
 

HeRMES: High-Performance Reliable MRAM-Enabled Storage

 

Abstract

 

Magnetic RAM (MRAM) is a new memory technology with
access and cost characteristics comparable to those of
conventional dynamic RAM (DRAM) and the non-volatil-
ity of magnetic media such as disk. Simply replacing
DRAM with MRAM will make main memory non-volatile,
but it will not improve file system performance. However,
effective use of MRAM in a file system has the potential to
significantly improve performance over existing file sys-
tems. The HeRMES file system will use MRAM to dramati-
cally improve file system performance by using it as a
permanent store for both file system data and metadata. In
particular, metadata operations, which make up over 50%
of all file system requests [14], are nearly free in HeRMES
because they do not require any disk accesses. Data
requests will also be faster, both because of increased
metadata request speed and because using MRAM as a
non-volatile cache will allow HeRMES to better optimize
data placement on disk. Though MRAM capacity is too
small to replace disk entirely, HeRMES will use MRAM to
provide high-speed access to relatively small units of data
and metadata, leaving most file data stored on disk.

 

1. Introduction

 

Current file systems are optimized for the assumption
that the only stable storage in the system is a block-ori-
ented, high-latency device such as a disk. As a result,
existing file systems use data structures and algorithms
that transfer data in large units and take great pains to
ensure that the file system’s image on disk remains inter-
nally consistent. If the file system includes any non-vola-
tile memory (NVRAM), there is usually a limited amount
used as a temporary storage area to facilitate staging data
to disk.

Magnetic RAM (MRAM) [4] is a new memory tech-
nology, currently in development, with the speed, density,
and cost of DRAM and the non-volatility of disk. We are
investigating the use of MRAM in the HeRMES (
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tem to dramatically improve file system performance by
storing metadata and some data in MRAM. Since MRAM
will have cost comparable to that of DRAM, it cannot
totally replace disk or other types of secondary storage
such as MEMS [9]. Rather, we are researching the most
effective ways to use limited amounts of MRAM in a file
system.

An MRAM-based file system such as HeRMES has
several major advantages over existing file systems in both
performance and reliability. As we discuss in this paper,
using MRAM in the file system can reduce the cost of
metadata operations to nearly zero, leaving them limited
solely by CPU speed. It also increases the speed of file
reads and writes both by reducing metadata overhead and
by allowing the file system to better lay out data on disk by
buffering writes longer in safe MRAM. File system reli-
ability is also greatly improved. Simplifying metadata
structures results in less complex and more reliable soft-
ware. Keeping metadata in MRAM also allows HeRMES
to run consistency checks on the file system in the back-
ground during normal operation, allowing errors to be
caught early, before they spread.

 

2. HeRMES design

 

The HeRMES file system is built from the ground up
using two assumptions that differ from current file sys-
tems: metadata accesses need not be in large contiguous
blocks, and metadata accesses take microseconds (at most)
rather than milliseconds. These assumptions differ from
those underlying disk-based file systems, which require
milliseconds to access blocks of data.

 

2.1. Metadata management

 

HeRMES maintains all of its metadata in MRAM,
avoiding the need to access the disk for metadata requests.
The ability of MRAM to handle single-word reads and
writes further benefits HeRMES by allowing it to use
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much simpler data structures. For example, the B+-trees
used in XFS [16] make efficient use of large blocks at the
expense of file system complexity. HeRMES, on the other
hand, can use simpler data structures such as binary trees
and hash tables with in-memory semantics because it does
not need to allocate and reference structures in large
blocks.

Keeping all metadata in MRAM could be prohibitive
for traditional file systems, which can require up to a
1–2% overhead for metadata; 600 MB of DRAM for a
60 GB disk may be too expensive, with memory costs
exceeding those of disk. HeRMES, in contrast, will make
extensive use of compression and variable-sized alloca-
tions to drastically reduce needed space, avoiding this
problem. For example, an inode in Unix might require 128
bytes; there would be little benefit to reducing its size on
disk because retrieval time is dominated by access latency
which would not be reduced for smaller objects. It might
be possible to save small amounts of DRAM at the
expense of transforming the inode when transferring it
between disk and memory, but using information from
other inodes to do the compression would be difficult.
HeRMES, however, can use commonalities between
inodes to reduce required space. For example, each file’s
inode can contain a pointer to an access control list; since
many of a user’s files have identical permissions, their
inodes can share a single list. File index pointers can also
benefit from compression and variable-sized memory-
style allocation. Many file systems use extents to compress
index lists; by storing lists of extents in variable-sized
blocks of MRAM, HeRMES can eliminate wasted space.

One potential problem with keeping metadata in
MRAM is that it may be 

 

too

 

 easy to modify data struc-
tures, potentially causing file system inconsistency. Wild
references in the file system (or elsewhere in the operating
system) could overwrite valid metadata in MRAM, cor-
rupting the file system. HeRMES will avoid this problems
using techniques similar to those in Rio [12]. By keeping
file system MRAM protected except when explicitly nec-
essary, HeRMES will ensure that only desired changes are
made to MRAM. The process of switching a page from
read-only to read-write in the page table is fast, and will
not significantly slow down HeRMES MRAM operations,
particularly since it is only necessary when metadata is
modified.

 

2.2. MRAM write buffer

 

Like most file systems, HeRMES will buffer writes in
memory for several reasons: allowing a process to con-
tinue without waiting for a write to go to disk, reordering
writes to minimize disk latency, and waiting in the hope
that a file will be deleted. Unlike many file systems, how-

ever, writes with HeRMES are safe once they are written
to MRAM. This allows HeRMES to postpone writes as
long as desired without fear of data loss due to a system
crash.

The write buffer in HeRMES is similar to that in sys-
tems with NVRAM, with two important differences:
MRAM is considerably faster than NVRAM, and meta-
data updates accompanying a write are done immediately
in MRAM. Writes to MRAM are considerably faster than
writes to flash RAM, which can require more than two
milliseconds. MRAM’s faster write time reduces the win-
dow of vulnerability during which data can be lost from a
system failure.

Because MRAM is a long-term stable store, data writ-
ten there can be kept as long as necessary. This allows
HeRMES to optimize data placement on disk, reducing
time wasted to disk access latency. Existing file systems
do this as well, but they run the risk of data loss if they
hold data in the write buffer too long. Many systems with
“non-volatile” RAM actually use battery-backed RAM,
which can lose data because of dead batteries in addition
to the usual dangers of storing data in RAM.

 

2.3. MRAM file storage

 

MRAM may also be useful for disk reads, particularly
if there is a relatively large amount of MRAM in the sys-
tem. Disk latencies are currently around 5–10 ms; in that
time, a disk can transfer 64–128 KB of data. The file sys-
tem can keep the first few blocks of each file in MRAM,
transferring the data out of MRAM while the disk seek is
completed. Combining this technique with file access pre-
diction and clustering on secondary storage [1] will further
improve performance by reserving the scarce MRAM
resource for “live” data. As probe-based storage [9]
becomes available, this technique will become more effec-
tive because the latency to data on secondary storage will
be lower, reducing the amount of file data that must be
buffered in MRAM and increasing the number of files for
which such buffering is possible.

As with write buffering, caching file headers (or entire
files, if they are small) is not a new technique. However,
MRAM makes this technique more attractive because it
allows the structures to survive power loss and system
reboot, enabling the file system to build such a cache over
time without the need to preserve it on disk or reload it
after a system restart.

 

3. Performance

 

HeRMES can significantly outperform existing file sys-
tems for several reasons. First, metadata operations in
HeRMES are nearly free because they only require mem-



 

ory-type accesses. Table 1 shows several common file sys-
tem request types [14], noting the disk operations needed
to satisfy each one. Existing file systems cache metadata in
DRAM, updating the original on disk when changes occur.
Though they can eliminate many (but not all) disk reads by
caching, metadata writes must go through to disk to ensure
consistency, and writes often have a partial order enforced
on them to maintain file system consistency [13]. HeR-
MES, on the other hand, handles disk requests in the
shaded columns entirely in MRAM, leaving only file data
reads and writes to use the disk. This results in dramati-
cally faster metadata operations, requiring microseconds
rather than milliseconds to complete. Moreover, data
writes can be safely buffered in MRAM indefinitely, as
described in Section 2.2, further decreasing latency from
user write to “safe” commit of the data.

Because HeRMES metadata operations are limited only
by CPU speed, the file system can satisfy them in the time
it takes to execute the metadata operation in the CPU. For
existing file systems, 20,000 – 40,000 operations are suffi-
cient to execute a file system request; this is 40 to 80 

 

µ

 

s on
a modern processor, allowing a single processor file server
to handle about 25,000 metadata operations per second;
HeRMES will likely be able to do more operations per
second because it can use simpler data structures (and thus
fewer instructions to manipulate them) and has no need to
spend instructions on managing disk I/O. If a file server
provides, on average, one 4 KB file block for every two
metadata operations, such a server could sustain 50 MB
per second using a single commodity CPU.

The simple MRAM-resident data structures in HeR-
MES can provide added speed in another way: reduced
lock contention. Disk-based file systems must use fine-
grained locking to ensure high levels of concurrency in the
face of relatively long metadata operations. In particular,
operations that require reading data from disk can hold
locks for milliseconds, potentially causing contention for
locks. HeRMES, in contrast, can complete metadata reads
or updates in less than 100 microseconds. This time is
shorter than the scheduling quantum on many systems,
and is thus less likely to result in high levels of lock con-
tention. The contention problem is exacerbated on sym-

metric multiprocessor systems; again, HeRMES can use
relatively course-grained locking and still maintain low
levels of lock contention.

 

4. Reliability

 

File system reliability is, for many users, more impor-
tant than performance: getting the correct data later is bet-
ter than getting erroneous data now. HeRMES can provide
high performance, as seen in Section 3, without sacrificing
reliability. Moreover, HeRMES will be more reliable than
existing file systems for several reasons, including lower
software complexity and the ability to continuously check
the system for consistency.

 

4.1. Reducing software complexity

 

By using relatively simple structures in MRAM, HeR-
MES reduces software complexity, making file system
software more reliable. Simple data structures are well-
understood and less prone to programming errors, reduc-
ing the likelihood that a bug will be hidden in thousands of
lines of complex code. Because MRAM is so much faster
than disk, there will be less temptation for programmers to
take shortcuts that save a few microseconds, making it less
likely that such a shortcut will malfunction.

The lower number of locks needed in HeRMES also
increase software reliability. With metadata operations
locking up structures for around 50 

 

µ

 

s, there is no need for
thousands of locks in the file system. On a uniprocessor
system, in fact, a single lock for the entire metadata struc-
ture is sufficient because operations are CPU-bound and
thus gain minimal benefit from interleaved requests. Even
in multiprocessor file servers, a relatively small number of
locks—at most one per file (for metadata), one for disk
allocation, and one for memory allocation—will be suffi-
cient to guarantee that processors are not waiting on file
system locks. The net result is a lower probability of dead-
lock as well as less chance that data will be improperly
modified.

 

4.2. Metadata checking

 

HeRMES will also take an active approach to protect-
ing file system consistency by continuously checking the
metadata structures while the system is running. A back-
ground process checking 2,000 files per second can fully
check a system with ten million files in less than 90 min-
utes, yet it demands less than 10% of the system’s
resources to do so.

Checking the file system’s metadata while the system is
operating increases reliability in several ways. First, it is
often easier to write a program that 

 

detects

 

 an error than it

 

Table 1. Disk I/O needed for file system requests.

 

Request

Type of disk requests needed

Global 
metadata

File
metadata

File
index

File
data

 

File stat (50%) – read – –

File read (20%)
– read

write
read read

File write (5%)
read
write

read
write

read
write

read
write



 

is to write a file system that doesn’t produce errors in the
first place. Merely detecting the error may be sufficient to
attempt correcting it, or at least to prevent it from spread-
ing to the rest of the file system. Second, most existing file
systems 

 

never

 

 have their metadata checked. They rely on
logging [10] and other techniques to recover quickly from
a crash, but they do not examine metadata written during
normal operation. This is necessary because a full check of
the metadata on a large file system with ten million files
might take hours, if not days, and would consume most of
the disk bandwidth during that time. Third, extremely
large file systems are now encountering a new problem:
disk unreliability due to firmware errors and undetectable
bit errors is becoming a concern. A bit error rate of 10
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becomes a problem when file systems store a terabyte of
data because bit errors may go unnoticed for days. Rather
than do continuous checks, though current file systems
must assume that their code does not contain any bugs and
that the underlying media is reliable, assumptions that are
increasingly less likely as file systems grow larger and
more complex.

 

4.3. Backing up metadata

 

MRAM, like any other part of a computer, will be sub-
ject to component failure. Because MRAM is the only
place metadata is stored, HeRMES must guard against
MRAM failure. It does so by logging metadata changes to
a location other than that holding the MRAM. This can be
done in several ways. The first option is to write metadata
changes to disk. This is very similar to logging, but does
not involve the same ordering issues that metadata updates
in conventional systems suffer. The second option is to
keep the metadata log in a different bank of MRAM than
that holding the original metadata. If MRAM can be
removed from a computer, placed in a new one, and its
contents read, this solution is sufficient to back up meta-
data at very little cost.

In either case, metadata update logging requires very
little space. The majority of metadata updates are times-
tamp modifications, which can be recorded in a few bytes.
More complex modifications take more space; however,
MRAM can buffer changes and flush them to disk several
times per minute. Using this mechanism means that total
MRAM failure (chip failure) can lose small amounts of
data, but that consistency is not affected. It is important to
remember that chip failure is not a common source of
computer failure, and that chip failure affects 

 

all

 

 file sys-
tems that use memory for caching and buffering.

 

5. Related work

 

Our work builds on many areas of file system research,
but research into non-volatile RAM (NVRAM) systems
and schemes to reduce latency for disk accesses, particu-
larly metadata, is most relevant.

Douglis [6] and Wu [17] proposed the use of NVRAM
to hold an entire file system. This approach is acceptable
for relatively small file systems, but MRAM (like
NVRAM) is too expensive to replace disk for general pur-
pose file systems. Additionally, the flash RAM used in
these systems does not support single word writes; instead,
it requires 1–2 ms (or more) to write a relatively large
block of data. This prevents fine-grained modification of
data in non-volatile memory. In eNVy [17], copy-on-write
and buffering were used to get around the long erase
latency of flash RAM; this approach required extensive
garbage collection similar to that used in log-structured
file systems [3,15].

NVRAM has long been used for recovery and file sys-
tem reliability [2], again with the restrictions of small size
and coarse-grained write access. In such systems,
NVRAM is used as a non-volatile cache for disk, but data
“lives” on disk. This design improves file system reliabil-
ity by reducing the window of vulnerability for written
data and improves performance by relaxing metadata write
constraints. However, it does not allow the rich metadata
structures possible when metadata is permanently resident
in MRAM, and writes must still be sent to disk, requiring
disk seeks and consuming disk bandwidth.

Techniques for reducing disk latency and improving
reliability for metadata include writing data to the nearest
free disk blocks [7,11], logging [10], and soft
updates [13]. All of these techniques reduce access latency
for writes, but none reduces the 

 

number

 

 of blocks that
must be written. Additionally, these techniques use little
beyond caching to speed up metadata read access. Another
technique, combining metadata with file data [8], allows
data and metadata for small files to be read and written in a
single contiguous request. However, this technique was
only tried with relatively small files.

 

6. Current research

 

Our research into using MRAM for file systems, specif-
ically HeRMES, has just begun. In this paper, we
described several ways in which MRAM can be used to
improve file system performance, but many questions
remain. For example, what happens if MRAM is limited?
If insufficient MRAM is available for all of the metadata,
how can HeRMES efficiently transform in-memory struc-
tures to on-disk structures for infrequently used files?
What is the correct tradeoff between using MRAM for



 

metadata, write buffering, and other uses such as caching
the first few blocks of a file to reduce access latency?

We are also exploring issues related to using MRAM
across a distributed file system. Clearly, some form of
sharing, perhaps similar to cooperative caching [5], will be
necessary to fully utilize MRAM in such a system. How-
ever, there will be differences as well—the access latency
across a network, while lower than that of disk, is consid-
erably higher than that of MRAM.

We are just at the beginning of research into using the
new technology of MRAM in file systems, and there are
many avenues of research that we will pursue.

 

7. Conclusions

 

Magnetic RAM will be available commercially within
a few years; it is crucially important that file system
designers incorporate it into file systems and use it effec-
tively. We have shown how magnetic RAM can be used to
dramatically improve file system performance and reliabil-
ity. Our file system, HeRMES, will keep metadata in
MRAM, allowing nearly free metadata operations limited
only by CPU speed. Because MRAM is non-volatile, there
is never a need to flush metadata to disk, also improving
file system data bandwidth by freeing disk from the need
to handle frequent metadata accesses.

File system reliability also benefits from the use of
MRAM. The simpler metadata structures possible using
MRAM will reduce file system complexity, and thus
increase software reliability. Background metadata consis-
tency checking, likewise, will increase the chance than an
error will be found, increasing file system reliability by
snuffing out errors as soon as they happen. It is this combi-
nation of performance and reliability that makes MRAM
attractive as a technology for incorporation into file sys-
tems. 
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