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The application of these techniques to two selected IVHS problems has demonstrated the feasibility of using a vision sensor
to derive salient information from real imagery. The information may then be used as an input into intelligent control or advi-
sory systems. In such a system, vision would constitute only one of the sensing modalities available to the system. Other
sensors such as radar, laser and ultrasonic range-finders, infra-red obstacle detectors, GPS, Forward Looking Infra-Red
(FLIR), microwave, etc. provide other modalities with particular strengths and weaknesses.

Issues for future research include the automatic selection of the feature window size (an issue discussed by Okutomi and
Kanade9) in order to select a window that has some texture variations, simple model based techniques for distinguishing peo-
ple or vehicles from background clutter, and the incorporation of the visual sensing data into larger, multisensor application
systems for various transportation applications.
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has been annotated to indicate the cause of the tracking problems, that in all cases were due to either momentary occlusion of
the tracked feature by windshield wipers on the primary vehicle or extreme changes in the relative brightness and contrast of
the tracked feature as a result of the vehicle passing under overpasses on the freeway. In all cases tracking was resumed imme-
diately after the visual disturbance ended. In actual time this corresponded to less than a second of lost tracking per
occurrence. Simple filtering techniques (e.g., Kalman filtering) would effectively remove virtually all perturbation of the track-
ing window resulting from such events.

Five selected frames of the test are presented in Figure 12(a)  through Figure 12(e)  at the end of this paper. The Figure 12(c)
is taken just prior to the loss of tracking due to windshield wiper occlusion. The blur due to the wiper is just appearing in the
lower left of the frame.

Figure 9 and Figure 10 show the results of tracking a different feature (the spoiler) on back of the same vehicle tracked in the
previous example. Tracking performance in this example is considerably worse than in the previous example due to the poor
SSD surface characteristics of the feature selected by the operator. The tracking exhibits problems similar to the previous
example, but longer in duration and fails completely at about frame 2000. This failure corresponds to the algorithm finding a
suitable feature match on the surface markings of the freeway.

Automatic feature selection techniques presented earlier in this paper would not have chosen this feature for tracking due to
its poor SSD surface characteristics.

8. CONCLUSION

This paper presents robust techniques for visual sensing in uncalibrated environments for intelligent vehicle- highway sys-
tems applications. The techniques presented provide ways of recovering unknown environmental parameters using the
Controlled Active Vision framework11. In particular, this paper presents novel techniques for the detection and visual tracking
of vehicles and pedestrians.

For the problem of visual tracking, we propose a technique based upon earlier work in visual servoing10,11 that achieves
superior speed and accuracy through the introduction of several performance enhancing techniques. The method-specific opti-
mizations also enhance overall system performance without affecting worst-case execution times. These optimizations apply
to various region-based vision processing applications and, in our application, provide the speedup required to increase
directly the effectiveness of the real-time vision system.
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The VPS includes a monitor upon which graphic representations of the tracking algorithm are displayed. While the system
is tracking, the input data is displayed and a red box is drawn around the tracked location of the feature (see Figure 5). Five
additional frames of the tracking appear at the end of this paper (see Figure 12(a)  through Figure 12 (e)).  Initial experiments
were done by watching the system track the features as they were displayed on the monitor. This allowed us to gain an under-
standing of the performance of the system under varying conditions and with a variety of features. In particular we discovered
that the performance of the system is very sensitive to the robustness of the features selected.

After initial studies were completed, we proceeded to do a quantitative analysis of the vehicle tracking performance. While
we were unable to compare the tracking results against ground-truth data (exact locations of objects/features manually calcu-
lated off-line), we were able to provide a reasonable determination of the system performance by assuming that the motion of
the vehicle within the frame would be relatively smooth and within easily determinable velocity bounds. In other words, any
sufficiently large, quick motions of the tracked location were likely to be the result of a loss of tracking rather than due to
motion of the vehicle. This hypothesis was confirmed by viewing the tracking results and correlating the spikes in the plots of
the tracked locations with the motion of the displayed tracking windows.

Figure 7 and Figure 8 show the results of one such experimental run where a single feature (the license plate) was tracked on
the back of a single vehicle that was followed for approximately 2 minutes. Figure 7 shows the motion of the feature in the
frame with respect to a reference point in the image that corresponds to an initial location of the feature. Figure 8 shows the
first derivative of the plot in Figure 7. This plot clearly shows the relatively regular motion of the calculated feature position,
corresponding to the relatively smooth motion of the tracked vehicle with respect to the vehicle carrying the sensor. The spikes
in the plot correspond to the times where the tracking was lost and the tracking window rapidly moved off the feature. The plot

Figure 6  Experimental setup
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implemented. The method presented here may be used to track multiple features that in turn define the control points for an
active deformable model (“snake”).

7.2. Vehicle tracking

A primary requirement of an IVHS system is that it must be able to detect and track potential obstacles. Of particular interest
are other vehicles moving around and in front of the vehicle upon which the sensor is mounted (the primary vehicle). These
vehicles constitute obstacles that must be avoided (collision avoidance) or a target that is to be followed (convoying).

Collision avoidance of moving vehicles (with a relatively constant velocity) detected near the primary vehicle can be
effected with careful path planning. The basic goal is to maintain the desired speed and path (i.e., staying in the same lane of
the road or highway) while avoiding other vehicles. Under normal circumstances this means accelerating and decelerating
appropriately to avoid cars in front of and behind the primary vehicle. In extreme cases this means taking evasive action or
warning the operator of a potential collision situation.

Another application area that involves the same basic problems is vehicle convoying. In this case, all path planning is done
by the operator of the vehicle at the head of the convoy and all other vehicles must follow at a specified distance in a column
behind the primary vehicle. For these reasons we chose to apply the Controlled Active Vision framework to the problem of
tracking vehicles moving in roughly the same direction as the primary vehicle.

The experimental data was collected by placing a camcorder in the passenger seat of a car and driving behind other cars on
the freeway (see Figure 6). This produced data that closely matched that which could be expected in a typical IVHS applica-
tion. This data was later played back through a VCR and used as input to the VPS, which tracked the vehicles and produced a
series of(x,y) locations specifying the detected locations of the features being tracked. Because the exact world coordinate
locations of the features in each frame of the video are unknown, we were unable to provide a complete analysis of the track-
ing performance of the system. However, a simple assumption about the motion of the vehicle in the frame yields conclusive
results that match the intuitive results gained from viewing the graphic display of the vehicle tracking algorithm.
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trol software. The video processing and calculations required to produce the desired control input are performed under a
pipeline programming model using Datacube’s Imageflow libraries.

7. EXPERIMENTAL RESULTS

7.1. Pedestrian tracking

Pedestrians constitute one class of trackable objects that are of extreme importance to many IVHS applications. Considering
the potential for injury when pedestrians and vehicles interact harmfully, the ability to track pedestrians should be considered a
mandatory element of any visual tracking system that is nominated as a potential sensor for IVHS applications. Pedestrian
tracking was therefore selected as the first area to which our tracking paradigm was applied. In these experiments we consider
the tracking of a pedestrian at an intersection by a static camera. Such tracking has direct application to intelligent signal con-
trol and to collaborative traffic/vehicle management systems.

The goal of the first experiments was to demonstrate that our methods could successfully track a pedestrian under normal
environmental situations. The experiments consisted of a single pedestrian crossing a street at a controlled intersection (see
Figure 3). The camera was mounted on the opposite side of the street in a position that was consistent with a mounting position
on the utility pole supporting the intersection’s crosswalk signals. Imagery was captured from a real intersection using a cam-
corder and was later input into the VPS using a video cassette recorder.

A single pedestrian crossed the street at the crosswalk, moving toward the camera (see Figure 4). Five more frames of the
pedestrian tracking appear at the end of this paper (see Figure 11 (a) through Figure 11(e)). The system tracked a feature on
the pedestrian (the contrast gradient at the pedestrian’s waist). Target tracking was not lost during the crossing, in spite of the
degraded contrast in the imagery due to an overcast sky.

The performance of this pedestrian tracking can be enhanced with the use of explicit representations of people as semi-rigid
bodies that deform in known and predictable ways. Such tracking would allow the system to track pedestrians in spite of rap-
idly changing conditions (i.e., the pedestrian moving from shadow to bright light) and clutter in the image. Additionally,
occlusion (due to a passing vehicle, other pedestrians, etc.) could be handled in a more robust manner than has been currently

Figure 2  VPS system architecture
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Since the structure that implements the spiral search pattern contains no more overhead than the loop structures of the tradi-
tional search, worst-case performance is identical. In the general case, search time is approximately halved.

The third optimization arose from the observation that search times for feature points varied significantly, by as much as
100%, depending upon the shape/orientation of the feature. In determining the cause of the problem and exploring possible
solutions, we realized that by applying the spiral image traversal pattern to the calculation of the SSD measure we could simul-
taneously fix the problem and achieve additional performance improvements. Spiraling the calculation of the SSD measure
yields best-case performance that is independent from the orientation of the target by changing the order of the SSD calcula-
tions to no longer favor one portion of the image over another. In the traditional calculation pattern (a row-major traversal of
the feature region) information in the upper portion of the region is used before that in the lower portion of the region, thus
skewing the timing in favor of those images where the target or the foreground portion of the feature being tracked appears in
the upper half of the region. Additional speed gains are achieved because the area of greatest change in the SSD measure cal-
culations typically occurs near the center of the feature window, which generally coincides with an edge or a corner of the
target, resulting in fewer calculations before the loop is terminated in non-matching cases. Speed gains from this optimization
are approximately 40%.

When combined, these three optimizations (the loop short-circuiting, the spiral search pattern, and the spiral SSD calcula-
tion) interact cooperatively to find the minimum of the SSD surface as much as 17 times faster on average than the unmodified
search.

Experimentally, the search times for the unmodified algorithm averaged 136 msec over 5000 frames under a variety of rela-
tive feature point motions. The modified algorithm with the search-loop short-circuiting alone averaged 60-72 msec search
times over several thousand frames with arbitrary relative feature point motion. The combined short-circuit/spiral search algo-
rithm produced search times that averaged 13 msec under similar tests and the combined short-circuit, dual-spiral algorithm
produced search times that averaged 8 msec. Together these optimizations allow the vision system to track three to four fea-
tures at RS-170 video rates (33 msec per frame) without video under-sampling.

5. FEATURE POINT SELECTION

In addition to the system latency and the effect of large displacements, an algorithm based upon the SSD technique may fail
due to repeated patterns in the intensity function of the image or due to large areas of uniform intensity in the image. Both
cases can provide multiple matches within a feature point’s neighborhood, resulting in spurious displacement measures. In
order to avoid this problem, our system automatically evaluates and selects feature points.

Feature points are selected using the SSD measure combined with an auto-correlation technique to produce an SSD surface
corresponding to an auto-correlation in the neighborhoodΩ1,11. Several possible confidence measures can be applied to the
surface to measure the suitability of a potential feature point.

The selection of a confidence measure is critical since many such measures lack the robustness required by changes in illu-
mination, intensity, etc. We utilize a two-dimensional displacement parabolic fit that attempts to fit parabola

 to a cross-section of the surface derived from the SSD measure11. The parabola is fit to the sur-
face in several predefined directions. A feature point is selected if the minimum directional measure is sufficiently high, as
measured by (6).

6. THE VISION PROCESSING SYSTEM

The Vision Processing System (VPS) used for these experiments is the image processing component of the Minnesota
Robotic Visual Tracker (MRVT)13 (see Figure 2). The VPS receives input from a video source such as a camera mounted in a
vehicle, a static camera, or stored imagery played back through a Silicon Graphics Indigo or a video tape recorder. The output
of the VPS may be displayed in a readable format or can be transferred to another system component and used as an input into
a control subsystem. This flexibility offers a diversity of methods by which software can be developed and tested on our sys-
tem. The main component of the VPS is a Datacube MaxTower system consisting of a Motorola MVME-147 single board
computer running OS-9, a Datacube MaxVideo20 video processor, and a Datacube Max860 vector processor in a portable 7-
slot VME chassis. The VPS performs the optical flow and calculates any desired control input. It can supply the data or the
input via shared memory to an off-board processor via a Bit-3 bus extender for inclusion as an input into traffic or vehicle con-
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(6)

where ,N is the neighborhood ofp, m andn are indices for pixels inN, andIk–1 andIk are the intensity functions in
images(k–1) and(k).

The size of the windowN must be carefully selected to ensure proper system performance. Too small anN fails to capture
enough contrast while too large anN increases the associated computational overhead and enhances the background. In either
case, an algorithm based upon the SSD technique may fail due to inaccurate displacements. An algorithm based upon the SSD
technique may also fail due to too large a latency in the system or displacements resulting from motions of the object that are
too large for the method to accurately capture. We introduce several optimization techniques in the following section to
counter these concerns.

4.2. Search optimizations

The primary source of latency in a vision system that uses the SSD measure is the time needed to identify the minimizing
 in (6). To find the true minimum, the SSD measure must be calculated over each possible . The time required to

produce an SSD surface and to find the minimum can be greatly reduced by employing three schemes that, when combined,
divide the search time significantly in the expected case.

The first optimization used is loop short-circuiting. During the search for the minimum on the SSD surface (the search for
), the SSD measure must be calculated according to (6). This requires nested loops for them andn indices. During

the execution of these loops, the SSD measure is calculated as the running sum of the squared pixel value differences. If the
current SSD minimum is checked against the running sum as a condition on these loops, the execution of the loops can be
short-circuited as soon as the running sum exceeds the current minimum. This optimization has a worst-case performance
equivalent to the original algorithm plus the time required for the additional condition tests. This worst case occurs when the
SSD surface minimum lies at the last  position searched. On average, this type of short-circuit realizes a decrease in
execution time by a factor of two.

The second optimization is based upon the heuristic that the best place to begin the search for the minimum is at the point
where the minimum was last found on the surface and to expand the search radially from this point. This heuristic works well
when the disturbances being measured are relatively regular. In the case of tracking, this corresponds to targets that have
locally smooth velocity, acceleration, and jerk curves. If a target’s motion does not exhibit such relatively smooth curves, then
the target itself is fundamentally untrackable due to the inherent latency in the video equipment and the vision processing
system.

Under this heuristic, the search pattern in the  image is altered to begin at the point on the SSD surface where the mini-
mum was located for the  image. The search pattern then spirals out from this point, searching over the extent ofu and
v. This is in contrast with the typical indexed search pattern where the indices are increased in a row-major scan fashion. Fig-
ure 1 contrasts a traditional row-major scan and the proposed spiral scan where the center position corresponds to the position
where the minimum was last found. This search strategy may also be combined with a predictive controller to begin the search
for the SSD minimum at the position that the predictive aspect of the controller indicates is the possible location of the
minimum.
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Figure 1  Traditional and spiral search patterns



positive” errors in which the figure image contains many pixels that don’t necessarily belong to important objects. A smaller,
more sensitive threshold can be used if the images are preprocessed with a low-pass filter. The filter spatially averages the pix-
els, making salt and pepper noise cause smaller difference values.Thefigure images are used for the automatic selection and
tracking of features. In other words, instead of searching for features over the entire image, we automatically select features in
areas where traffic objects of interest may exist.

4. VISUAL MEASUREMENTS

Our vehicle and pedestrian tracking applications use the same basic visual measurements that are based upon a simple cam-
era model and a measure of optical flow in a temporal sequence of images. The visual measurements are combined with
search-specific optimizations in order to enhance the visual processing from frame-to-frame and to optimize the performance
of the system in our selected applications.

4.1. Camera model and optical flow

We assume a pinhole camera model with a world frame, RW, centered on the optical axis. In addition, a focal lengthf is
assumed. A pointP = (XW, YW, ZW)T in RW, projects to a pointp in the image plane with coordinates(x, y). We can define two
scale factorssx andsy to account for camera sampling and pixel size, and include the center of the image coordinate system(cx,
cy) given in image frame FA

11. This results in the following equations for the actual image coordinates(xA, yA):

(1)

(2)

Any displacement of the pointP can be described by a rotation about an axis through the origin and a translation. If this rota-
tion is small, then it can be described as three independent rotations about the three axesXW, YW, andZW

2. We will assume
that the camera moves in a static environment with a translational velocity (Tx, Ty, Tz) and a rotational velocity (Rx, Ry, Rz). The
velocity of pointP with respect to RW can be expressed as:

. (3)

By taking the time derivatives and using (1), (2), and (3), we obtain:

(4)

(5)

We use a matching-based technique known as the Sum-of-Squared Differences (SSD) optical flow1. For a pointp(k–1) =
(x(k–1), y(k–1))T in the image(k–1) wherek denotes thekth image in a sequence of images, we want to find the pointp(k) =
(x(k–1)+u, y(k–1)+v)T. This pointp(k) is the new position of the projection of the feature pointP in image(k). We assume that
the intensity values in the neighborhoodN of p remain relatively constant over the sequencek. We also assume that for a given
k, p(k) can be found in an areaΩ aboutp(k–1) and that the velocities are normalized by timeT to get the displacements. Thus,
for the pointp(k–1), the SSD algorithm selects the displacement∆x = (u, v)T that minimizes the SSD measure
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motion, target motion, or both. These measured displacements are then used as one of the inputs into an intelligent traffic advi-
sory system.

Additionally, we propose a visual tracking system that does not rely upon accurate measures of environmental and target
parameters. An adaptive filtering scheme is used to track feature points on the target in spite of the unconstrained motion of the
target, possible occlusion of feature points, and changing target and environmental conditions. Relatively high-speed targets
are tracked under varying conditions with only rough operating parameter estimates and no explicit target models. Adaptive
filtering techniques are useful under a variety of situations, including the applications discussed in this paper: vehicle and
pedestrian tracking.

First, we discuss some previous work and present our ideas on the detection of traffic objects. Then, we formulate the equa-
tions for visual measurements, including an enhanced SSD surface construction strategy and search optimizations. Next, we
present a feature point selection scheme that automatically determines optimal features to be used for object tracking. Finally,
we discuss results from feasibility experiments in both of the selected applications using the Controlled Active Vision
framework.

2. PREVIOUS WORK

An important component of a real-time intelligent traffic advisory system is the acquisition, processing, and interpretation of
the available sensory information regarding the traffic conditions. At the lowest level, the sensory information is used to derive
discrete signals to drive the advisory system and at a higher level this information is used to study the patterns of traffic flow or
to adjust the behavior of a global traffic advisory system. Information about traffic can be obtained through a variety of sensors
such as loop detectors or vision sensors. Among them, the most commonly used is the loop detector. However, loop detectors
provide local information and present significant errors in their measurements. Recently, many researchers have proposed
computer vision techniques for traffic monitoring and vehicle control. Houghtonet al.4 have proposed a system for tracking
vehicles at a road junction based on video images. Inigo5 has presented a machine vision system for traffic monitoring and
control. A system that counts vehicles based on video-images has been built by Pellerin12. Kilger 7 has done extensive work on
shadow handling in a video-based real-time traffic monitoring system. Michalopoulos8 has developed the Autoscope system
for vision-based vehicle detection and traffic flow measurement. A system similar to the Autoscope traffic flow measuring sys-
tem has been built by Takatooet al.14. This system computes parameters such as vehicle average speed and spatial occupancy.
A vision-based collision avoidance system has been proposed by Ulmer16. Zielke et al.17 have developed the CARTRACK
system that automatically selects the rear of vehicles in images and tracks them in real-time. In addition, similar car-following
algorithms have been proposed by Kehtarnavazet al.6. Finally, other groups3,15 have developed vision-based autonomous
vehicles.

3. DETECTION OF TRAFFIC OBJECTS

In order for an intelligent vision system to be able to robustly track traffic objects in unpredictable, real-world environments,
it is required that the system has some means of detecting such objects automatically. In considering detection, it is helpful to
view an image as a set of pixels that belong to one of two categories:figure or ground. Figure pixels are those which are
believed to belong to a traffic object of interest, while ground pixels belong to the objects’ environment. We consider detection
to be the identification and the analysis of figure pixels in each image of the temporal sequence.

There is a wide variety of techniques that could be used for the identification of whether a pixel is part of the figure or
ground. For example, we could possess a model of the average shape of automobiles and attempt to fit this model to locations
within an image. However, identification schemes that are computationally intensive may not be able to complete detection in
real-time. Using such schemes would cause the vision system to lack robustness. In searching for a fast means to estimate the
figure/ground state of a pixel, we consider the heuristic that uninteresting objects (such as a sidewalk) tend to be displayed by
pixels whose intensities are constant or very slowly changing over time, while objects of interest (such as a pedestrian) tend to
be located where pixel intensities have recently changed. Thus, a comparison between images that occurred at different times
may yield information about the existence of important objects.

The proposed scheme maintains aground image that represents the past history of the environment. For each pixel in the
current image, a comparison is made to the corresponding pixel in the ground image. If they differ by more than a threshold
intensity amount, then the pixel is considered to be part of a binaryfigure image. If this threshold is too small, then portions of
the object may blend into the background. If the threshold is too large, then slight changes in the environment will cause “false
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ABSTRACT
The complexity and congestion of current transportation systems often produce traffic situations that jeopardize the safety of

the people involved. These situations vary from maintaining a safe distance behind a leading vehicle to safely allowing a
pedestrian to cross a busy street. Environmental sensing plays a critical role in virtually all of these situations. Of the sensors
available, vision sensors provide information that is richer and more complete than other sensors, making them a logical
choice for a multisensor transportation system. In this paper we present robust techniques for intelligent vehicle-highway
applications where computer vision plays a crucial role. In particular, we demonstrate that the Controlled Active Vision
framework11 can be utilized to provide a visual sensing modality to a traffic advisory system in order to increase the overall
safety margin in a variety of common traffic situations. We have selected two application examples, vehicle tracking and
pedestrian tracking, to demonstrate that the framework can provide precisely the type of information required to effectively
manage the given situation.

Keywords: visual tracking, intelligent vehicle-highway systems, optical flow, pedestrian control, detection

1. INTRODUCTION

Transportation systems, especially those involving vehicular traffic, have been subjected to considerable increases in com-
plexity and congestion during the past two decades. A direct result of these conditions has been a reduction in the overall
safety of these systems. In response, the reduction of traffic accidents and the enhancement of an operator’s abilities have
become important topics in road safety. Improved safety can be achieved by assisting the human operator with a computer
warning system and by providing enhanced sensory information about the environment. In addition, the systems that control
the flow of traffic can likewise be enhanced by providing sensory information regarding the current conditions in the environ-
ment. Information may come from a variety of sensors such as vision, radar, and ultrasonic range-finders. The sensory
information may then be used to detect vehicles, traffic signs, obstacles, and pedestrians with the objective of keeping a safe
distance from static or moving obstacles and obeying traffic laws. Radar, Global Positioning System (GPS), and laser and
ultrasonic range-finders have been proposed as efficient sensing devices. Vision devices (i.e., CCD cameras) have not been
extensively used due to their high cost and noisy nature. However, the new generation of CCD cameras and computer vision
hardware allows for efficient and inexpensive use of vision sensors as a component of a larger, multisensor system.

The primary advantage of vision sensors is their ability to provide diverse information on relatively large regions. Simple
tracking techniques may be used with visual data taken from a vehicle to track several features of the obstacle ahead. This
tracking allows us to detect obstacles (e.g., pedestrians, vehicles, etc.) and keep a safe distance from them. Optical flow tech-
niques in conjunction with automatic selection of features allow for fast estimation of the obstacle-related parameters,
resulting in robust obstacle detection and tracking with little operator intervention. In addition, surface features on the obsta-
cles or knowledge of the approximate shape of the obstacles (i.e., the shape of the body of a pedestrian or automobile) may
further improve the robustness of the tracking scheme. A single camera is proposed instead of a binocular system because one
of our main objectives is to demonstrate that relatively unsophisticated and uncalibrated off-the-shelf hardware can be used to
solve the problem. The ultimate goal of this research is to examine the feasibility of incorporating visual sensing into an auto-
mated system that provides information about pedestrians, traffic signs, and other vehicles.

One solution to these issues can be found under the Controlled Active Vision framework11. Instead of relying heavily on a
priori information, this framework provides the flexibility necessary to operate under dynamic conditions where many environ-
mental and target-related factors are unknown and possibly changing. The Controlled Active Vision framework utilizes the
Sum-of-Squared Differences (SSD) optical flow measurement1 as an input to a control loop. The SSD algorithm is used to
measure the displacements of feature points in a sequence of images where the displacements may be induced by observer
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