
ve

ra
ge

 (
m

s)

0

1

2

3

4

1.27 1.13 1.23 1.27
1.09

(d) Hplajw Trace

Figure 4. MCD Improvement Techniques with 256 MB MEMS

on the effectiveness of Shortcut and Immediate Report. A
large MEMS size can hold a larger portion of the working
set thus increases the cache hit ratio. We vary the MEMS
cache size from 64 MB to 512 MB, which corresponds to
about 0.75–6% of the disk capacity, to reflect the probable
future capacity ratio of MEMS to disk. We vary the MCD
segment size from 4 KB to 256 KB, doubling it each time.
We also configure the MEMS size to be 3 GB to show the up-
per bound of the MCD performance, which can hold all of the
data accessed in the workloads. We enable all improvement
techniques.

TheTPCDworkload contains large sequential reads. Sim-
ply increasing the MEMS size does not significantly improve
system performance unless MEMS can hold all accessed data,
as shown in Figure 5(a). However, increasing segment sizes
thus reducing commanding overheads and prefetching useful
data can effectively utilize disk bandwidth and improve sys-
tem performance. With 256 MB MEMS, the performance of
MCD can be improved by a factor of 1.3 when the segment
size is increased from 8 KB to 64 KB.

The TPCC and cello workloads are dominated by small
and random requests. Using segment sizes larger than the av-
erage request size of 8 KB severely penalizes system perfor-
mance because it increases disk request service times and de-
creases MEMS cache utilization by prefetching useless data.
Also Shortcut and Immediate Report become less effective
as the increase of the MCD segment size because the num-
ber of buffer segments decreases, results in less likelihood to
find free buffer segments for optimization. MCD achieves its
best performance at the segment size of 8 KB, as shown in
Figures 5(b) and 5(c).

Figure 5(d) clearly shows the performance impacts of the
MEMS size, the segment size, and their interactions on MCD.
Hplajw is a workload with both sequential and random data
accesses. The spatial locality in data accesses favors large
segment sizes, which can prefetch useful data without be-

ing explicitly requested. For instance, at the MEMS size
of 64 MB the average response time decreases with the in-
crease of the segment size from 8 KB to 64 KB. However,
hplajw is not as sequential asTPCD. Using even larger seg-
ment sizes thus prefetching more data, in turn, impairs sys-
tem performance by reducing MEMS cache utilization and
increasing disk request service times, which is indicated by
the increased average response times at segment sizes larger
than 64 KB. When the MEMS size is 3 GB (the infinite cache
size for hplajw), the best segment size is 128 KB because
MEMS cache utilization is not an issue any more.

6.4. Overall Performance Comparison

We evaluate the overall performance of MEMS Write
Buffer (MWB) and MEMS Caching Disk (MCD). The de-
fault MEMS size is 256 MB. We either enable all MCD opti-
mization techniques (MCD ALL) or not (MCD NONE). The
segment sizes of MCD are 256 KB, 8 KB, 8 KB, and 64 KB
for the TPCD, TPCC, cello, andhplajw workloads, respec-
tively. The MWB log size is 128 KB.

We use three performance baselines to calibrate these ar-
chitectures: the average response times by only using a disk
(DISK), only using a large MEMS device (MEMS), and us-
ing a disk with 256 MB controller cache (DISK-RAM). By
employing a controller cache with the same size of MEMS,
we approximate the system performance of using the same
amount of non-volatile RAM (NVRAM) instead of MEMS.

Figure 6(a)–6(d) show the average response times of
different architectures and configurations under theTPCD,
TPCC, cello, andhplajwworkloads, respectively. In general,
using MEMS only achieves the best performance inTPCD,
TPCC, andcello thanks to its superior performance. DISK-
RAM only performs slightly better than MEMS inhplajwbe-
cause the majority of its working set can be held in nearly-
zero-latency RAM. DISK-RAM performs better than MCD
by various degrees (6–64%), dependent upon the workloads’

105



Segment Size (KB)
0 50 100 150 200 250

R
es

po
ns

e 
T

im
e 

A
ve

ra
ge

 (
m

s)

0

2

4

6

8

10
64MB_MEMS
96MB_MEMS
128MB_MEMS
192MB_MEMS
256MB_MEMS
384MB_MEMS
512MB_MEMS
3GB_MEMS

(a) TPCD Trace

Segment Size (KB)
0 50 100 150 200 250

R
es

po
ns

e 
T

im
e 

A
ve

ra
ge

 (
m

s)

0

2

4

6

8

10
64MB_MEMS
96MB_MEMS
128MB_MEMS
192MB_MEMS
256MB_MEMS
384MB_MEMS
512MB_MEMS
3GB_MEMS

(b) TPCC Trace

Segment Size (KB)
0 50 100 150 200 250

R
es

po
ns

e 
T

im
e 

A
ve

ra
ge

 (
m

s)

0

2

4

6

8

10
64MB_MEMS
96MB_MEMS
128MB_MEMS
192MB_MEMS
256MB_MEMS
384MB_MEMS
512MB_MEMS
3GB_MEMS

(c) Cello Trace

Segment Size (KB)
0 50 100 150 200 250

R
es

po
ns

e 
T

im
e 

A
ve

ra
ge

 (
m

s)

0

2

4

6

8

10
64MB_MEMS
96MB_MEMS
128MB_MEMS
192MB_MEMS
256MB_MEMS
384MB_MEMS
512MB_MEMS
3GB_MEMS

(d) Hplajw Trace

Figure 5. Performance of Different MEMS Sizes with Differen t Segment Sizes

characteristics and working set sizes. In both MCD and
DISK-RAM, the large disk access latency is still a dominant
factor.

DISK and MWB have the same performance inTPCD
(Figure 6(a)) becauseTPCDhas no writes. DISK has better
performance than MCD. In such a highly sequential workload
with large requests, the disk positioning time is not a domi-
nant factor in disk service times and disk bandwidth can be
fully utilized. The not-scan-resistant property of LRU makes
MEMS cache very inefficient. Instead, MCD adds one extra
step into the data path, which can decrease system perfor-
mance by 25%. DISK-RAM only has moderate performance
gain due to the same reason.

DISK cannot support the randomly-accessedTPCCwork-
load, as shown in Figure 6(b), because theTPCC trace was
gathered from an array with three disks. Although write activ-
ities are substantial (48%) inTPCC, MWB cannot support it
either. Unlike MCD, which does update-in-place, MWB ap-
pends new dirty data to logs, which results in lower MEMS
space utilization thus higher disk traffic in such a workload
with frequent record updates. MCD significantly reduces disk
traffic by holding a substantial fraction of theTPCCworking
set. Both MCD NONE and MCD All can achieve respectable
response times of 3.79 ms and 3.09 ms, respectively.

Cello is a write intensive and non-sequential workload.
MWB dramatically improves the average response time of
DISK by a factor of 14 (Figure 6(c)) because it can signif-
icantly reduce disk traffic and increase disk bandwidth uti-
lization by staging dirty data on MEMS and writing them
back to disk in sizes as large as possible. Incello, 52% of
the writes are smaller than the 8 KB MCD segment size.
By data logging, MWB also avoids disk read traffic gener-
ated by MCD NONE fetching corresponding disk segments
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Figure 7. Cost/performance analyses

to MEMS, which is addressed by the technique of Partial
Write. Generally MCD has better MEMS space utilization
than MWB because it does update-in-place. Thus MCD can
hold a larger portion of the workload working set, further re-
ducing traffic to disk. For all these reasons, MEMS ALL per-
forms better than MWB by 57%.

Hplajw is a read-intensive and sequential workload. Thus
MWB can not improve system performance as much as
MCD. The working set ofhplajw is relatively small so MCD
can hold a large portion of it and achieves response times less
than 1 ms.

Although MCD degrades the system performance under
the TPCD workload and its performance is sensitive to the
segment size underTPCD and TPCC, system performance
tuning under such specific workloads can be easy because
the workload characteristics are typically known in advance.
Controllers can also bypass MEMS under theTPCD-like
workloads, in which the disk bandwidth is the dominant per-
formance factor. In general purpose file system workloads,
such ascelloandhplajw, MCD performs well and robustly.

106



Disk MWB MCD
NONE

MCD
ALL

DISK−RAM MEMS

R
es

po
ns

e 
T

im
e 

A
ve

ra
ge

 (
m

s)

0

1

2

3

4

5

2.42 2.42

3.82

3.24

1.97

1.08

(a) TPCD Trace

Disk MWB MCD
NONE

MCD
ALL

DISK--RAM MEMS

R
es

po
ns

e 
T

im
e 

A
ve

ra
ge

 (
m

s)

0

1

2

3

4

5

3.79

3.09

2.35

0.93

U
nb

ou
nd

ed
 q

ue
ue

in
g 

de
la

y

U
nb

ou
nd

ed
 q

ue
ue

in
g 

de
la

y

(b) TPCC Trace

Disk MWB MCD
NONE

MCD
ALL

DISK−RAM MEMS

R
es

po
ns

e 
T

im
e 

A
ve

ra
ge

 (
m

s)

0

10

20

30

40

50 48.03

3.13 3.64 2 1.88 0.64

(c) Cello Trace

Disk MWB MCD
NONE

MCD
ALL

DISK−RAM MEMS

R
es

po
ns

e 
T

im
e 

A
ve

ra
ge

 (
m

s)

0

1

2

3

4

5

3.61

2

0.76 0.65
0.3 0.32

(d) Hplajw Trace

Figure 6. Overall performance comparison

6.5. Cost/Performance Analyses
DISK-RAM has better performance than MCD when the

sizes of NVRAM and MEMS are the same. However,
MEMS is expected to be much cheaper than NVRAM. Fig-
ure 7 shows the relative performance of using MEMS and
NVRAM of the same cost as disk cache under different
NVRAM/MEMS cost ratios, ranging from 1 to 10. The aver-
age response time of MCD is the baseline. Using MEMS,
instead of NVRAM, as disk cache can achieve better per-
formance inTPCC, cello, andhplajw unless NVRAM can
be as cheap as MEMS. The disk access latency is 4–5 or-
ders of magnitude and 10 times higher than the latencies of
NVRAM and MEMS, respectively. Thus, the cache hit ra-
tio, which determines the fraction of requests requiring disk
accesses, is the dominant performance factor. With cheaper
prices thus larger capacities, MEMS can hold a larger frac-
tion of the workload working set than NVRAM, resulting in
higher cache hit ratios and better performance. MCD does
not work well underTPCCand has consistently worse per-
formance than DISK-RAM.

7. Future Work
The performance of MEMS Caching Disk is sensitive, to

various degrees, to its segment size and workload characteris-
tics. MCD can maintain multiple “virtual” segment manager,
each using a different segment size, to dynamically choose
the best one. This technique is similar to Adaptive Caching
Using Multiple Experts (ACME) [1]. MCD cannot improve
system performance under highly-sequential streaming work-
loads, such asTPCD. We can identify streaming workloads at
the controller level and bypass MEMS to minimize its impact
on system performance. Techniques that can automatically
identify workloads characteristics are desirable.

The performance and cost/performance implications of
MEMS storage were studied in disk arrays [25]. The pro-

posed hybrid MEMS/disk arrays leverage MEMS fast ac-
cesses and high disk bandwidth by servicing requests from
the most suitable devices. Our work shows that it is possi-
ble to integrate MEMS and disk into a single device that can
approach the performance of MEMS as well as the economy
of disk. It is probable that arrays built on such devices can
achieve high system performance with relatively low costs.
We will investigate its performance and cost/performance in
the future.

8. Conclusion
Storage system performance can be significantly improved

by incorporating MEMS-based storage into the current disk-
based storage hierarchy. We evaluate two techniques, using
MEMS as disk write buffer (MWB) or disk cache (MCD).
Our simulations show that MCD usually has better perfor-
mance than MWB. By using a small amount of MEMS (3%
of the raw disk capacity) as disk cache, MCD improves sys-
tem performance by 5.6 and 24 times in the user and news
server workloads. It can even well support an on-line trans-
action workload traced from an array with three modern disks
by using a combination of MEMS and a single relatively old
disk. With well-configured parameters, MCD can achieve
30–49% of the pure MEMS performance. Thanks to its small
physical size and low power consumption, it is suitable to in-
tegrate MEMS into controllers or with disks into commercial
storage packages with relatively low costs.
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