
MRAMFS: A compressing file system for non-volatile RAM†

Nathan K. Edel
nate@cs.ucsc.edu

Deepa Tuteja
deepa@cs.ucsc.edu

Ethan L. Miller
elm@cs.ucsc.edu

Scott A. Brandt
sbrandt@cs.ucsc.edu

Storage Systems Research Center
Jack Baskin School of Engineering
University of California, Santa Cruz

Santa Cruz, CA 95064

Abstract

File systems using non-volatile RAM (NVRAM) promise
great improvements in file system performance over con-
ventional disk storage. However, current technology allows
for a relatively small amount of NVRAM, limiting the effec-
tiveness of such an approach. We have developed a proto-
type in-memory file system which utilizes data compression
on inodes, and which has preliminary support for compres-
sion of file blocks. Our file system,mramfs, is also based on
data structures tuned for storage efficiency in non-volatile
memory. This prototype will allow us to examine how to
more efficiently use this limited resource. Simulations have
shown that inodes can be reduced to 15–20 bytes each at a
rate of 250,000 or more inodes per second. This is a space
savings of 79–85% over conventional 128-byte inodes. Our
prototype file system shows that for metadata operations, in-
ode compression does not significantly impact performance,
while significantly reducing the space used by inodes. We
also note that a naive block-based implementation of file
compression does not perform acceptably either in terms of
speed or compression achieved.

1. Introduction

We have developed a prototype file system,mramfs, in-
tended for use with byte-addressable non-volatile RAM
(NVRAM). It is intended to explore the value of metadata
and small-file compression for such a file system. It differs
from common in-memory file systems in that it is not tied
to volatile main memory through tight integration with the
VFS caches likeramfs or tmpfs [25], and it is tuned for

† This research was funded in part by the National Science Foundation
under grant 0306650. Additional funding for the Storage Systems Re-
search Center was provided by support from Hewlett Packard,IBM,
Intel, LSI Logic, Microsoft, Network Appliance, Overland Storage,
and Veritas.

byte-addressable NVRAM rather for flash memory’s partic-
ular constraints. Its support for compression notwithstand-
ing, mramfsis most closely comparable in function to run-
ning a disk file system such asext2fs or ReiserFS on
a RAM disk or emulated block device. However, with com-
pression and structures tuned specifically for random access
memory, it offers greater space efficiency and potentially
better performance.

File systems implemented in fast NVRAM offer much
greater performance than disk based file systems, especially
for random accesses and metadata operations. With typi-
cal workstation workloads, the majority of file system ac-
cesses are to metadata and small files [23], so overall perfor-
mance will benefit significantly from in-memory file stor-
age. Accesses to small objects are primarily limited by the
initial access time, making RAM-like technologies partic-
ularly attractive. For larger objects, however, capacity con-
straints and the relatively greater importance of raw band-
width mean that disk will remain the more cost-effective op-
tion for the foreseeable future. Hybrid systems storing small
files and metadata in NVRAM and large files on disk have
been proposed, and promise significant improvements in
performance over disk-only file systems without the space
constraints associated with a purely in-memory file system.

Since fast non-volatile memory capacities are small rela-
tive to other storage media, file systems should use that lim-
ited capacity as efficiently as possible, and compression is
one way to improve this efficiency. Data compression tech-
niques and characteristics are of particular interest because
of the very high speed of current-generation processors rel-
ative to slow improvement of storage bandwidth and la-
tency [30].

Compression of small objects such as metadata and
small files has long been neglected because there is little
point to compressing small objects given the long latency
of individual disk accesses. As long as such objects live per-
manently on disk and are only cached in memory, compres-
sion will remain optional. For NVRAM-based or hybrid file



systems, however, compression is an important tool for re-
ducing NVRAM capacity requirements and system cost.

This paper builds on our work evaluating the the poten-
tial space savings and performance cost of compression; a
more detailed analysis of various compression methods is
available elsewhere [12]. We present the design for our pro-
totype NVRAM file system, also noting that it could serve
as the basis for a future disk/NVRAM hybrid system along
the lines proposed for HeRMES [19]. Right now, this sys-
tem shows a proof of concept, and our initial performance
numbers for metadata operations are very promising.

Our design makes certain assumptions about the range
of systems and applications to be supported; it is in-
tended for PC-class workstations and low-end servers
running Linux (although it should be portable to other sim-
ilar UNIX -like operating systems). We do not assume the
use of any particular kind of non-volatile memory tech-
nology, but we assume that the NVRAM can be mapped
directly into the system address space; relaxing this re-
quirement would add slightly to the complexity. We
also assume that NVRAM has predictable random ac-
cess performance and byte-addressable reads and writes.
Flash memory fails on this point, because of the re-
quirement for block erase. Although the compression
techniques we propose could be used on flash, our sys-
tem would need to be restructured significantly to eliminate
in-place writes. Other studies have suggested that us-
ing a log structure is preferable for a flash-specific file sys-
tem [24, 33, 32]. It should be also noted that if data trans-
fers to and from NVRAM are slow relative to main
memory, compression may show an increased net bene-
fit in performance by reducing the amount of data trans-
ferred to persistent NVRAM.

2. Related Work

The use of non-volatile memory for file systems is not
new; Wu and Zwaenepoel [33] and Kawaguchi,et al. [15]
presented designs for flash memory-based file systems, and
existing flash memory devices may use any one of a num-
ber of file systems, including the Microsoft Flash File Sys-
tem [11, 16] andJFFS2 [32]. JFFS2 is a log-structured
file system [24] optimized for flash memory usage that does
support compression of data and metadata, but there is lit-
tle information on the effectiveness of its compression al-
gorithms.JFFS2 is not the first file system to use com-
pression; other disk-based file systems have done so as
well [4, 34], and compression has been proposed as an
extension to the commonly-usedext2fs file system on
Linux [27].

Aside from its use for file storage, NVRAM has fre-
quently been used for buffering. It is used either as a speed-
matching buffer or to allow safer delayed writes. For exam-

ple, WAFL uses battery-backed NVRAM for a write-ahead
log [14]. Relative to file system size, however, the amount
of NVRAM useful as a buffer is typically small. Baker,
et al. [1] showed that while a megabyte or so of NVRAM
used as a write buffer could have a significant positive im-
pact on performance, the return from increased write buffer
sizes diminishes quickly.

Using volatile RAM for temporary file storage is a well
established technique, either by using it as a RAM disk that
emulates a block device, or as a temporary in-memory file
system. Several such systems exploit caches built into the
VFS layer of modern UNIX -like operating systems; these
include examples on Linux (ramfs), BSD (memfs [17]),
and many commercial Unix variants [25].

Battery-backed RAM is frequently used in mobile de-
vices, such as those running Windows CE or the Palm OS.
Douglis, et al. [11] studied storage alternatives for mo-
bile computers, including two types of flash memory. They
noted that flash memory was slow, particularly for writes.
This has not changed; even the fastest commodity flash
memory cards are significantly slower than modern disk
drives. In such a system, compression is useful even for
small objects because it reduces transfer time in addition
to reducing space requirements.

While this prototype could be used with any fast byte-
addressable form of NVRAM, there has been significant in-
terest in MRAM specifically for the past several years [2,
26, 35]. There have been a number of recent technical ad-
vances, including a fast (35 ns) 4 Mbit part discussed by
Motorola [20]. Other new NVRAM technologies, such
as FeRAM and Ovonyx Unified Memory [9] also appear
promising.

There has been some recent work in hybrid
disk/NVRAM file systems. The HeRMES file sys-
tem [19] and the Conquest file system [28] are exam-
ples of hybrid disk/NVRAM file systems under devel-
opment. The HeRMES file system suggested the use
of compression or compression-like techniques in or-
der to minimize the amount of memory required for meta-
data.

Beyond work on file systems, there has been consid-
erable work evaluating the use of compression techniques
for in-memory structures. Douglis proposed the use of a
compression cache, which would implement a layer of vir-
tual memory between the active physical memory and sec-
ondary storage using a pool of memory to store compressed
pages [10]. This idea has been followed up upon by several
more recent studies, and there is an ongoing effort to imple-
ment a compressed page cache on Linux [30, 7, 8].

A number of compression mechanisms could be used to
compress metadata, including any of the block- or stream-
based mechanisms evaluated by Wilson,et al.[30] and used
in the Linux-Compressed Project [8]. However, simpler



mechanisms such as Huffman coding using a pre-computed
tree [6], and prefix encodings such as gamma compres-
sion [31] can all be used to good effect without the same
degree of runtime processing overhead.

3. Compression Mechanisms

3.1. Metadata

Metadata in UNIX is stored ininodes. In widely-used file
systems such as the Berkeley Fast File System (FFS) [18]
and the Linuxext2fs file system [3], each file has a sin-
gle inode that contains information such as owning user
ID (UID) and group ID (GID), permission bits, file sizes,
and various timestamps. In addition, each inode in FFS and
ext2fs contains pointers to several individual file blocks.
In ext2fs, inodes are 128 bytes long, of which 74 bytes
are used for block pointers and reserved free space. The re-
maining 54 bytes contain information that must be kept for
each file. This is very close to the size of inodes used by the
Conquest file system—Conquest’s file metadata is 53 bytes
long, and consists of only the fields needed to conform to
POSIX specifications [28]. This 53-byte length was used as
a baseline for the memory requirements of an in-memory
inode, and provides a reduction in size of 46% simply by
stripping out the unused fields.

As part of our prior simulation work, to study the com-
pressibility of metadata, we gathered inode dumps on sev-
eral production systems to serve as a sample on which to try
different compression algorithms [12]. These inode dumps
were taken from file systems on several small Linux sys-
tems and one larger commercial UNIX server. On these sets
of inodes, we evaluated a series of compressors, includ-
ing a stream-based compressor and several field-by-field
compressors. One of the field-by-field compressors, gamma
compression [31], produced the best overall balance of per-
formance and compression.

Our results for compression over entire inode dumps
showed compressed sizes of 15–20 bytes per inode. This is
a very high speed of compression, and achieves a compres-
sion of 60–75% above simply stripping the inodes. Beyond
simply using gamma compression on individual fields, we
were able to compress several fields (mode, UID, and GID)
together using a pseudo-ACL mechanism. As noted by Rei-
del,et al.[22], the number of unique permission sets in a file
system is relatively small, and in particular, on our worksta-
tion examples many files fall into the category of “system
files.”

The speed of compression is also a very relevant fac-
tor because inode compression and decompression must be
fast for the technique to be used in a regular file system. We
found that the compression techniques we chose were suf-
ficiently fast that they would not limit file system through-

Compressor Compression 512b–4kb 16kb–128kb
Deflate 61% 1–15 MB/s 26–38MB/s
LZO 50% 1–13 MB/s 30–57MB/s
LZRW1 44% 2–20 MB/s 35–54MB/s

Table 1. Average file compression and speed
range by compression technique and file size
class.

put. On a midrange modern desktop system (a 1.7 GHz Pen-
tium 4) the rate was 250–500 million inodes per second us-
ing gamma compression.

3.2. File Data

As part of the same prior work, we evaluated several
compressors for compressing file data [12]. We primarily
focused on conventional Lempel-Ziv stream compressors.
These included the populardeflate algoritm from the
zlib compression library [13] as well as two LZ vari-
ants which are specifically optimized for speed and low re-
source requirements: LZO (Lempel-Ziv-Oberhumer) [21]
and LZRW1 (Lempel-Ziv-Ross-Williams) [29].

These tests showed that the faster algorithms could keep
up with IDE disk transfer rates (2550 megabytes/second)
on compression. Compression rates for all but the smallest
files ran between 26–54 MB/sec and decompression was 3–
4 times faster than compression. Table 1 shows a more de-
tailed summary of our results. We performed these tests on
a now fairly dated processor—a 1.1 GHhz AMD Athlon XP
1700+—and on a high-end processor today, we expect that
evendeflate should be able to keep up with disk trans-
fer rates without fully loading the CPU.

These tests, however, were operating on complete files
of up to 128kb in length. We noted that the full transfer rate
was gradually reached as file sizes increased above the very
smallest. This was more true with LZO and LZRW1, where
full speed was reached at file sizes of about 20kb, while for
deflate it was reaches at about 8kb. Similarly, the aver-
age compression ratio was reached only for files of about
12–16kb; smaller files showed lesser compressibility.

There are other compression techniques which could
be used which might be more favorable for smaller files;
these include some of the block-based compressors devel-
oped and evaluated by Wilson,et al. [30] or options which
use pre-existing knowledge about the data, such as canon-
ical Huffman trees for English/ASCII text or using a pre-
populated dictionary [31].



Figure 1. mramfs data structures.

4. Module Design

We implemented the prototype file system for the Linux
2.6 virtual file system (VFS) layer. It differs from existing
in-memory file systems for Linux—ramfs andtmpfs—
in that it does not rely primarily on existing kernel struc-
tures such as the inode, dentry, and page caches for its in-
ternal representation of file system structures. This is done
to model the case where the file system is stored in a per-
sistent NVRAM buffer and rather than in main memory. At
this point, we simulate persistence and use a large block of
volatile ram which is segregated from main memory. Persis-
tence is implemented by copying the memory region to disk
on un-mount, and restoring it from disk when remounted.
Un-mounting and remounting the file system also serves to
clear out the VFS cache representation of the in-memory
file system.

Our in-memory data objects, shown in Figure 1, parallel
both the standard Unix file system objects, and the Linux
Virtual File System (VFS) internal representations. Upon
file system creation, the file system itself is represented bya
private superblock object, an empty root directory, and var-
ious memory management structures. One key difference is
that all pointers, with the exception of inode numbers, are
memory pointers relative to the start of our memory region.

Our file system utilizes a single large region of mem-
ory, allocated using eithervmallocor an IO memory map-
ping, which is mapped into kernel space when mounted.
This could trivially be adapted to use a directly-mapped
nonvolatile memory if we had one available. We utilize our
own private memory manager to handle allocations within
the region; this treats the region as a set of fixed-size seg-
ments allocated via a bitmap, which can then be subdivided
into smaller objects using a free-list allocator for various
preset sizes of objects.

Directories are implemented as chained hash tables, with
a single directory/table object and dynamically allocateddi-
rectory entry objects. The current implementation of the di-

byte header[16]
length of each inode, or 0 for not allocated

byte body[block length-16]
compressed inode data, where for inoden:

inode 1 is stored in bytes
0 toheader[0]

inode 2 is stored in bytes
header[0]+1 to header[1]

this continues for inodes 3–15

Figure 2. Pseudocode for mramfs inodes.

rectory entry object contains a fixed-length field for the file
name. In the future, we plan to improve upon this by allocat-
ing strings separately in fields of several lengths, and by us-
ing hashing to identify duplicate strings. Similarly, the cur-
rent implementation uses a fixed-size hash table for every
directory; this will be improved by using a linked-list im-
plementation for very small directories and by rehashing to
increasingly larger tables as the directory size increases.

Inodes are implemented to be either compressible or
stripped, and packed into blocks. A two-level table struc-
ture is used to allocate and index inode blocks; only the top
level table is allocated initially, with second level tables and
individual blocks allocated dynamically. Our present imple-
mentation uses 1024 entries per table to catalog the inodes,
allowing up to 16 million inodes to be indexed. This could
be extended to support larger numbers of inodes as needed.
Because inode blocks are a minimum of 256 bytes long and
allocated along 32- or 64-byte-aligned addresses, we take
advantage of the lower 4 unused bits in each inode block
pointer to keep a count of the free inodes within each block.

Individual inodes are stored in blocks of 16. Each in-
ode block is a variable length, but at a minimum 256 bytes
long. Each block starts with a 16-byte header indicating the
presence and compressed length of each allocated inode in
the block. Pseudo-code for the inode block structure is in-
cluded as Figure 2. These headers, in conjunction with the
free counts embedded in the inode tables, are used in lieu
of allocation bitmap for the entire file system. When possi-
ble, inodes will be re-written in-place, even if this results in
a slight slack space at the end of the inode. This occurs most
of the time when recompression does not increase the size
of an existing inode. When inodes are deleted, or if a re-
compression results in an inode outgrowing its space, the
entire block is copied rather than shifting data in place. Af-
ter a copy is created, the block table pointer is changed to
point to the new block and the old block is freed.

The actual compressed inode is composed of a series
of gamma-encoded fields, as per our simulations. Notably,
the access-control fields (UID, GID, Mode) are combined
into a single pseudo-ACL number which is then gamma-



encoded. One field, the data pointer, is not currently com-
pressed; it is a direct memory pointer, relative to the base
of our segregated memory space, pointing to either a sym-
bolic link string, the file’s first data block index, or to a di-
rectory structure. On smaller file systems, it could be com-
pressed slightly.

Finally, data files are stored using both a set of very small
data block index objects and a set of dynamically allocated
file data blocks. Data block index objects implement a sim-
ple linked list for each file, with each node consisting of a
pointer to a data block and the block’s compressed and un-
compressed lengths. While a linked list is not the most effi-
cient structure for random accesses in large files, in the long
run we expect large files to be stored primarily on disk as
part of a hybrid file system. In particular, when combined
with variable block sizes in the future, we do not expect the
cost of seeks within moderate size files to be an issue.

At present, data blocks are limited to 4 KB uncom-
pressed, corresponding to the page cache size on a standard
Linux system. Allowing larger data blocks would likely sig-
nificantly improve the degree of compression and might
reduce the overhead of compression as well. Compressed
blocks can be any length up to 4 KB, although our alloca-
tor in practice uses only a limited number of size buckets
to store them, rather than attempting to pack them byte-by-
byte. In pathological cases, where an individual block com-
presses to 4 KB or larger, the compressed data is thrown
out and the original uncompressed page is stored. Sparse
files are supported by avoiding allocating intermediate data
blocks, although there is still some cost for the intermedi-
ate data index objects.

5. Benchmark Results

We performed three sets of testing and benchmarking.
The first was a simple benchmark creating and then unlink-
ing an ordered set of empty files, repeatedly. This was per-
formed on an earlier version of our code on an earlier Linux
kernel (2.4.22) on a midrange (1.7 GHz) Pentium 4 sys-
tem. In practice, we found that on our simple create/unlink
benchmark, our system performed nearly identically to ei-
therramfs orext2fs on RAMdisk. Creating and unlink-
ing 4,000 files 4,000 times, for a total of 32 million meta-
data operations, took approximately36 ± 0.55 seconds.

One issue we discovered moving to the 2.6 kernel series
is that file system changes left us unable to continue test-
ing file systems other thanext2fs on the Linux RAMdisk
driver (rd). One alternative, the Linux Memory Technology
Driver subsystem (mtd), primarily supports various forms
of flash and flash-based Disk-on-Chip devices. However, it
also has a driver (mtdram) which supports an emulating
anmtd device in main memory. In combination with an-
other driver (mtdblock) that handles a read-write block

device on top of anmtd, we were able to use this instead of
the RAMdisk driver on 2.6 for every file system we wished
to test. It had the added bonus of allowing us to test the
JFFS2 file system, a file system for flash which is popu-
lar in the embedded-Linux community [32].

The second test used a modified version the PostMark
benchmark, which performs random read and write ac-
cesses to a large set of small files. The final tests consisted
of runningmakeon a previously-configuredcopy ofopenssl
version 0.9.7. This second group tests were run on an un-
patched copy of the Linux kernel version 2.6.7, using GCC
version 3.3.3, on a 2.0 GHz AMD Athlon 64 with 1 GB of
PC2100 DDR SDRAM, and were run in single-user mode
with swap disabled. Except for tests withtmpfs, the 1 GB
memory was divided into two segments, one (416 MB) left
as general purpose memory, with 512 MB reserved for ei-
ther themtdram driver or formramfs.

We testedmramfswith inode compression both enabled
and disabled, and compared it against Linux in-memory
alternatives,ramfs andtmpfs, as well as several disk-
based file systems running on amtd block device. These in-
cludedext2fs, as a very standard UNIX disk file system,
as well as a number of newer file disk systems:ReiserFS,
JFS, andXFS. Our expectation was thatmramfswould
roughly match the performance oframfs andtmpfs on
metadata operations, while lagging somewhat behind them
on file data operations.

This latter performance gap is an inevitable consequence
of our design choices, asramfs andtmpfs do not have
a data representation separate from the Linux page cache.
This lack makes them unsuitable for nonvolatile memory—
it is unlikely that the entire main memory of a system will
be nonvolatile. Moreover, the non-volatile region may likely
be separate from main memory entirely. In either case, if
we continue to rely on standard Linux page cache IO while
copying from the main memory to the non-volatile buffer,
there is an unavoidable additional step and overhead. While
it is possible to avoid copy data by making the entire main
memory non-volatile, this is not a case we find practical in
the near future. It also adds substantial further complexity to
the operating system boot process itself as in Conquest [28]
or requires non-PC-compatible hardware, as in the DEC Al-
pha systems used for the RIO File Cache [5].

Alternatively, we could perform some optimization to
the data path by avoiding the page cache and doing writes
directly to and from NVRAM, as in Conquest. Our system
uses page-cache based IO for simplicity’s sake; full or com-
pressed pages are copied to and from the emulated NVRAM
region. This could be avoided trivially if file data compres-
sion were not a factor; rather than using page-based writes,
we could operate at the file level of the VFS and avoid copy-
ing entire pages, speeding up small reads and writes signifi-
cantly. This would be a definite gain if NVRAM operated at



MRAM
Comp
Inodes

MRAM
Uncomp
Inodes

ext2 JFS ReiserFS XFS JFFS2

P
er

fo
rm

an
ce

 r
el

at
iv

e 
to

 e
xt

2

0

1

2

3

4

5

6

7

8

9

10

11

12
Transactions
Creations only
Creations total
Read
Append
Delete
Read MB/s
Write MB/s

Figure 3. PostMark benchmark results.

main memory speed; if it did not, as the difference in mem-
ory speeds increased, it would potentially become disadvan-
tageous. However, it is not practical for compressed data,
as random reads are more difficult, and random writes es-
sentially impossible. One solution, with small compressed
files, would be to de/compress the entire file on open and
close, rather than operating on individual blocks; files be-
ing read could be decompressed into pre-allocated pages
in main memory, while writes would require a non-volatile
write buffer or journal to store uncompressed writes until
the file could be recompressed.

Our results for Postmark are shown in Figure 3; these
are results for several file systems, relative to ext2 on
RAM disk. We made slight modifications to the Post-
mark 1.5 source code in order to replace the existing
second-granularity timer with a millisecond-granularity
timer. No other changes were made; we ran Post-
mark with the following options:100,000 transactions,
50,000 files, and file sizes between 1 and 4095 bytes.

Results fortmpfs andramfs are not shown in Fig-
ure 3; both file systems performed nearly identically,
and would be off the scale of the graph—normalized to
ext2, they performed 55–60 times faster. Most interest-
ingly, mramfs with inode compression enabled slightly
outperformed mramfs without inode compression en-
abled. Despite some disappointment with other perfor-
mance results, this seems to clearly support our belief that
gamma compression for inodes is a nearly free space sav-
ings.

We tookext2fs (running on RAM disk), as a baseline
for comparison. Its worse performance ofext2fs is prob-
ably the result of the extreme inefficiency of linear-search
data structures when dealing with very large num-
bers of files. This was true forJFFS2, only vastly more
so—running Postmark on a single directory took signif-
icantly in excess of 10 minutes (and was cancelled be-
fore completion). The times presented are JFFS are for runs

tmpfs Reiser
Dsk/Wrm

Reiser
Dsk/Cld

Reiser
mtd

MRAM
Wrm

MRAM
Cld

JFFS2

T
im

e 
(s

ec
on

ds
)

0

20

40

60

80

100

120

140 Total User System

Figure 4. Build benchmark results.

with 100 subdirectories. We also tested the other file sys-
tems with and without subdirectories, and with the ex-
ception of JFFS2 and ext2fs, all file systems per-
formed comparably—no more than slightly better or worse.
Strangely, however, with 100 subdirectories,ext2fs
performed approximately20X faster than with a sin-
gle directory, or twice as fast as the next fastest file
system—JFS—which performed comparably in ei-
ther case.

The results from our build benchmark are shown in Fig-
ure 4. We compared the build times (total, system, and user
time) of all of the file systems from the Postmark bench-
mark including those not in Figure 4, but the results were
all very consistent. Disturbingly, the usefulness of this sort
of benchmark for file system performance on a modern sys-
tem is called into question; with the exception of the sys-
tem time used byJFFS2, all of our results were within 5%
of the time ontmpfs. This includes our resultsrunning off
of disk with a cold cache. OpenSSLis a medium sized pack-
age, consisting of 16 MB of files, around 200,000 lines of
code in 684.c files. We repeated the tests on MRAMFS
with a simulated system memory of 48 MB and our results
were similar. At a minimum, for build benchmarks to be
useful for testing file systems, it seems clear that the size of
the code base must be significantly larger.

In terms of inode compressibility, because of the very
limited range of metadata (permissions, particularly) and
the very limited depth-in-time of our testing, the compres-
sion achieved bymramfsduring our benchmarking was
better than we achieved during simulation using inodes
dumped from production systems. Instead of averaging 18–
20 bytes per inode, our benchmark file systems averaged
16 bytes per inode, with a maximum of only 19 bytes.
Our uncompressed inode implementation was aggressively
stripped, and used 36 bytes per inode.

It was our original intention to also comparemramfswith
file data compression enabled; unfortunately, the data com-
pression code is not yet reliable enough to complete signif-
icant runs of Postmark or of large builds, so our prelimi-



nary performance analysis is based on very small tests. At
this point, it seems to perform around 20–25% of the speed
of regularmramfs.

6. Future Work

We intend to extend this module in several directions.
First, there are minor functions which need to be imple-
mented; these include handling device nodes and other spe-
cial files. We intend to test the file system on top of an ac-
tual non-volatile RAM device such as a PCI battery-backed
RAM board, which may require some additional support.
We also intend to make our directory structures more space-
efficient and examine the compressibility of file names and
path; we also intend to rework file data compression in or-
der to achieve more satisfactory performance. Finally, we
intend to use this module as a tool in future research for file
systems for non-volatile RAM. There are a number of ar-
eas to be examined; these include policies and mechanisms
for splitting data between NVRAM and disk in a hybrid file
system, increased space efficiency, and the performance im-
pact of varying memory technologies. Another area that de-
serves significant examination is reliability: improvements
include continuous online consistency checking, the ability
to perform consistent backups to disk or a second NVRAM
buffer while mounted, and improvements in performance
due to simpler locking mechanisms.

In the area of compression techniques, there are a num-
ber of possible areas which can still be explored. One exam-
ple is that while all of our tests up focused on using a sin-
gle type of compressor for every field in an inode, it might
be possible to improve the total reduction in size with a hy-
brid compressor which applied the best type of compres-
sor for each particular field. Similarly, for file compression,
some advance knowledge of the file type, perhaps encoded
into the inode as done in some file systems, would allow for
more intelligent selection of a compressor. Another inter-
esting question is to what degree the description of on-disk
data, either using block pointers or extents, is compressible.

7. Conclusions

We have shown that both metadata and file data blocks
are highly compressible with little increase in code com-
plexity. By using tuned compression techniques, we can
save more than 60% of the inode space required by pre-
vious NVRAM file systems, and with little impact on per-
formance. Similarly, compressing small files can allow sig-
nificantly more files to be kept in NVRAM for a given ca-
pacity, and while our prototype implementation of file com-
pression is not yet acceptable, we expect that with further
refinement—at the expense of some complexity—we can
achieve significantly better performance.

Although there is a cost in CPU cycles associated with
compressing or decompressing any piece of data, our per-
formance numbers indicate that on a modern processor this
cost is negligible compared to the latency of a request to
disk. For inodes, our file system performed slightly better
on the Postmark benchmark, and in simulation our compres-
sors averaged less than four microseconds per inode, an im-
provement of 250:1 over a 1 millisecond disk access. Simi-
larly, for file data compression, on modern processors aver-
age stream compression rates can match or exceed the typi-
cal data rates of typical desktop disk systems. With the typ-
ically higher speeds of decompression, reading compressed
data is very nearly free; 1 KB reads decompress in around
30–100 microseconds, 20–100times faster than a single
disk access. Finally, even as compared to purely in-memory
file systems, compression offers very close performance for
metadata operations.

8. Availability

Source code for the mramfs module is dis-
tributable under the GPL, and is currently avail-
able by contacting the authors. We expect to
make it available via the SSRC web page
(http://ssrc.cse.ucsc.edu/mram.shtml)
in the near future.

9. Acknowledgments

We would like to thank the other members of the Storage
Systems Research Center for their help in conducting this
research and writing this paper.

References

[1] M. Baker, S. Asami, E. Deprit, J. Ousterhout, and M. Seltzer.
Non-volatile memory for fast, reliable file systems. InPro-
ceedings of the 5th International Conference on Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS), pages 10–22. ACM, Oct. 1992.

[2] H. Boeve, C. Bruynseraede, J. Das, K. Dessein, G. Borghs,
J. De Boeck, R. C. Sousa, L. V. Melo, and P. P. Freitas. Tech-
nology assessment for the implementation of magnetoresis-
tive elements with semiconductor components in magnetic
random access memory (MRAM) architectures.IEEE Trans-
actions on Magnetics, 35(5):2820–2825, Sept. 1999.

[3] D. P. Bovet and M. Cesati.Understanding the Linux Kernel.
O’Reilly and Associates, 2nd edition, Dec. 2002.

[4] M. Burrows, C. Jerian, B. Lampson, and T. Mann. On-line
data compression in a log-structured file system. InPro-
ceedings of the 5th International Conference on Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS), pages 2–9, Boston, MA, Oct. 1992.



[5] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Rajamani,
and D. Lowell. The Rio file cache: Surviving operating sys-
tem crashes. InProceedings of the 7th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 74–83, Oct. 1996.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.In-
troduction to Algorithms, Second Edition. MIT Press, Cam-
bridge, Massachusetts, 2001.

[7] T. Cortes, Y. Becerra, and R. Cervera. Swap compression:
Resurrecting old ideas.Software—Practice and Experience
(SPE), 30(5):567–587, 2000.

[8] R. S. de Castro. Compressed caching: Linux virtual memory.
http://linuxcompressed.sourceforge.net/, May 2003.

[9] B. Dipert. Exotic memories, diverse approaches.EDN, Apr.
2001.

[10] F. Douglis. The compression cache: Using on-line compres-
sion to extend physical memory. InProceedings of the Win-
ter 1993 USENIX Technical Conference, pages 519–529, San
Diego, CA, Jan. 1993. USENIX.

[11] F. Douglis, R. Cáceres, F. Kaashoek, K. Li, B. Marsh, and
J. A. Tauber. Storage alternatives for mobile computers. In
Proceedings of the 1st Symposium on Operating Systems De-
sign and Implementation (OSDI), pages 25–37, Monterey,
CA, Nov. 1994.

[12] N. K. Edel, E. L. Miller, K. S. Brandt, and S. A. Brandt.
Measuring the compressibility of metadata and small files
for disk/nvram hybrid storage systems. InProceedings of
the 2004 International Symposium on Performance Evalua-
tion of Computer and Telecommunication Systems (SPECTS
’04), San Jose, CA, July 2004.

[13] J.-L. Gailly and M. Adler. zlib 1.1.4. http://www.gzip.org/.
[14] D. Hitz, J. Lau, and M. Malcom. File system design for an

NFS file server appliance. InProceedings of the Winter 1994
USENIX Technical Conference, pages 235–246, San Fran-
cisco, CA, Jan. 1994.

[15] A. Kawaguchi, S. Nishioka, and H. Motoda. A flash-
memory based file system. InProceedings of the Winter
1995 USENIX Technical Conference, pages 155–164, New
Orleans, LA, Jan. 1995. USENIX.

[16] M. Levy. Memory Products, chapter Interfacing Microsoft’s
Flash File System, pages 4–318–4–325. Intel Corporation,
1993.

[17] K. B. M. K. McKusick, M. J. Karels MJ. A pageable mem-
ory based filesystem. InProceedings of the Summer 1990
USENIX Technical Conference, June 1990.

[18] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A
fast file system for UNIX.ACM Transactions on Computer
Systems, 2(3):181–197, Aug. 1984.

[19] E. L. Miller, S. A. Brandt, and D. D. E. Long. HeRMES:
High-performance reliable MRAM-enabled storage. InPro-
ceedings of the 8th IEEE Workshop on Hot Topics in Op-
erating Systems (HotOS-VIII), pages 83–87, Schloss Elmau,
Germany, May 2001.

[20] J. Nahas, T. Andre, C. Subramanian, B. Garni, H. Lin,
A. Omair, and W. Martino. A 4Mb 0.18um 1T1MTJ ‘tog-
gle’ MRAM memory. InIEEE International Solid-State Cir-
cuits Conference, Feb. 2004.

[21] M. F. Oberhumer. LZO data compression library 1.0.8.
http://www.oberhumer.com/opensource/lzo/.

[22] E. Reidel, M. Kallahalla, and R. Swaminathan. A framework
for evaluating storage system security. InProceedings of the
2002 Conference on File and Storage Technologies (FAST),
Monterey, CA, Jan. 2002.

[23] D. Roselli, J. Lorch, and T. Anderson. A comparison of file
system workloads. InProceedings of the 2000 USENIX An-
nual Technical Conference, pages 41–54, June 2000.

[24] M. Rosenblum and J. K. Ousterhout. The design and imple-
mentation of a log-structured file system.ACM Transactions
on Computer Systems, 10(1):26–52, Feb. 1992.

[25] P. Snyder. tmpfs: A virtual memory file system. InProceed-
ings of the Autumn 1990 European UNIX Users’ Group Con-
ference, pages 241–248, Nice, France, Oct 1990.

[26] S. Tehrani, J. M. Slaughter, E. Chen, M. Durlam, J. Shi, and
M. DeHerrera. Progress and outlook for MRAM technol-
ogy. IEEE Transactions on Magnetics, 35(5):2814–2819,
Sept. 1999.

[27] T. Y. Ts’o and S. Tweedie. Planned extensions to the
Linux EXT2/EXT3 filesystem. InProceedings of the Freenix
Track: 2002 USENIX Annual Technical Conference, pages
235–244, Monterey, CA, June 2002. USENIX.

[28] A.-I. A. Wang, G. H. Kuenning, P. Reiher, and G. J. Popek.
Conquest: Better performance through a disk/persistent-
RAM hybrid file system. InProceedings of the 2002
USENIX Annual Technical Conference, Monterey, CA, June
2002.

[29] R. N. Williams. An extremely fast Ziv-Lempel data compres-
sion algorithm. InProceedings of Data Compression Con-
ference 1991, pages 362–371, Snowbird, UT, Apr. 1991.

[30] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis. The case
for compressed caching in virtual memory systems. InPro-
ceedings of the 1999 USENIX Annual Technical Conference,
Monterey, CA, June 1999. USENIX.

[31] I. H. Witten, A. Moffat, and T. C. Bell.Managing Gigabytes.
Morgan Kaufmann Publishers, 1999.

[32] D. Woodhouse. The journalling flash file system. InOttawa
Linux Symposium, Ottawa, ON, Canada, July 2001.

[33] M. Wu and W. Zwaenepoel. eNVy: a non-volatile, main
memory storage system. InProceedings of the 6th Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages
86–97. ACM, Oct. 1994.

[34] E. Zadok, J. M. Andersen, I. Badulescu, and J. Nieh. Fast
indexing: Support for size-changing algorithms in stackable
file systems. InProceedings of the 2001 USENIX Annual
Technical Conference, pages 289–304, Boston, MA, June
2001. USENIX.

[35] G. Zorpette. The quest for the SPIN transistor.IEEE Spec-
trum, 38(12):30–35, Dec. 2001.


