
1

Flexible Soft Real-Time Processing in Middleware

Scott A. Brandt
Computer Science Department

Jack Baskin School of Engineering
University of California

1156 High Street
Santa Cruz, CA 95064
sbrandt@cse.ucsc.edu

Gary J. Nutt
Computer Science Department

Campus Box 430
University of Colorado

Boulder, CO 80309-0430
nutt@cs.colorado.edu

Abstract

As desktop computer computational power continues to increases dramatically, it is becoming commonplace to

run a combination of deadline-sensitive applications. Despite the proliferation of computational power, the detailed

nature of these applications causes new problems for the system resource allocation mechanisms. First, these appli-

cations are designed to meet their deadlines as long as nearly all the system’s resources are available to them; once

the system approaches saturation, the collective applications will fail to meet their deadlines. To aggravate the situ-

ation, conventional best effort managers will allocate resources to the competing applications based on a static

form of equitability rather than addressing the dynamic relative benefit provided by each application. Second, the

applications differ from conventional real-time applications: though members of this new class of desktop applica-

tions are sensitive to deadlines, their constraints are non-critical. They are also typically designed to use the full

spectrum of functions provided by a general purpose system call interface rather than the more limited interface of

a real-time OS. This paper describes a flexible soft real-time system design that addresses these two problems. The

CPU scheduling strategy accommodates the community of applications by taking application benefit into account

during times of heavy load. Applications are written to use the full interface of a general purpose system call inter-

face, yet the system is able to schedule them according to their deadlines and resource reservation and availability.

This paper describes the theoretical foundation of the approach, additional application responsibilities, the design

of a middleware system to implement the approach, and then it presents an extensive set of experimental studies

that demonstrate the behavior of the approach. The Dynamic QoS Manager middleware (implemented on top of

two different versions of Unix), is shown to be highly effective system for supporting contemporary soft real-time

desktop applications.

2

1. Introduction

As the computational power of desktop computers increases dramatically, it is becoming possible to run appli-

cations that were previously only feasible on dedicated systems. In particular, high-throughput applications such as

video display and processing, real-time hardware control, internet teleconferencing, telerobotics, and virtual reality

are being executed on desktop systems at rates formerly achievable only with special-purpose computers. These

and other similar applications have relatively high throughput requirements with specific timing constraints on

their processing. In particular, they have real-time deadlines. Thus the correctness of their output is determined in

part by the time at which it is delivered; a result delivered after its deadline could be considered to be incorrect.

These additional timing requirements place a special burden on the operating system; it must not only provide the

requested resources to the applications, but must do so on application-specific timing schedules that allow the

applications to meet their deadlines.

Traditional hard real-time systems are designed precisely to handle this type of computation. They differ from

general purpose, best effort systems in that their purpose is to support applications with deadline requirements. To

provide this service, hard real-time systems generally rely ona priori knowledge about the applications’ worst case

resource needs to determine a feasible schedule or a set of priorities that will guarantee that the deadlines will be

met. To determine the worst case, it must be possible to bound the resource usage of an application prior to the time

it begins execution. This means that the application cannot use system services that do not have strict bounds on the

time to perform the service and the amount of resources used to provide the service, i.e., the system call interface

for a general purpose operating system such as Unix cannot always make such worst case usage assurances. Some

recent desktop operating systems (Windows NT, Solaris, etc.) incorporate preemptive priority-based real-time

scheduling. This type of scheduling can support a small set of real-time applications with carefully measured and

constrained resource usage and little or no dependence on other system services or interaction with other processes.

Because the real-time processes are executed at a higher priority level than the rest of the processes in the system,

all other processes, including system daemons, must execute only in the CPU cycles not used by the real-time pro-

cesses. For this reason, when this scheduling class is available at all it may not be available to most users.

In contrast to traditional real-time applications, this emerging class of desktop applications does not need strict

real-time performance guarantees. Instead, these applications need only a reasonable assurance that their resource

needs will be met by the system. Failure to meet a deadline does not constitute system or application failure, it is

simply less satisfactory to the user. Systems that support this type of application are referred to assoft real-time

systems.

Operating system researchers have been studying techniques for softening the strict guarantees of real-time

systems so as to allow more applications to run simultaneously, with the expectation that their average case perfor-

mance will be acceptable and with the understanding that worst-case behavior may include some missed deadlines,

3

loss of data, or other similar consequences. Several researchers have focused on developing OS mechanisms that

provide soft real-time application support by allowing applications to miss some or all of their deadlines (see

Related Work). These systems generally rely on scheduling primitives that use application-supplied information

concerning each application’s CPU and timing requirements. When all of the application resource requirements

cannot be met, these systems tend to reject additional applications or stop low-priority tasks that are already exe-

cuting [10][25]. This method does not support a principle of graceful degradation wherein all user requests are

honored and resources are allocated to the applications in an equitable manner. Other systems reduce the resources

provided to each application based on formulas of resource need, application importance, etc.

[11][18][21][28].These systems rely on the applications themselves to adjust their processing to fit within the

resources they have been allocated. However, none of these latter systems provide a model for how the applications

can reduce their resource requirements to function within a less-than-optimal allocation.

1.1. Approach
Soft real-time support can be provided to a community of cooperating applications by incorporating aQoS

manager that optimizes resource allocation according to the global benefit of each application to the community

(as well as the currently available resources). Each application provides the QoS manager with a model of its appli-

cation benefit, processing time, and period, i.e., the model is a deadline-sensitive model [29]. Applications that pro-

vide relatively high benefit to the user at any given instant should receive correspondingly more resources than

ones that provide lower benefit at that same instant After evaluating relative benefit and resource requirements, the

QoS manager can define a strategy whereby applications with relatively high global benefit should be allocated a

correspondingly larger proportion of system resources than applications with relatively low global benefit.

The QoS manager depends on an application agent (e.g., the application itself) to provide a specification of its

benefit versus resource usage. Various researchers agree thatQuality of Service (QoS) levels can be used to define

such a specification. QoS Levels have evolved over a period of time with contribution by various researchers,

though Tokuda and Kitayama published the seminal idea in 1993 [35]. In this study, Tokuda and Kitayama’s QoS

Levels are extended and then used both as part of a mechanism for providing soft real-time processing on top of a

general-purpose operating system, and as a model for applications to dynamically specify their resource usage in

soft real-time environments. The extended QoS Level model allows applications to define the importance of vari-

ous patterns of missed deadlines and other real-time processing constraints. By allowing applications to determine

which real-time processing constraints to change as they define their resource usage, our QoS Levels effectively

separate soft real-time policy from soft real-time mechanism so that the system can provide the mechanism and the

applications themselves define their own policies.

With QoS Levels, applications are developed with multiple modes in which they can execute. Each mode pro-

vides a different output quality and consumes a different amount of resources. An application’s modes are ordered

4

by the output quality they provide and the resources they require. Given the levels for a set of applications, a

resource manager running as middleware can dynamically allocate the available resources among the applications

with the goal of maximizing overall user satisfaction.

We have developed theDynamic QoS Manager (DQM) as a middleware mechanism that operates on the col-

lective QoS Level specifications. It analyzes the collective optimization functions provided by the community of

processes to determine its allocation strategy1. Once the DQM determines how resources should be allocated, it

determines the level at which each application should operate in order to optimize the global benefit. In the DQM

middleware solution, each application is informed of the level at which it should execute to maximize global bene-

fit, but the DQM does not ensure that the application will actually execute at the recommended level. Thus the

DQM requires that the applications be well-behaved to achieve maximized behavior (OS support is required to

assure cooperation among ill-behaved applications, though our experiments observe situations in which some

applications do not use QoS Levels -- see Section 6).

1.2. Issues with the Approach
Extended QoS Levels and the DQM are a proof of concept that a cooperating community of applications can

use an OS with a best effort CPU scheduler, yet achieve an effective soft real-time strategy that is well-suited to a

desktop computer with a repertoire of applications with processing deadlines. In designing and analyzing the

approach, there were several critical issues that guided the research:

• Is QoS Level soft real-time feasible?

• What is the effect of different resource allocation algorithms?

• Is a complete middleware-only system possible?

• What performance can be expected from such a system?

This paper describes the approach, then addresses each of these issues to demonstrate the feasibility and utility

of a middleware QoS manager for flexible soft real-time processing.

1.3. Outline of the Paper
Section 2 discusses related work in OS support for soft real-time processing and QoS Levels. Section 3, pre-

sents a detailed discussion of our notion of QoS Levels. Section 4 presents the details of the DQM. Section 5 pre-

sents results from investigations of the system operation with a variety of representative resource allocation

algorithms. Section 6 discusses the issues in implementing a middleware-only QoS Level soft real-time system.

Section 7 summarizes the work, presents the conclusions, and discusses future directions for this research.

1. We note that any system that uses QoS Levels or similar functions to specify global benefit introduces a new prob-
lem. To optimally determine how to allocate resources using such functions, the QoS manager must solve an NP-
complete problem [16]. Elsewhere we elaborate on the implications of using QoS Levels [4].

5

2. Related Work

Jensenet al.proposed a soft real-time scheduling technique based on application benefit [19]. Each application

specified abenefit curve that indicated the relative benefit to be obtained by scheduling the application at various

times with respect to its deadlines. The goal was to schedule applications so as to maximize overall system benefit.

While this approach is intuitively very appealing, it is computationally intractable. This work evidently led to QoS

Levels as an alternative, discrete representation of benefit.

Tokuda and Kitayama [35] developed QoS Levels as a mechanism to be used with RT Mach [36] and processor

capacity reserves [25]. There are several differences between their QoS Levels and those used in this study. The

original QoS Levels characterize a particular level according to the type of difference between adjacent QoS Levels

(temporal or spatial), depending on whether the change was to the period of the application or the spatial resolution

of the processed data. Our QoS Levels are characterized by a single number representing average CPU utilization

of the algorithm. Level changes involving their temporal or spatial changes are automatically allowed for in this

representation, as are changes to the algorithms which affect neither temporal nor spatial resolution. Tokuda and

Kitayama also use simple priority to determine the QoS allocation for each application, which does not define the

relative importance of the individual levels within an application. Finally, this work did not result in a working sys-

tem.

Rajkumaret al. have developed a theoretical QoS model called Q-RAM [30][31] that is similar to the one pre-

sented here. Q-RAM uses continuous benefit functions to specify application benefit as a function of resource allo-

cations. Rajkumaret al. envision Q-RAM simultaneously managing several applications, each with benefit

functions on several different resources (such as CPU, memory, and network bandwidth). They have developed an

algorithm for the case where the benefit functions are continuous and convex [30] (using the same algorithm as

[16]), and an approximation for the case where the benefit functions have discontinuities and are almost convex

[31]. Lee extended Rajkumaret al.’s work to address applications with discrete benefit functions [24], a model that

is essentially the same as QoS Levels. This work is relevant as a theoretical model, but the results are largely

untested in an actual soft real-time system.

Abdelzaheret al.use a similar notion to QoS Levels to support automated flight control processes distributed

over a pool of processors [1]. They have also extended the concept to apply to network resources [2]. Both of their

systems are built on top of RT Mach and rely on its real-time support and scheduling. They do not provide informa-

tion about how QoS Levels are determined, nor what to do if they are incorrect.

Fan describes an architecture similar to the DQM in which applications request a continuous range of QoS

commitment from a centralized QoS Manager [11]. Based on the current state of the system, the QoS Manager

may increase or decrease an application’s current resource allocation within this prenegotiated range. Such a sys-

tem suffers from instability due to the fact that the ranges are continuous and continuously being adjusted, and it

6

lacks a strong mechanism for deciding which applications’ allocations to modify and when. It also assumes that

any application can be written in such a way as to work reasonably with any resource allocation within a particular

range. There is apparently no implementation of the system at this time.

Compton and Tennenhouse describe a system in which applications are shed when resource availability falls

below a threshold point [10]. Their approach is to be explicitly guided by the user in selecting which application to

eliminate. This approach is similar to QoS Levels in that the applications cooperate in their usage or non-usage of

the resources, but by limiting the applications to two levels -- running or not running. This approach does not

address deadlines.

Liu et al., define imprecise computation [12] where each task has a required part and an optional part. The

optional part refines the computation performed in the required part, reducing the computational error. A modified

task scheduler was used to allocate extra CPU capacity towards the optional parts in such a way as to reduce overall

computational error. Tasks have 3 levels: running, running with more computational error, and not running. Appli-

cations do not miss deadlines, and there is no deadline miss detection or notification.

Kravetset al. have developed a notion similar to QoS Levels for use with networked applications [23]. Their

applications use a payoff function specifying the quality of the output as a function of network bandwidth received,

and a dynamic resource manager allocates network resource to applications in an attempt to maximize overall ben-

efit.

Steereet al. have developed a proportional resource allocator for scheduling threads that dynamically deter-

mines the proportion of the CPU to allocate to a given thread and an appropriate period for the thread based on the

progress that the thread makes [33]. Real-time threads have static period and proportion while non-real-time

threads have dynamic period and proportion. The dynamic period and proportion of the non-real-time threads are

changed based on a heuristic goodness based on the system-determined progress of the application. Their notion of

progress is based on built-in knowledge about certain classes of applications, including client-server, interactive, I/

O intensive, and other. By extending the notion of period and proportion to non-real-time threads, this work pro-

vides a framework for integrating real-time and non-real-time processes. However, their work has many aspects

that make it unsuitable for general soft real-time processing. First, their notion of progress is inadequately devel-

oped to work for general applications that do not fit within their classes. Second, they have no deadline monitoring

capabilities that would allow for deadline misses to be addressed in the case of system overload with soft real-time

applications. Third, they have no notion of importance or benefit that would allow the system to decide among

competing soft real-time applications in cases of system overload. Finally, while they claim to use control theory in

determining their allocations, their results show significant and problematic instability in the resource allocations

provided to the applications, an issue that they have not yet addressed.

7

There is considerable complementary work in which the OS provides an explicit scheduling approach and a

mechanism to enforce cooperation among the processes (e.g., see RT Mach [25], Rialto [21], SMART [28],

MMOSS [11], and Epiq [26]). However, the DQM approach is a middleware approach that relies on QoS Levels,

so it differs substantially from this work. Besides Abdelzaheret al. and Kravetset al.’s work (mentioned above)

there is also other relevant QoS work in networks (see for example RSVP [3], DiffServ [27], work published in

IWQoS (e.g. [13]), and work from the Internet2 workshops (e.g., [7][34])).

3. QoS Levels

Tokuda and Kitayama distinguish between static and dynamic schemes for specifying QoS Levels. In the static

scheme, the QoS Level to be used is determined when an application starts, but in the dynamic scheme it can be

adjusted as the application runs. A QoS Level (for continuous media) is expressed with temporal and spatial char-

acteristics. For example an application might specify a range of temporal values relating to the frame display rate

and a range of spatial values to describe image resolution.

Our QoS Levels are somewhat more general. The levels for each application are characterized by the applica-

tion resource usage and benefit provided by each level, and the period for that level. They do not explicitly specify

or otherwise limit the ways in which applications may modify their resource usage from level to level, allowing

temporal, spatial, and any other kind of change in processing between levels. This distinction allows each applica-

tion to employ a unique, application-specific, soft real-time policy that best reflects the needs of the application.

There is a fixed format for the QoS Level specification

used by the DQM. Each application provides a benefit table

specifying its QoS Level information in the form of amax-

imum CPU requirement, maximum benefit, and a set of

quadruples of the form<Level, Resource usage, Benefit,

Period>. Level 1 represents the highest level and provides

the maximum benefit using the maximum amount of

resources, and lower QoS Levels are represented with

larger numbers.

A representative benefit table is shown in Figure 1.

Note that although maximum benefit is specified by the user at runtime, it is included in this table for simplicity.

The rest of the information is statically specified by the application developer at the time that the application is cre-

ated.

Figure 1 indicates that the maximum amount of CPU that this application will require is 75% of the CPU,

when running at its maximum level, and that at this level it will provide a user-specified benefit of 6. The table fur-

ther shows that the application can run with relatively high benefit (80%) with 65% of its maximum resource allo-

Max Benefit: 6
Max CPU Usage: 0.75
Num Levels: 6
Level CPU Benefit Period(µs)
1 1.00 1.00 100000
2 0.80 0.90 100000
3 0.65 0.80 100000
4 0.40 0.25 100000
5 0.25 0.10 100000
6 0.00 0.00 100000

Figure 1: QoS Levels with CPU Usage, Benefit and
Period

8

cation, but that if the level of allocation is reduced to 40%, the quality of the result will be substantially less (25%).

In this example, the period of the application is held constant over the set of levels, but in general the period can

remain the same, increase, or even decrease.

3.1. User Responsibility
QoS Levels provide a means for the user to play a role in the system policy. As with all general-purpose oper-

ating systems, the user is free to initiate any application at any time. This is a characteristic that distinguishes soft

real-time desktop systems from most hard real-time systems. Because there is no admission phase, the system has

noa priori information about the applications that will be executed. Consequently, it is possible that the applica-

tions themselves will be best-effort applications that do not comply with the QoS Level model and the system (as

implemented) can make no guarantees about the application performance. Of course, if the user only initiates com-

pliant applications, then the system can provide very good soft real-time performance. In the presence of non-com-

pliant applications, the DQM will adjust the levels of the compliant soft real-time applications as necessary to keep

them running without missing deadlines within the available resources (see Section 6). Once the non-compliant

applications have left the system, the compliant applications will return to stable performance at the appropriate

levels.

In starting the applications, the user can specify the maximum benefit for the application based on his/her pref-

erences i.e., application A is more important than application B. This is analogous to priority or importance in

other systems and, together with the relative benefit information in the QoS Level specification, is used by the

DQM in deciding how to allocate system resources. The user also specifies any application parameters at run-time,

and interacts with the application as it executes. Finally, the user is the recipient of the application output and for

whom the benefit is calculated.

3.2. Applications
Applications are written using the QoS Level model; each application is developed with a set of levels at which

it can operate, each level having a particular set of resource requirements, a corresponding benefit, and an associ-

ated period. Each application is accompanied by a specification of the levels and their resource needs, benefit, and

period. The QoS Levels chosen for a particular application are highly application-specific and reflect the particular

soft real-time policy that the developer wishes to employ. A given application can soften one constraint multiple

times to create a set of levels, or soften several simultaneously in different ways for the different levels. The only

restriction is that the levels be ordered according to the resource used and the benefit provided. The levels can be

implemented as parameters on the algorithms that implement the functionality of the application, or can consist of

calls to completely different algorithms. These choices are up to the application developer and will reflect the

details of the desired soft real-time policy. In the simplest case, where period changes and everything else is held

constant, the application performs the same computation at each level, but a DQM component manages the dead-

9

line timing. In a slightly more general case (e.g., with a change in the resolution of a transmitted image), the change

will be reflected in one or more parameter values used by the algorithm. In the most general case where completely

different algorithms are employed for the different levels, a global switch statement at the top of the application

will select the appropriate function to call based on the current level.

The determination of appropriate CPU usage numbers for the various levels of an application is relatively

straightforward inasmuch as it can be measured directly by running the application with only a small amount of

instrumentation added. By running the application for some large number of periods at each level, and measuring

the time required, an average resource usage number for each level can be determined. By measuring over a large

number of periods, the measurement can be made reasonably accurate. As is elaborated in Section 6, there are sev-

eral situations that can arise in general purpose environments in which these measurements can still be inaccurate.

Interprocess interference (e.g. competition for unaccounted for resources) can cause an application to take longer

than expected. Variations in the required resources as, for example, from data dependencies in the algorithm, can

also result in inaccuracies in the measurements. Additionally, running the application on a different architecture

from the one on which it was measured will result in inaccuracies in these measurements. Finally, errors in the

measurement process itself can exist. Nevertheless, we have found that it is possible to make reasonably accurate

measurements of the resource usage of the applications. In Section 6 we discuss robust strategies for managing

inaccurate resource usage estimates from these and other sources.

Determination of the relative benefit numbers for each level of each application is not as straightforward. The

relative benefit numbers for each application should reflect the reduced output quality from running at a given level

relative to the quality from running at the highest level. Briefly, the determination of relative quality can be made in

several ways. For common soft real-time applications such as desktop audio and video, there is a large volume of

research data from the telecommunications and television industries relating the perceived quality of outputs rela-

tive to the data bandwidth, rate, size, color, etc. see, for example, [32]. Alternatively, the users themselves could

specify their perceived relative benefits interactively based on their current satisfaction. It is reasonable to expect

that the determination of benefit is an area where additional research effort will be spent once the mechanisms used

to implement soft real-time have become sufficiently standardized.

4. DQM System

The entire system consists of a middleware application referred to as theDQM and a library of DQM interface

and soft real-time support functions called theSoft Real-Time Resource Library(SRL) [15]. The DQM application

is a fully functional soft real-time system that has allowed us to experiment with different algorithms for dynami-

cally adjusting levels among a set of running applications with varying numbers of levels with varying resource

requirements and to explore problems that arise in developing a middleware QoS manager. Like most existing soft

real-time systems, the DQM manages only the CPU resource.

10

The current implementation of the system has been implemented on top of Linux and Solaris. Consequently,

the specific details of the implementation are dependent upon the facilities and capabilities of those Unix plat-

forms. However, in general the facilities on which it depends are provided by any general-purpose operating sys-

tem.

Figure 2 shows the components of the system and the information that is passed among them (the user and

applications were described in Section 3). The user is responsible for starting the applications (e.g. via the com-

mand line), specifying the applications’ absolute benefit, i.e. the relative importance of each application; the user is

the ultimate recipient of the systems’ output. The applications perform their work according to the algorithm(s)

their designers chose. The SRL (linked with each application) provides facilities to allow the application to com-

municate with the DQM. The SRL sends the application QoS Level information to the DQM, monitors the applica-

tion performance, and reports application state and missed deadlines to the DQM. The SRL also reports the current

level, as selected by the DQM, to the applications. The DQM monitors system and application state via the operat-

ing system and the information from the SRLs, and chooses appropriate levels for the applications. All components

are independent of the operating system and execute as user-level processes. The following sections discuss the

SRL and DQM in more detail.

Application

SRL

Application

SRL

Application

SRL

Figure 2: The DQM System

Application

SRL

DQM

User

Best Effort Operating System

Absolute
Benefit

Application Initiation

Application Output

Current
Level

Application
State

Level
Table

Missed
DeadlinesResource

Demands

System and
Application

Resources

State

11

4.1. The SRL
The SRL is a library of functions linked to each application that provides three simple functions to be called by

applications:dqm_init() to initialize the computation,dqm_loop() called at the beginning of each period,

anddqm_exit() called when the application terminates. The three functions perform many operations in the

system: They notify the DQM of application entrance and termination, initialize important system data structures

with application benefit table information, manage and monitor application timing and periods, measure applica-

tion resource usage (when necessary), detect missed deadlines and notify the DQM of the misses, report the DQM

determined level to the applications or modify application level directly (in the case of the Distributed algorithm

(discussed in Section 5), and record application QoS statistics.

Thedqm_init() function reads any relevant parameters, attaches to shared memory used to communicate

with the DQM, attaches to the DQM’s deadline miss semaphore (used to signal that a deadline has been missed by

an application), creates its own deadline miss semaphore (used in the local determination of missed deadlines),

then notifies the DQM (through a shared memory location) that the application has begun running.

Thedqm_loop() function does the bulk of the SRL work. The SRL manages application timing using

alarms, signals, and semaphores. For each application, a deadline handler increments the local deadline miss sema-

phore. A timer alarm is set to go off exactly once per period. When the alarm goes off, the deadline handler func-

tion is called, incrementing the deadline miss semaphore. Each time that dqm_loop() is called by the application,

the deadline miss semaphore is checked. If the semaphore has value 0 or 1, then we completed processing before

the expiration of the deadline (or just after the expiration of the deadline). In that case, the function waits until the

semaphore has value 1 and then returns the current level to the application, allowing it to proceed. If the semaphore

has value greater than 1 then we know that the application took more than its allotted time for that period and a

deadline has been missed. In that case, the DQM missed deadline semaphore is incremented and the application is

blocked until the next time that the alarm goes off, and then proceeds as usual.

The SRL missed deadline detection has a feature that increases the stability of the applications and the system:

average deadline miss detection. The average deadline miss detection is part of a broader goal of allowing an appli-

cation to specify when the performance is outside of its acceptable range and the DQM should be notified. Cur-

rently only a single policy is implemented, but it is envisioned that future systems will allow applications to specify

or even implement their own policies. The current policy works by only signalling a missed deadline when an

application has become 1 period out of phase, rather than every time an application takes slightly longer than 1

period for 1 iteration. By signalling a missed deadline only when the value of the local deadline miss semaphore is

2 or more, we allow some deadlines to be missed (as is permissible in soft real-time applications), but signal the

DQM when any period is missed by too much (currently more than 1 period), or the cumulative deadline miss

amount adds up to more than 1 period. Thus if an application has varying resource usage and alternates between

12

slightly longer than 1 period and slightly less than 1 period, the average deadline miss amount will be zero and no

deadline miss will be signalled.

A future version of the system will incorporate a more general miss notification mechanism. This will allow

the application developer to specify an application-specific policy with respect to deadline miss detection and noti-

fication. For example, various applications may require more stringent deadline miss detection, i.e. never miss a

deadline. Alternatively some applications may allow for a more relaxed deadline miss profile, i.e. make at least

every other deadline, or don’t miss more than 1 out of every 3 deadlines. Such a mechanism will further support the

notion of user-specified soft real-time policy.

As mentioned above,dqm_loop() returns the current level of the application each time that it is called. It also

checks for level changes and each time a change in period accompanies a change in level, the period for the afore-

mentioned timer alarm is changed accordingly. It should be noted that the applications and the DQM operate asyn-

chronously. The applications only change level at the top of the main loop, upon receiving a different level from the

dqm_loop() function. Each time that an application algorithm is called to run at a particular level, it is guaran-

teed to finish before the level change is made effective.

There is one situation where the SRL itself will change the level of an application; when the Distributed algo-

rithm is running. This decentralized algorithm allows each application to change its own level upon missing a dead-

line, and to raise its own level periodically to test if there are available resources for it to use.

Finally, the SRL can measure the resource usage of the application each time thatdqm_loop() is called and

record the information in the output data structure (described in [4]). The resource usage of the applications can

either be measured once per period by the SRL, or once per sampling interval by the DQM. The resource usage is

determined by reading the appropriate field in the/proc pseudo-file for the process executing the application.

Having the SRL measure the application resource usage once per period results in better individual measurements

that exactly reflect the per-period resource usage of the application at that level. Unfortunately, the measurements

from the individual SRLs cannot be summed to get a systemwide resource usage measurement because the mea-

surements are taken at different times.

4.2. The DQM
The DQM is the centralized resource management mechanism for the system and executes as a separate user-

level process. It dynamically determines a level for each of the running applications based on the available

resources and the user-specified benefit of the applications, and changes the level of each running application until

all applications run without missing deadlines, the system utilization is above some predetermined minimum, and

stability has been reached. In accomplishing these goals, the DQM does several things: it initializes the shared

memory data structures, it monitors application resource usage and system resource availability, it monitors appli-

13

cation deadline misses, it adjusts application deadlines as necessary, and it records relevant information in the out-

put data structure and writes it out at system termination.

The DQM must be started before any applications are initiated in order to initialize the shared data structures.

After initializing the data structures, the DQM starts two child processes that do the bulk of the work of the DQM;

the QoS Manager and the Sampler. The QoS Manager is responsible for monitoring deadline misses and, when

necessary, lowering the overall resource usage of the system by lowering the level of one or more applications. In

so doing, it may also raise the level of one or more (but not all) applications.The Sampler is responsible for moni-

toring the unused resources in the system and, when possible, raising the level of one or more applications. In so

doing it may also lower the level of one or more (but not all) applications. These two operations are largely separate

and while the two processes are executing concurrently, the two mechanisms will not be acting simultaneously.

Either the system is in a situation where the applications are trying to use more resources than are available and the

QoS Manager will be operating to reduce the allocated resources, or the system is running stably without missed

deadlines. If the system is running stably without missed deadlines, it may be the case that there are excess unallo-

cated resources and the Sampler may attempt to increase the allocated resources. Consequently (except in the most

degenerate situation where the resource usage of the applications is grossly underestimated and the Sampler is

using the estimates themselves to determine the presence of unallocated resources), the QoS Manager and the Sam-

pler will never be acting simultaneously.

The QoS Manager monitors deadline misses by waiting on the DQM deadline miss semaphore. When the

semaphore is non-zero, it calls one of the resource allocation algorithms to assign a new set of levels with lower

total resource usage than the current allocation. Because a bad resource allocation that causes the applications to

attempt to use more than the available resources may result in several deadline misses from one or more applica-

tions before the QoS Manager has time to respond by changing the levels, the QoS Manager employs askip value

(set by a runtime parameter) to determine the number of deadline misses to receive before changing the levels of

the applications. This skip value builds some hysteresis into the system, allowing the QoS Manager time to respond

to problems and allowing the system to stabilize after the levels of the running applications have been changed

before the QoS Manager again responds to missed deadline signals. In the experiments we have conducted, a skip

value of 3 has been found to work well (see Section 5). In general, the skip value could easily be replaced by a

more general function specifying the acceptable number of missed deadlines. For instance, levels could be changed

any time the percentage of missed deadlines exceeds a specified number.

The Sampler periodically monitors system resource availability and determines CPU underutilization by exam-

ining system idle time. The periodicity is managed with timer alarms and semaphores in a manner analogous to the

SRL deadline management. A timer alarm is set and a handler is specified. The handler increments a semaphore

each time that the alarm goes off. The Sampler waits on the semaphore and executes once each time that it is set.

14

System idle time can be determined in several ways including via the OS, through the/proc file system, by mea-

suring the CPU usage of a low priority application, and by taking the complement of the sum of the CPU usage

measurements (or estimates) of the running applications. The particular method used is dependent on the informa-

tion available in the host OS. If the OS provides idle time information, this information is the most reliable. As

mentioned above, taking the complement of the sum of the individual resource usage estimates for the applications

can lead to some problems. Additionally, measuring the resource usage of a low priority application can also lead

to some problems. In an experiment with Solaris 2.7, a lowest priority compute-intensive process running concur-

rently with a high priority compute-intensive process was observed to consume about 2 percent of the CPU until

some moderate amount of time after it was started, at which time its resource usage jumped to about 24 percent of

the CPU. While the cause of this phenomenon is unknown, it demonstrates the unreliability of using such a method

to determine system idle time. Of our two research platforms, Linux and Solaris, system idle time is directly avail-

able from Linux, and not directly available from Solaris.

To complement the hysteresis provided by the skip value used by the QoS Manager, the Sampler uses an idle

time threshold to determine when adequate idle time is available to increase the amount of allocated resources.

This threshold prevents the Sampler from trying to reallocate the resources in response to minor changes in

resource availability. The threshold is dynamic in the sense that if no allocation is found higher than the current

allocation that can fit within the available resources when the threshold value is met, the threshold is raised so that

a greater amount of resources must be available before the Sampler will again try to change levels. This avoids

repeatedly attempting to change levels for a given resource availability when it has been determined that no suit-

able higher allocation exists.

When the DQM is set (via parameters) to record application statistics, the Sampler does so during its periodic

execution. This information is written to the output data structure and dumped to a file when the DQM terminates.

A major issue in the design of the DQM is how the QoS Manager and the Sampler actually select the level at

which each application should execute: Approximation algorithms are used.; we have implemented and examined a

variety of different algorithms and studied this issue extensively (Section 5).

Early in the development of the DQM, the first major issue -- feasibility --was addressed by considering two

questions with respect to the DQM:

• Can soft real-time applications execute without missing deadlines when running on a best-effort operating

system?

• Can applications utilize the available CPU resources effectively.

A set of simple DQM experiments was run on a 200 Mhz Pentium Pro PC running the Solaris operating system

[6] (the experiments were repeated with the Linux operating system, with virtually identical results [4]). While

Solaris provides some real-time scheduling classes using preemptive fixed priority scheduling, all applications and

15

middleware were executed using the standard UNIX scheduling classes. In [15] -- and all the results in the remain-

der of the paper -- the approach is shown to be both feasible and useful. System tests on this preliminary version of

the DQM demonstrated that with a load that would require about twice the CPU capacity of the system, the DQM

adjusted the QoS Levels so that applications began operating at reduced levels where the total load stabilized at

82% of the CPU time. As shown in Section 6, given suitable levels in the applications, the utilization can be

increased to nearly 100%.

5. Resource Allocation Algorithms

The second issue in the design of the DQM was to explore policies for selecting the QoS Level for each appli-

cation. Four representative allocation algorithms were initially implemented in the DQM: Distributed, Even, Pro-

portional, and Optimal. The algorithms all determine what levels will be selected for each application given the

current system resources. These algorithms were selected either because they appear to be obvious solutions to the

problem or because they model the solutions provided in other systems.

• TheDistributedalgorithm is the simplest policy and is primarily intended to serve as a baseline against

which to compare other algorithms. When an application misses a deadline, it autonomously selects its

next lower level. A variation of this algorithm allows applications to raise their level when they have suc-

cessfully metN consecutive deadlines (whereN is application-specific). This algorithm is completely

decentralized and does not use the DQM at all. It could be used in conjunction with the RT Mach Reserves

mechanism [25] inasmuch as it does not assume any centralized decision-making or level management but

allows each application to adjust to the resources that it has available1. Similarly, this algorithm could be

used by applications in the MMOSS [11] and SMART [28] systems to dynamically adjust to the resources

that they have been granted.

• TheEvenalgorithm is the simplest centralized algorithm that we have implemented. In the event of a dead-

line miss, the Even algorithm reduces the level of the application that is currently using the highest fraction

of CPU time. It assumes that all applications are equally important and therefore attempts to distribute the

CPU resource fairly among the running applications. In the event of underutilization, this algorithm raises

the level of the application that is currently using the least CPU time.

• TheProportionalalgorithm uses the benefit parameter and raises or lowers the level of the application with

the highest or lowest benefit/CPU ratio. This algorithm approximates the scheduling used in the SMART

system [28].

1. To use this algorithm in an RT Mach system, the admission criteria would have to be changed to include a negoti-
ation whereby an application’s QoS Level is determined before it enters the system.

16

• TheOptimalalgorithm is loosely based on Jensenet al.’s benefit-based scheduling [19]. Whereas Jensenet

al. attempted to maximize the user benefit by using application deadline benefit curves to maximize benefit

for each scheduling decision, Optimal uses each application’s user-specified benefit and application-speci-

fied maximum CPU usage, as well as the relative CPU usage and relative benefit information specified for

each level to determine a QoS allocation of CPU resources that maximizes total user benefit. Total user

benefit is the sum of the individual benefits of the running applications, as determined by the relative bene-

fit of the level at which they are currently executing and the maximum benefit specified by the user. The

current implementation of Optimal uses an exponential-time search of the solution space to determine the

optimal allocation. The Optimal algorithm performs extremely well for initial QoS allocations, but it reacts

very poorly to changing resource availability. In particular, the allocations can change dramatically with a

small change in resource availability, resulting in wildly-fluctuating QoS Levels for all applications in the

system. To reduce this effect, an option was implemented for this algorithm that restricts the change in

level for each application to at most 1, optimizing within this narrow band of application change.

For all of the algorithms it is possible to specify a skip value (see Section 4). A skip value of n changes the sen-

sitivity of the algorithms so that, rather than responding to every missed deadline, they respond to everynth missed

deadline. With a skip value of 0, there is a tendency to overcorrect as a consequence of several missed deadlines

occurring at or near the same time. Experiments using a skip value of 2 or 3 provide a damping effect that gives the

DQM time to react to CPU overload situations, i.e. situations in which the total requested CPU allocation exceeds

the available CPU cycles.

For a given set of applications, the data presented in this section were generated by running the applications

and the DQM (with level lowering only) and recording 90 samples of the current level, requested CPU allocation

and actual CPU usage for each application, as well as the total CPU usage, total benefit over all applications, and

current system idle time. The applications ran for a total of 9 seconds or 90 periods. By varying the runtime over

several experiments we determined that 90 periods is adequate for observing the performance of the algorithms in

a steady state situation.

To compare algorithms, a single representative set of synthetic applications was used. This simplifies compari-

sons of the results of the different algorithms, though it does not reflect on the generality of the system (we also

experimented with the system using actual applications -- see Section 6). The application set (see Figure 3) has 4

applications, each having between 4 and 9 levels with associated benefit and CPU usage numbers. While these

applications and levels do not correspond exactly to any actual applications, the ranges of CPU usage and benefit

values used test the QoS Level model and vary at least as much as one would find in most actual applications. For

this set of experiments, application period was fixed at 1/10 of a second for all QoS Levels of all applications.

17

Figure 4(a) shows the QoS Levels

at which the four application run

using the Distributed algorithm with a

skip value of 0, with the DQM exe-

cuting on top of Solaris. The QoS

Levels change rapidly at the begin-

ning, because we are starting the sys-

tem in a state of CPU overload, i.e.,

the combined QoS requirement for

the complete set of applications run-

ning at the highest level (level 1) is

approximately 200% of the CPU. By

the 10th sample, the applications have

stabilized at levels that can operate

within the available CPU resources.

There is an additional level adjust-

ment of application 3 at the 38th sam-

ple due to an additional missed

deadline probably resulting from tran-

sient CPU load generated by some

non-QoS application. The skip value

of 0 means that the application reacts

Application 1
Max Benefit: 8
Max CPU Usage: 0.42
Num Levels: 9
Level CPU Benefit
1 1.00 1.00
2 0.51 0.69
3 0.35 0.40
4 0.27 0.30
5 0.22 0.24
6 0.15 0.16
7 0.10 0.10
8 0.05 0.05
9 0.00 0.00

Application 2
Max Benefit: 4
Max CPU Usage: 0.77
Num Levels: 6
Level CPU Benefit
1 1.00 1.00
2 0.59 0.64
3 0.53 0.55
4 0.45 0.47
5 0.22 0.24
6 0.00 0.00

Application 3
Max Benefit: 5
Max CPU Usage: 0.22
Num Levels: 8
Level CPU Benefit
1 1.00 1.00
2 0.74 0.92
3 0.60 0.39
4 0.55 0.34
5 0.27 0.23
6 0.12 0.11
7 0.05 0.06
8 0.00 0.00

Application 4
Max Benefit: 2
Max CPU Usage: 0.62
Num Levels: 4
Level CPU Benefit
1 1.00 1.00
2 0.35 0.31
3 0.21 0.20
4 0.00 0.00

Figure 3: Application Set with QoS Levels

0

1

2

3

4

5

6

7

8

9
0 10 20 30 40 50 60 70 80 90

Q
oS

 L
ev

el

Time (1/10 second)

Application 1
Application 2
Application 3
Application 4

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90

F
ra

ct
io

n
of

 C
P

U

Time (1/10 second)

Application 1
Application 2
Application 3
Application 4

Sum

Figure 4: Distributed Algorithm (skip=0)

(a) QoS Levels (b) Requested CPU Allocation

18

to each missed deadline in lowering its level, regardless of the transient nature of the overload situation. The lack of

changes at the very beginning of each graph are due to the fact that we begin sampling just before the applications

have started executing in order to record everything that occurs.

Figure 4(b) shows the requested CPU allocation for the applications in the same experiment. Here we see that

the total requested CPU allocation (designated Sum) starts out at approximately twice the available CPU, and then

drops down to about 100% as the applications are adjusted to stable levels. Note also the adjustment at sample 38

(described above for Figure 4(a)), lowering the total requested CPU allocation to approximately 80%. Because

these experiments are conducted with level-lowering only, the system does not adjust the application levels upward

to take advantage of the excess available resources.

Figure 5(a) shows the QoS Levels for the same application set, resource allocation algorithm, and skip value

running on the Linux operating system. Figure 5(b) shows the requested CPU allocation for this experiment. While

the graphs show almost exactly the same performance, there is an important difference. The synthetic applications

performed differently on the Linux operating system, consuming almost twice as many CPU cycles. This high-

lights the need to modify the maximum CPU usage numbers for the applications for each platform on which they

will be executed, to develop a platform independent specification of application resource need, or to develop a

mechanism to dynamically determine these numbers at runtime (see Section 6 for a discussion of dynamic estimate

refinement, a mechanism that we developed to accomplish this).

To compare the results with the Solaris experiments, the synthetic applications were modified to consume the

same percentage of the CPU, i.e. so that an estimated application load of 100% on Linux equals an estimated appli-

cation load 100% on Solaris. As can be seen from the graphs, the results are almost identical to those obtained for

the Solaris system. This similarity was observed for all of the experiments and so the rest of this section will deal

only with the Solaris results. Complete graphs of the Linux experiments are given in [4].

0

1

2

3

4

5

6

7

8

9
0 10 20 30 40 50 60 70 80 90

Q
oS

 L
ev

el

Time (1/10 second)

Application 1
Application 2
Application 3
Application 4

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90

F
ra

ct
io

n
of

 C
P

U

Time (1/10 second)

Application 1
Application 2
Application 3
Application 4

Sum

Figure 5: Distributed Algorithm (skip=0) on Linux

(a) QoS Levels (b) Requested CPU Allocation

19

Figure 6(a) show the QoS Levels and Figure 6(b) shows the requested CPU allocation for the Distributed algo-

rithm with a skip value of 2. Using a larger skip value desensitizes the algorithm to deadline misses such that a

level adjustment is only made for every 3 deadline miss, rather than for each one. A larger skip value can result in a

longer initial time before stability is reached, but will result in less overshoot, i.e. adjustment to levels lower than

are supportable within the available resources, because it gives the applications time to stabilize after level adjust-

ments.

Overshoot can result when one or more applications miss multiple deadlines as a result of a situation of over-

load before the system has a chance to change the levels to fix the problem, and the system reacts to each missed

deadline as if it was the result of a separate overload situation and thereby lowers the levels more than necessary to

correct the problem. Now, stability is not reached until about sample 16, and there are two small adjustments at

samples 24 and 49. However, the overall requested CPU allocation stays very close to 100% for the duration of the

experiment with essentially no overshoot as is observed in Figure 4 during the level adjustment at sample 38.

Because the system does not overshoot, utilization is higher and application 2 is able to remain at level 4 rather

than unnecessarily dropping down to level 5.

Figure 7(a) show the QoS Levels and Figure 7(b) shows the requested CPU allocation for the Even algorithm

with a skip value of 2. This centralized algorithm makes decisions in an attempt to give all applications an equal

share of the CPU. This algorithm generally produces results nearly identical to the Distributed algorithm, as it did

with this set of applications. This is due to the fact that, given applications with equal period as in this example, the

application with the highest requested CPU allocation, i.e. the one that would be selected by the Even algorithm to

have its usage lowered if a deadline were missed, is also the one most likely to miss a deadline and therefore lower

its own usage in the Distributed algorithm.

Figure 6: Distributed Algorithm (skip=2)

(a) QoS Levels (b) Requested CPU allocation

0

1

2

3

4

5

6

7

8

9
0 10 20 30 40 50 60 70 80 90

Q
oS

 L
ev

el

Time (1/10 second)

Application 1
Application 2
Application 3
Application 4

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90

F
ra

ct
io

n
of

 C
P

U

Time (1/10 second)

Application 1
Application 2
Application 3
Application 4

Sum

20

Figure 8(a) shows the QoS Levels and Figure 8(b) shows the requested CPU allocation for the Proportional

algorithm with a skip value of 2. This algorithm attempts to distribute shares of the available CPU cycles to each

application proportional to that application’s benefit. Using the previous algorithms the CPU percentage used by all

applications was approximately the same. With this algorithm, the requested CPU allocation/benefit ratio is

approximately the same for all applications. In fact, the ratio is as close to equal as can be reached given the QoS

Levels defined for each applications. The resulting QoS Levels are therefore different from those in the previous

algorithms although the overall requested CPU allocation remains at about 100%.

Figure 9(a) shows the QoS Levels and Figure 9(b) shows the requested CPU allocation for the applications

running with the Optimal algorithm with a skip value of 2. This algorithm reaches steady state operation immedi-

ately, as the applications enter the system at a level that uses no more than the available CPU cycles. This algorithm

optimizes the CPU allocation so as to maximize the total benefit for the set of applications, producing a total bene-

Figure 7: Even Algorithm (skip=2)

(a) QoS Levels (b) Requested CPU Allocation

0

1

2

3

4

5

6

7

8

9
0 10 20 30 40 50 60 70 80 90

Q
oS

 L
ev

el

Time (1/10 second)

Application 1
Application 2
Application 3
Application 4

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90

F
ra

ct
io

n
of

 C
P

U

Time (1/10 second)

Application 1
Application 2
Application 3
Application 4

Sum

Figure 8: Proportional Algorithm (skip=2)

(a) QoS Levels (b) Requested CPU Allocation

0

1

2

3

4

5

6

7

8

9
0 10 20 30 40 50 60 70 80 90

Q
oS

 L
ev

el

Time (1/10 second)

Application 1
Application 2
Application 3
Application 4

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90

F
ra

ct
io

n
of

 C
P

U

Time (1/10 second)

Application 1
Application 2
Application 3
Application 4

Sum

21

fit of 14.88 as compared with 13.02 for the other algorithms. Note also that because this algorithm optimizes for

benefit and not necessarily for utilization as in the other algorithms, it can result in a lower total CPU utilization

and can thereby result in a more stable steady state, yielding no additional deadline misses and requiring no correc-

tions. However, this algorithm is the least stable given changing CPU resources (such as those caused by other

applications entering or leaving the system).

Figure 10(a) shows the QoS Levels and Figure 10(b) shows the requested CPU allocation for application 2

under the four algorithms graphed separately above. These graphs summarize the differences between the various

algorithms. The Optimal algorithm selects a feasible value immediately and so the level of the application is

unchanged for the duration of the experiment. The Distributed and Even algorithms reach steady state at the same

value, although they take different amounts of time to reach that state, the Distributed algorithm taking slightly

Figure 9: Optimal Algorithm (skip=2)

(a) QoS Levels (b) Requested CPU Allocation

0

1

2

3

4

5

6

7

8

9
0 10 20 30 40 50 60 70 80 90

Q
oS

 L
ev

el

Time (1/10 second)

Application 1
Application 2
Application 3
Application 4

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90

F
ra

ct
io

n
of

 C
P

U

Time (1/10 second)

Application 1
Application 2
Application 3
Application 4

Sum

0

1

2

3

4

5

6

7

8

9
0 10 20 30 40 50 60 70 80 90

Q
oS

 L
ev

el

Time (1/10 second)

Distributed
Even

Proportional
Optimal

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

F
ra

ct
io

n
of

 C
P

U

Time (1/10 second)

Distributed
Even

Proportional
Optimal

Figure 10: Application 2 with All Four Algorithms (skip=2)

(a) QoS Levels (b) Requested CPU Allocation

22

longer. The Proportional algorithm reaches steady state at about the same time as the Distributed and Even algo-

rithms and its allocation to application 2 is less in this example.

Figure 11 shows the sum of requested CPU allocation for

the same four algorithms shown in Figure 10. This graph gives

an indication of the time required for all applications to reach

steady state, along with the CPU utilization resulting from the

allocations. The Optimal algorithm reaches steady state imme-

diately while the others take between 3.8 and 5 seconds to stabi-

lize.

6. Issues with Middleware Implementation

The algorithm comparison results were obtained with algo-

rithms that lowered the level of applications in order to lower

overall CPU usage, but did not raise the level of any application to take advantage of excess available resources.

Because soft real-time applications can be expected to execute in a dynamic environment where application are

entering and leaving the system, thereby changing the available resources up and down, the system must be able to

raise the levels of various applications at various times to take advantage of the available resources. Furthermore,

even when overall resource usage must be lowered, an optimal allocation might require that some application levels

be raises as others are lowered.

The ability to raise the levels of applications introduces several new issues [5]. The DQM uses a static thresh-

old level of measured system idle time to trigger the level-raising algorithm. In order to make accurate level-raising

decisions, the resource usage of the applications and the amount of unused resources (idle time in the case of CPU

usage) must be accurately known. OS-based QoS systems have direct access to this information and make good use

of it. Middleware solutions must make use of the information provided to user-space applications. Both Linux and

Solaris provide a/proc filesystem with information about the CPU usage of running applications in user and sys-

tem space. This information is used by the DQM to trigger level-raising by the various resource allocation algo-

rithms. However, in our experiments with level-raising, significant instability was observed in the application

levels. Several specific issues were identified and addressed. The details of these issues and solutions are provided

in this section. All of the experiments described in this section were executed on a 200 Mhz Pentium Pro system

running Linux 2.0.30. All applications and middleware were executed using the standard Linux scheduler. In order

to simplify the discussion, all of the experiments presented in this section used a single representative resource

allocation algorithm, Proportional.

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90

F
ra

ct
io

n
of

 C
P

U

Time (1/10 second)

Distributed
Even

Proportional
Optimal

Figure 11: Summed Requested CPU
Allocation with All Four Algorithms (skip=2)

23

6.1. Issue 1: Inaccurate Resource Usage Measurements
As mentioned above, the/proc filesystem can be

used to determine the resource usage of the applications,

which is used by the DQM to determine whether or not an

application can raise its level to take advantage of some

excess available resources. However, a problem was found

with this method of determining application resource

usage; the measurements of CPU usage and idle time vary

significantly from measurement interval to measurement

interval.

Figure 13(a) shows the QoS Levels for an experimental

execution of the DQM with two synthetic applications run

on top of the Linux operating system with level raising dis-

abled. The benefit table information for these applications

is given in Figure 12. These applications both have a period

of 1/10 of a second, and a maximum usage of 70% of the

CPU. The number of levels and relative CPU usage and

benefit for each level was randomly generated. The two

applications in this example have 8 and 6 levels, respec-

tively.

As can be seen, the QoS Level of application 1 drops from 1 to 5 between iterations 0 and 13, then remains

steady at this level. The estimated CPU usage for application 1 at level 5 is 19%, and the estimated CPU usage for

Application 1
Max Benefit: 4
Max CPU Usage: 0.70
Num Levels: 8
Level CPU Benefit Period(µs)
1 1.00 1.00 100000
2 0.74 0.92 100000
3 0.60 0.49 100000
4 0.55 0.34 100000
5 0.27 0.23 100000
6 0.12 0.11 100000
7 0.10 0.10 100000
8 0.05 0.05 100000

Figure 12: Benefit Table for Two Synthetic
Applications

Application 2
Max Benefit: 5
Max CPU Usage: 0.70
Num Levels: 6
Level CPU Benefit Period(µs)
1 1.00 1.00 100000
2 0.85 0.89 100000
3 0.62 0.75 100000
4 0.51 0.44 100000
5 0.33 0.27 100000
6 0.10 0.10 100000

Figure 13: Problems with Inaccurate Resource Usage Measurements

(a) QoS Levels (b) Measured CPU Usage

0

1

2

3

4

5

6

7

8

9
0 10 20 30 40 50 60 70 80

Q
oS

 L
ev

el

Time (1/10 second)

Application 1
Application 2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

F
ra

ct
io

n
of

 C
P

U

Time (1/10 second)

Application 1
Application 2

Sum
Idle

24

application 2 at level 1 is 70%. This should yield a consistent idle time of 11%. The measurements are made by the

Sampler running at intervals of 1/10 of a second and measuring the level and CPU usage of each application, and

system idle time.

Figure 13(b) shows the measured CPU usage for these same 2 applications, the sum of the CPU usage, and the

measured idle time. The measurements can be seen to fluctuate wildly between samples 0 and 13. This is caused by

missed deadlines. Even after the levels (and therefore, theoretically, the CPU usage) have stabilized, the measured

CPU usage and idle time continues to fluctuate by as much as 20% of the total CPU cycles and the sum of the CPU

usage measurements fluctuates by as much as 35% of the available cycles. However, it should be noted that the sum

of the measured CPU usage and the idle time is 100% for every measurement iteration. Measurements on Solaris

show similar results. This fluctuation makes the determination of when to raise levels almost impossible except in

cases of very large amounts of excess available CPU cycles, approaching 50% of the total.

The observed fluctuation is caused by two factors. The first is phasing of the scheduling of the measurements

with the scheduling of each iteration of the applications. This is avoidable with respect to the CPU usage measure-

ments if we have the SRL measure each application’s CPU usage at the end of each period, but is unavoidable with

respect to idle time measurement because idle time is a measure of what the applications have not used, and hence

there is no perfect time to measure it.

Figure 14 shows the CPU usage and idle time for the same

set of applications running with the same algorithm, but this

time with the CPU usage measured by the SRL at the end of

each iteration of the algorithms (i.e., exactly once per period).

The variations seen in this graph are due to the resolution of the

CPU usage information provided by the operating system. Both

Linux and Solaris provide CPU usage information in hundredths

of a second. Reading the usage every tenth of a second gives a

measurement granularity of 10%. Specifically, by reading the

CPU usage every tenth of a second, i.e. every ten hundredths of

a second, the measured usage of each application is an integral number of hundredths of a second between 0 and

10. If the actual usage is, for example, 75% of the available cycles, then when measured every tenth of a second

this will alternately be reported as 7 and 8 hundredths of a second, as is seen for application 2 in Figure 14. Note

that the idle time (measured by the Sampler) is measured slightly less frequently than the CPU usage so the

graphed peaks in idle time don’t match up exactly with the graphed dips in measured CPU usage.

These remaining variations in measured idle time present still pose some problems for the middleware determi-

nation of when to raise application levels. In particular, the target utilization has to leave at least 10% overhead to

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

F
ra

ct
io

n
of

 C
P

U

Time (1/10 second)

Application 1
Application 2

Sum
Idle

Figure 14: Measured CPU Usage with
Synchronized Measurements

25

account for the measurement inaccuracies. However, this is significantly better than the 35-40% overhead that

would be needed without the modifications.

6.2. Issue 2: Inaccurate Resource Usage Estimates
Another problem with raising levels occurs when the application resource usage estimates are inaccurate, in

which case instability problems can occur. With underestimates the system may fail to stabilize at all. Specifically,

the system may believe it can raise an application level but, because the application will use more resources than it

indicated, such a change is not actually feasible. As a result, the system will make the change, one or more applica-

tions will miss deadlines, the system will lower the level of some application, and the cycle will repeat. With over-

estimates the system may stabilize, but at a lower utilization and benefit than is actually achievable.

There are several reasons why the estimates might be inaccurate. One reason is that the measurements used to

calculate the resource usage were simply faulty. A second possible cause of errors is that the measurements were

made on a different machine or architecture than the one on which the application is being run. The estimates could

also be inaccurate because of an inherent difficulty in measuring the CPU usage of a particular application, either

because of measurement error as discussed above or because of variations in the actual amount of work done per

iteration. A final cause for inaccuracies in the CPU usage estimates is interference between running applications

e.g., through sharing a system server or resource other than the CPU.

In order to deal with these issues we have developed a technique calleddynamic estimate refinement in which

the CPU usage estimates are continuously adjusted using measurements of the actual amount of CPU time used for

each level of each application. This allows the system to adjust to the current execution parameters of each applica-

tion. The current implementation uses a weighted average of the previous estimate and the current measurement, as

follows:

current estimate = (previous estimate * weight + current measurement) / (weight + 1)

This calculation is executed each time the CPU usage is measured. The estimate is initialized to the values sup-

plied by the application. Smaller weight factors result in quickly adjusted estimates, but also display some sensitiv-

ity to transient changes in measured CPU usage. Larger weight factors slow down the adjustment process, but lead

to more stable estimates due to the relative insensitivity to transient changes in the measured CPU usage. As with

idle time measurement, the accuracy of the measurement is limited by the resolution of the CPU usage information

provided by the operating system.

Figure 15(a) shows the QoS Levels for the same two synthetic applications described in Figure 12, this time

with estimates that are 30% lower than the actual CPU usage of the applications. As can be seen, the level of appli-

cation 1 changes frequently as the DQM tries to adjust the levels to use the available resources efficiently.

Figure 15(b) shows the measured CPU usage and Figure 15(c) shows the dynamically estimated CPU usage for the

26

same experiment. Finally, Figure 15(d) shows the estimated and measured total CPU usage for the same experi-

ment. The estimated and measured CPU usage fail to match, resulting in the worst case situation described above.

Figure 16(a) shows the QoS Levels with dynamic estimate refinement. In this case, there is some level chang-

ing at the beginning, but the levels quickly stabilize as the estimates are corrected. There is a level change at sample

50, where the level of application 2 drops to 2, in response to an anomaly in the idle time measurement, but it is

immediately corrected by the level-raising algorithm. Figure 16(b) shows the measured CPU usage for the same

experiment. Note the anomalous idle time measurement at sample 50. Figure 16(c) shows the dynamically adjusted

estimated CPU usage for the same experiment. Finally, Figure 16(d) shows a comparison of the estimated and mea-

sured total CPU usage for this same run. As can be seen, the incorrect estimates cause some discrepancy between

the two numbers, but this is quickly corrected as the applications execute. By sample 33, the estimated and mea-

sured CPU usage numbers match exactly.

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

F
ra

ct
io

n
of

 C
P

U

Time (1/10 second)

Application 1
Application 2

Sum

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

F
ra

ct
io

n
of

 C
P

U

Time (1/10 second)

Estimated Usage
Measured Usage

Figure 15: Problems with Inaccurate Resource Usage Estimates

(a) QoS Levels (b) Measured CPU Usage

0

1

2

3

4

5

6

7

8

9
0 10 20 30 40 50 60 70 80

Q
oS

 L
ev

el

Time (1/10 second)

Application 1
Application 2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

F
ra

ct
io

n
of

 C
P

U

Time (1/10 second)

Application 1
Application 2

Sum
Idle

(c) Estimated CPU Usage (d) Estimated vs. Measured Total CPU Usage

27

6.3. Issue 3: Non-Compliant Applications
Concurrently executing real-time or non-real-time applications that fail to comply with the QoS Level model

can result in instability in the execution of the soft real-time applications. In a general-purpose environment, the

system will attempt to execute the soft real-time applications as well as possible within the available resources. To

the extent that this is possible, the system will do the best it can, changing application levels as necessary (see

Section 19 in Section 6.4 for an example).

In certain cases, this situation can be avoided. In dedicated systems, such as a web proxy, the applications to be

executed can be limited to only those known to be compliant. In cases where this is not possible and stable perfor-

mance is required, a resource usage enforcement mechanism such as that provided by RT Mach [25] and Rialto

[21] would be useful.

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

F
ra

ct
io

n
of

 C
P

U

Time (1/10 second)

Application 1
Application 2

Sum

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

F
ra

ct
io

n
of

 C
P

U

Time (1/10 second)

Estimated Usage
Measured Usage

Figure 16: Inaccurate Resource Usage Estimates with Dynamic Estimate Refinement

(a) QoS Levels (b) Measured CPU usage

0

1

2

3

4

5

6

7

8

9
0 10 20 30 40 50 60 70 80

Q
oS

 L
ev

el

Time (1/10 second)

Application 1
Application 2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

F
ra

ct
io

n
of

 C
P

U

Time (1/10 second)

Application 1
Application 2

Sum
Idle

(c) Estimated CPU Usage (d) Estimated vs. Measured Total CPU Usage

28

6.4. Results with Representative QoS Level Soft Real-Time Applications
In order to confirm our results the DQM we developed

two representative QoS Level soft real-time applications.

Both are mpeg players, but they differ in the way that their

real-time behavior has been softened. The first, mpeg_size,

dynamically adjusts the size of the image displayed on the

screen. Since the amount of work is related to how much

time is spent drawing the pixels on the screen, this results

in a reasonable range of CPU usage numbers over the dif-

ferent levels.

The second application, mpeg_rate, changes the frame

rate of the displayed image from 0 frames/second to 10

frames/second in 2 frame/second increments. This particu-

lar application required no algorithmic changes other than

the inclusion of the three SRL functions:dqm_init() ,

called once at the beginning of the application,

dqm_loop() , called each time through the main loop,

anddqm_exit() , called at application exit. Figure 17

shows the QoS Levels for these two applications.

Figure 18(a) shows the QoS Levels that result for these

two applications without dynamic estimate refinement and Figure 18(b) shows the QoS Levels that result for these

two applications with dynamic estimate refinement. There are a number of level-changes that occur without

Application 1 - mpeg_size
Max Benefit: 9
Max CPU Usage: 0.89
Num Levels: 8
Level CPU Benefit Period(µs)
1 1.00 1.00 100000
2 0.86 0.90 100000
3 0.73 0.80 100000
4 0.63 0.73 100000
5 0.54 0.65 100000
6 0.46 0.46 100000
7 0.40 0.40 100000
8 0.00 0.00 100000

Figure 17: Benefit Table for mpeg_size and
mpeg_rate

Application 2 - mpeg_rate
Max Benefit: 9
Max CPU Usage: 0.49
Num Levels: 6
Level CPU Benefit Period(µs)
1 1.00 1.00 100000
2 0.80 0.90 125000
3 0.60 0.75 166666
4 0.40 0.50 250000
5 0.20 0.20 500000
6 0.00 0.00 100000

0

1

2

3

4

5

6

7

8

9
0 10 20 30 40 50 60 70 80

Q
oS

 L
ev

el

Time (1/10 second)

mpeg_size
mpeg_rate

0

1

2

3

4

5

6

7

8

9
0 10 20 30 40 50 60 70 80

Q
oS

 L
ev

el

Time (1/10 second)

mpeg_size
mpeg_rate

Figure 18: QoS Levels for mpeg_size and mpeg_rate

(a) Without Dynamic Estimate Refinement (b) With Dynamic Estimate Refinement

29

dynamic estimate refinement, probably due to some inaccuracies in the CPU usage estimates. The results with

dynamic estimate refinement are significantly better.

Figure 19: shows the same two applications, this time over a

duration of approximately 15 minutes. It shows the performance

of the system over a long duration, and in the presence of non-

compliant applications. Several level changes are seen after the

initial period of instability. These are caused by the execution of

non-compliant applications (e.g., system daemons) running con-

currently. In each case, the system adjusts the levels of the appli-

cations appropriately to account for the resources used by the

non-compliant applications, then adjusts them back when the

resources are again available.

6.5. Dynamic Estimate Refinement Without Initial Estimates
Because dynamic estimate refinement was so successful in managing inaccuracies in the resource usage esti-

mates of the applications, we did some additional experimentation to determine its applicability to situations where

the applications lack initial estimates altogether. This is a highly desirable characteristic for any system that is to be

used in a general processing environment.

Figure 20(a) shows an experiment with the two applications discussed above, with zero as the initial CPU

usage estimate for all levels of both applications. The duration of the experiment is 3000 samples (5 minutes).

Using dynamic estimate refinement, the levels take some time to stabilize, reflecting the time required for all of the

estimates for the running levels to converge to the actual values. This is complicated somewhat by the fact that the

system can only measure (and therefore adjust) the currently executing level of the application. Upon determining

0

1

2

3

4

5

6

7

8

9
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Q
oS

 L
ev

el

Time (1/10 second)

mpeg_size
mpeg_rate

Figure 19: The Effect of Non-Compliant
Applications

0

1

2

3

4

5

6

7

8

9
0 500 1000 1500 2000 2500

Q
oS

 L
ev

el

Time (1/10 second)

mpeg_size
mpeg_rate

0

1

2

3

4

5

6

7

8

9
0 500 1000 1500 2000 2500

Q
oS

 L
ev

el

Time (1/10 second)

mpeg_size
mpeg_rate

Figure 20: QoS Levels for Dynamic Estimate Refinement with Approximate Initial CPU Usage Estimates

(a) Using Zero as the Initial Estimate for All Levels (b) Using Benefit as the Initial Estimate for All Levels

30

that there are not enough resources for the current level, the DQM changes the level of the application, and then

refines the estimate for the new level. This repeats until all applications have settled on levels at which they can

execute without missing deadlines. In this example, it takes 85 samples (8.5 seconds, or approximately the entire

duration of the previous examples) for the estimates to converge and the levels to stabilize.

Figure 20(b) shows the same experiment, but using relative benefit as the initial CPU usage estimates. While

this estimation method is unlikely to be exactly correct, it is likely to result in estimates that are far closer to correct

that simply assuming all levels use no CPU at all. Furthermore, since benefit and CPU usage are both monotoni-

cally decreasing, and the benefit to the user is always somewhat proportional to the CPU cycles allocated to the

application, benefit is a reasonable, although very rough, estimate in the case where no initial CPU usage estimates

are available. Consequently, in this example the estimates converge and the system stabilizes in 30 samples (3 sec-

onds), significantly better than was achieved using zero as the initial estimate for all levels.

7. Summary and Conclusion

This work presented in this paper represents several significant contributions to the state-of-the-art in soft real-

time processing:

• Development of the QoS Level model of soft real-time. Starting with the basic idea proposed by Tokuda

and Kitayama [35], QoS Levels were evolved and significant issues examined and resolved

• Separation of soft real-time policy from soft real-time mechanism. In evolving QoS Levels, this work

demonstrates the feasibility and utility of a policy-independent soft real-time mechanism.

• Demonstration of the feasibility of cooperative middleware-only soft real-time. This work demon-

strates that middleware-only soft real-time systems built on top of best-effort operating systems are feasi-

ble and examines some of the important issues that arise in such a system.

• Development of Dynamic Estimate Refinement. This study introduces dynamic estimate refinement to

deal with inaccurate resource usage estimates that can arise from inaccurate measurements, changing

resource requirements, different run-time architectures, and interapplication competition for unaccounted

for resources.

• Development of a robust soft real-time system. This research demonstrates the feasibility of running soft

real-time applications without detaileda priori application knowledge. In particular, the system runs well

without anya priori knowledge about the application resource usage.

• Experimental validation of all concepts. The ideas presented in this paper are validated in the context of

a soft real-time system. Both actual and synthetic soft real-time applications were used to exercise the sys-

tem and results were gathered by executing the system.

This work has extended and exploited the notion of QoS Level soft real-time, and in so doing has resulted in

the development of a new system for soft real-time system developers. QoS Level soft real-time has been demon-

31

strated to be a feasible and natural method for supporting soft real-time processing, even in middleware-only

implementations. This is especially important in dynamic soft real-time systems where the application mix is not

known beforehand. Unlike hard real-time systems where the application mix and all of the resource needs of the

applications are known at development time, desktop soft real-time systems must function in environments where

nothing is known about the applications until runtime. QoS Levels provide one mechanism for allowing the system

to learn about the applications at runtime and make reasonable resource allocation decisions based on that informa-

tion.

QoS Levels also separate the soft real-time mechanism from the soft real-time policy. By requiring only that

the application developer characterize the resource usage at each level and imposing no other constraints on the

algorithm employed by the application at each level, QoS Levels place no limitations on the way in which the

applications actually implement the levels and change their resource usage between levels. This is an important dis-

tinction from other implemented soft real-time systems, all of which either leave the issue unexamined, or impose

a particular soft real-time policy.

This work has also demonstrated that QoS Level soft real-time is feasible in a middleware-only implementa-

tion. This new result is highly significant inasmuch as it was previously generally believed that best-effort schedul-

ing is inadequate to support soft real-time processing [28]. However, this study has demonstrated that by having the

applications cooperatively reduce their resource usage, it is possible to have multiple soft real-time applications

executing concurrently on a best-effort operating systems without missing deadlines. Furthermore, this work has

demonstrated that is possible to do so with very high utilization, approaching 100%.

Our work on different resource usage algorithms has shown the feasibility of a variety of different resource

usage algorithms. It has demonstrated that centralized resource management algorithms perform somewhat better

than distributed algorithms, by about 15% with respect to benefit, but that all algorithms result in high resource uti-

lization.

Dynamic estimate refinement has been shown to be highly effective in dealing with inaccurate resource usage

estimates, and even in situations lacking initial resource usage estimates altogether -- a previously unpublished

result. By dynamically measuring the resource usage of the applications and correcting them with simple weighted

averaging techniques, dynamic estimate refinement quickly corrects inaccurate resource usage estimates and dra-

matically improves application stability and overall system CPU utilization, and thereby also increases overall sys-

tem benefit.

In addition to dynamic estimate refinement, this work presented a variety of techniques for managing issues

that arise in the context of a non-soft real-time platform. Specifically, techniques were presented for dealing with

inaccurate resource usage measurement issues, including lowering target utilization, synchronizing resource usage

32

measurement with application periods, and averaging the measurements over multiple periods to get higher accu-

racy.

A discussion of the limitations of the middleware approach was also presented. One of the primary goals of

this research was to discover the OS requirements of such an approach by pushing the middleware implementation

until hard limitations were discovered that could not be solved without adding additional services to the operating

system. Resource usage measurement inaccuracies were somewhat difficult to surmount, and finer granularity of

measurement would certainly have helped, but using the techniques discussed above, this limitation was overcome

without having to change the OS. The one limitation that is insurmountable in a middleware-only implementation

on a general-purpose OS is dealing completely with applications that do not comply with the QoS Level model.

These can be best-effort applications unaware of the existence of the middleware soft real-time system, broken

applications that appear to comply but actually do not (some of which can be handled with dynamic estimate

refinement), or rogue applications that intentionally consume more resources than they have requested or been

granted. While these issues can be dealt with effectively in a dedicated system (such as an soft real-time web

proxy), they are very difficult to manage in a general-purpose environment. The simplest mechanism for dealing

with such applications is a resource usage enforcer. Several systems such as RT-Mach with Reserves [25] and

Rialto [21] provide mechanisms for enforcing the resource usage of applications, and the system presented herein

should run well on top of such a system.

All of the results presented in this paper were gathered from real systems and validated with real soft real-time

applications. These results are reliable and not subject to the problems that sometimes arise with untested theoreti-

cal results. Most of the experiments were conducted on Solaris and Linux, two different implementations of UNIX.

Other than performance differences between the two OS platforms and minor API differences requiring minor

rewriting of some of the software, no differences were noted in the results gathered on the two systems.

7.1. Future Work
This work has spawned many research ideas: There is ample reason to believe that the system will work well

on top of an OS the enforces resource usage, e.g., RT Mach or Rialto. One avenue for future work is to port the sys-

tem to such a platform, noting the changes that will have to take place to operate in such an environment, and run

the system. Providing a dynamic QoS manager for such an environment will be a significant result in and of itself,

and a comparison of the performance of applications and allocation algorithms in such an environment with the

results generated on best-effort systems would be valuable contribution to the field.

This work showed some of the strengths and weakness of various allocation algorithms including distributed

versus centralized resource management, brute force optimal vs. approximation algorithms, etc., but is not conclu-

sive as to what is the best possible resource allocation algorithm. Since the general resource allocation algorithm is

33

known to be NP-complete, we derived metrics for comparing algorithm performance in other work [4]. However,

this work pointed out the need for additional refinement and analysis of allocation algorithms.

Given the high degree of similarity between soft real-time and networked QoS, there is a number of obvious

applications of this work to networking. Other researchers are exploring similar approaches to networked (e.g.,

[23] and [26]). Thus, there is every reason to believe that the application of the techniques, algorithms, and theory

developed in this context could be applied to the domain of networked QoS.

Finally, this work has dealt with a single resource, CPU usage. A fully general solution to this problem must

necessarily take into account all relevant resources simultaneously. This includes CPU and network bandwidth, and

may also include memory, secondary storage resources, video processing, etc. Resource allocation theory provides

a general model for multi-resource problems, but these algorithms are even more complicated than the single-

resource versions and are even more infeasible for run-time resource allocation decision-making in real systems.

Simple multi-resource decision-making algorithms will have to be developed before this will be feasible.

8. References

[1] T. Abdelzaher, E. Atkins, and K. Shin, “QoS Negotiation in Real-Time Systems and its Application to
Automated Flight Control,”Proceedings of the 3rd IEEE Real-Time Technology and Applications Sympo-
sium, June 1997.

[2] T. Abdelzaher and K. Shin, “End-host Architecture for QoS-Adaptive Communication”,Proceedings of
the 4th IEEE Real-Time Technology and Applications Symposium, June 1998.

[3] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, Resource ReSerVation Protocol (RSVP) - Ver-
sion 1 Functional Specification,RFC 2205, September 1997.

[4] S. Brandt, “Dynamic Soft Real-Time Processing with QoS Level Resource Management”, Ph.D. Thesis,
University of Colorado, July 1999.

[5] S. Brandt, G. Nutt, T. Berk, and J. Mankovich, “A Dynamic Quality of Service Middleware Agent for
Mediating Application Resource Usage”,Proceedings of the 19th IEEE Real-Time Systems Symposium,
December 1998.

[6] S. Brandt, G. Nutt, T. Berk, and M. Humphrey, “Soft Real-Time Application Execution with Dynamic
Quality of Service Assurance”,Proceedings of the 6th IEEE/IFIP International Workshop on Quality of
Service, May 1998.

[7] S. Brandt, G. Nutt, and K. Klingenstein, “A Discrete and Dynamic Approach to Application/Operating
System QoS Resource Management”,Proceedings of the 1st Internet2 Joint Application/Engineering QoS
Workshop, May 1998.

[8] K. Chen and P. Muhlethaler, “A Scheduling Algorithm for Tasks Described by Time Value Function”,
Real-Time Systems, Vol. 10, 1996.

[9] H. Chu and K. Nahrstedt, “A Soft Real Time Scheduling Server in UNIX Operating System”,Proceedings
of the European Workshop on Interactive Distributed Multimedia Systems and Telecommunication Ser-

34

vices, September 1997.

[10] C. Compton and D. Tennenhouse, “Collaborative Load Shedding”,Proceedings of the Workshop on the
Role of Real-Time in Multimedia/Interactive Computing Systems, November 1993.

[11] C. Fan, “Realizing a Soft Real-Time Framework for Supporting Distributed Multimedia Applications”,
Proceedings of the 5th IEEE Workshop on the Future Trends of Distributed Computing Systems, August
1995.

[12] W. Feng and J. Liu, “Algorithms for Scheduling Real-Time Tasks with Input Error and End-to-End Dead-
lines”, IEEE Transactions on Software Engineering, Vol. 20, No. 2, February 1997.

[13] D. Ferrari, A. Gupta, and G. Ventre, “Distributed Advance Reservations of Real-Time Connections”,Pro-
ceedings of the 5th International Workshop on Network and Operating System Support for Digital Audio
and Video, April 1995.

[14] D. Hull, W. Feng, and J. Liu, “Operating System Support for Imprecise Computation”,Proceedings of the
AAAI Fall Symposium on Flexible Computation, November 1996.

[15] M. Humphrey, T. Berk, S. Brandt, G. Nutt, “The DQM Architecture: Middleware for Application-centered
QoS Resource Management”, Proceedings of the IEEE Workshop on Middleware for Distributed Real-
Time Systems and Services, December 1997.

[16] T. Ibaraki and N. Katoh,Resource Allocation Problems, Algorithmic Approaches, The MIT Press, Cam-
bridge, Massachusetts, 1988.

[17] K. Jeffay, F. Smith, A. Moorthy, and J. Anderson, “Proportional Share Scheduling of Operating System
Services for Real-Time Applications”,Proceedings of the 19th Real-Time Systems Symposium, December
1998.

[18] K. Jeffay and D. Bennett, “A Rate-Based Execution Abstraction for Multimedia Computing”,Proceedings
of the 5th International Workshop on Network and Operating System Support for Digital Audio and Video,
April 1995.

[19] E. Jensen, C. Locke and H. Tokuda, “A Time-Driven Scheduling Model for Real-Time Operating Sys-
tems”,Proceedings of the 6th IEEE Real-Time Systems Symposium, December 1985.

[20] C. Jones and D. Atkinson, “Development of Opinion-Based Audiovisual Quality Models for Desktop
Video-Teleconferencing”,Proceedings of the 6th International Workshop on Quality of Service, May 1998.

[21] M. Jones, D. Rosu, M. Rosu, “CPU Reservations and Time Constraints: Efficient Predictable Scheduling
of Independent Activities”,Proceedings of the 16th ACM Symposium on Operating Systems Principles,
October 1997.

[22] J. Kay and P. Lauder, “A Fair Share Scheduler”,Communications of the ACM, Vol. 31, No. 1, January
1988.

[23] R. Kravets, K. Calvert, and K. Schwan, “Payoff Adaptation of Communication for Distributed Interactive
Applications”,Journal for High Speed Networking: Special Issue on Multimedia Networking, to appear.

[24] C. Lee and D. Siewiorek, “An Approach for Quality of Service Management”, CMU Technical Report

35

#CMU-CS-98-165, October 1998.

[25] C. Mercer, S. Savage and H. Tokuda, “Processor Capacity Reserves: Operating System Support for Multi-
media Applications”,Proceedings of the International Conference on Multimedia Computing and Systems,
May 1994.

[26] K. Nahrstedt, H. Chu, S. Narayan, “QoS-aware Resource Management for Distributed Multimedia Appli-
cations”,Journal on High-Speed Networking, 1998.

[27] K. Nichols, V. Jacobson, and L. Zhang, “A Two-bit Differentiated Services Architecture for the Internet”,
Internet Draft, December 1997.

[28] J. Nieh and M. Lam, “The Design, Implementation and Evaluation of SMART: A Scheduler for Multime-
dia Applications”,Proceedings of the 16th ACM Symposium on Operating Systems Principles, October
1997.

[29] G. Nutt, S. Brandt, A. Griff, S. Siewert, T. Berk, and M. Humphrey, “Dynamically Negotiated Resource
Management for Data Intensive Application Suites”,IEEE Transactions on Knowledge and Data Engi-
neering, to appear.

[30] R. Rajkumar, C. Lee, J. Lehoczky and D. Siewiorek, “A Resource Allocation Model for QoS Manage-
ment”,Proceedings of the 18th IEEE Real-Time Systems Symposium, December 1997.

[31] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “Practical Solutions for QoS-Based Resource Alloca-
tions”, Proceedings of the 19th IEEE Real-Time Systems Symposium, December 1998.

[32] S. Smith,The Scientist and Engineer’s Guide to Digital Signal Processing, California Technical Publish-
ing, 1997.

[33] D. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and J. Walpole, “A Feedback-Driven Proportion
Allocator for Real-Rate Scheduling”,Proceedings of the 3rd Symposium on Operating Systems Design and
Implementation, 1999.

[34] B. Teitelbaum, J. Sikora, and T. Hanss, “Quality of Service for Internet2”,Proceedings of the 1st Internet2
Joint Application/Engineering Workshop, May 1998.

[35] H. Tokuda and T. Kitayama, “Dynamic QoS Control based on Real-Time Threads”,Proceedings of the 3rd

International Workshop on Network and Operating Systems Support for Digital Audio and Video, Novem-
ber 1993.

[36] H. Tokuda, T. Nakajima and P. Rao, “Real-Time Mach: Towards a Predictable Real-Time System”,Pro-
ceedings of USENIX Mach Workshop, October 1990.

