Parallel Processing Letters Vol. 9 No. 2 (1999) 215-225
© World Scientific Publishing Company

BINARY VERSION MANAGEMENT FOR
COMPUTATIONAL GRIDS

JEFFREY K. HOLLINGSWORTH
Computer Science Department, University of Maryland, College Park, MD 20742
hollings@cs.umd. edu

ETHAN L. MILLER and KENNEDY AKALA
Computer Science & Electrical Engineering Department
University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250

{elm,kakala1} @csee.umbc.edu

Received September 1998
Revised March 1999
Accepted by B. Tourancheau and J. Dongarra

ABSTRACT

Applications are no longer monolithic files, but rather a collection of dynamically linked libraries, images, Jonts,
etc. For such applications to function correctly, all of the required files must be available and be the correct
version. Missing files preclude application execution, and incorrect versions lead to mysterious and frustrating
failures. This paper describes a simple scheme to address this problem: Content-Derived Names (CDNs). CDNs use
digital signatures to automatically and uniquely name specific versions of files. Because Content-Derived Names
are computed using a cryptographically strong hash over the fext of a package, this process is safe from spoofing
and other attacks based on providing the wrong library. We explain how CDNs ease the management of application
distribution for clusters and grids. We also describe a prototype implementation of CDNs for the Tcl programming
language.

1. Introduction

The proliferation of complex software libraries has made development easier by providing high-
level functionality to application programmers. However, these libraries also complicate matters by
introducing potential incompatibilities between an application and the packages that it wants to use. This
paper discusses a technique to manage the components of applications that eases the distribution of large
applications and allows the inclusion of two different versions of the same library, as may be required by
large applications that include packages that themselves require packages. Additionally, Content-Derived
Names permit applications to automatically download nceded packages over the network, even from
untrusted hosts, and insert them into running code.

In addition to making distribution of applications much easier, Content-Derived Naming permits
many versions of packages to coexist on a single machine. The dypamic library facility of inany Unix
operating systems currently allows this, but only supports exact or later than testing for package version
numbers. In our experience, however, the latter approach is dangerous; often, changes in a library from
version 2.0 to 2.1 break some applications that used the earlier version. In such a case, the application
designer is deluged with requests to squash bugs. Using our system, a developer can supply an application
and specify exactly which packages and files must be used with it. Since the developer controls the
environment more precisely, they are better able to test the application’s behavior.

For a computational grid, maintaining software configurations becomes even more complicated.
A single application might run on many different computers that are distributed both geographically and
administratively. If even one site has the wrong version of the software, the application execution can fail
and may waste significant computational resources at the same time. For this type of environment, a
mechanism to verify and install missing application components is critical.

Content-Derived Names are computed by hashing the contents of a file using a secure hash such
as MD5 [7] or SHA-1 [1] and recording the (relatively short) result in the file that uses the package. Itisa
simple matter for our tool to recompute the hash valae before importing a file, guaranteeing that the
application is indeed using the appropriate file. We presented the original concept for Content-Derived

215

216 J. K. Hollingsworth, E. L. Miller & K. Akala

Names in [3]. This paper provides the first description of an actual implementation of the idea. Also, we
explain how the concept would be useful for a computational grid.

2. Background

While the idea of using Content-Derived Names (CDNs) for configuration management of
executable code is new, there has been previous work in the areas of using explicitly managed version
numbers to provide configuration management. Our work builds on this as well as research in sccure hash
functions.

2.1 Configuration Management

Most of the rosearch in configuration management has concentrated on managing the construction
of applications from a source code repository. This approach can work well with object code binaries,
producing a single monolithic executable object that may be distributed. If this is the case, there is no
need for further management of multiple versions of the same code. While the software developer must
keep track of many versions of code, the end user need not. As a result, much commercial software is
distributed this way.

Increasingly, however, software developers are providing their applications as a collection of
code objects. The use of dynamically linked libraries in Unix, MacOS, and Windows facilitates this
modular approach. With script-based languages such as Tcl and Java, though, distribution of applications
as dozens or hundreds of individual files is practically guaranteed. Managing these files can cause subtle
and frustrating failures, as many users have experienced when installing programs on their personal
computers. Each application provides the libraries that it nceds in the versions that it prefers, overwriting
any existing versions of the libraries. Of course, this approach causes some existing programs to fail
because their preferred version of the library has been erased by a later installation. Van der Hoek, et. al.
[9] addressed this problem of “software release management” by suggesting a system to support software
acquisition by ensuring that the correct versions of dependent packages are acquired with the primary
package. However, their approach relies on a centralized software repository and explicit administration
of version numbers for all packages. In contrast, our approach is completely decentralized and allows
anyone to install a new application by simply entering a short (less than 50 characters) string of
hexadecimal digits and a location from which to retrieve the object.

2.2 Secure Hash Functions

A key feature of Content-Derived Names is the use of a secure hash function to assign a unique
name to an object based solely on its content. Digital signature algorithms such as MD5 [7] and SHA-1 [1]
are one-way functions that take arbitrary data and produce a result that is very likely to be different from
that of any other (different) input sequence. Our implementation uses MD5 to generate CDN's, but other
algorithms could easily be substituted.

Because it is NP-hard to find another object that produces the same digital signature as a given
object, it is unlikely that two objects will have the same signature, either by chance or by malicious
construction of an object. For the 128-bit signature provided by MDS3, the chance of two objects out of
10" of having the same signature is approximately 10", By increasing the signature length to 256 bits,
the chance of collision drops to 10 for 10°° unique objects [3].

The use of secure hash functions provides another benefit beyond conflict-free naming, however.
It allows applications to ensure that the code they are loading is authentic, preventing the introduction of
Trojan horses. This concept is also discussed by Moore{5]. If a developer has a virus-free environment
{and we hope that they do), the hash values that they compute will be those for correctly working code. If
a virus later infects any piece of code, the secure hash will change and the loader wili be able to reject the
package, instead choosing to download a new version from the network.

Binary Version Management for Computational Grids 217

3. Content Naming Explained

Many existing implementations of dynamic libraries have a mechanism to accommodate
packages with different version numbers that permits applications to request a package with a specific
version number or any version number later than a specific version. In fact, most of these systems include
a two-level namespace based on major and minor version numbers. A major version number is
incremented when an “incompatible” change is made to the library, and a minor version number is
incremented with each release that is supposed to be compatible. A piece of code may request a library
cither implicitly (by having been linked with a specific dynamic library) or explicitly via a call to a
dlopen statement. In either case, the system searches through a list of directories for an entry that
provides the correct major version of library and then the latest minor version. While this approach can
work with well-behaved libraries, it presents several difficulties. First, users must make sure that all files
are available before running the application. While this might be clumsy, if manageable, on a single
system, extending this model to a computational grid with many semi-autonomous nodes is problematic.
Library availability is only the start, though. Another issue is version management. Use of versions
greater than the one with which the application was tested can cause bugs in a program. While developers
would like to think that version 2.2 is fully backward compatible with version 2.1, this is often not the
case.

To address this problem, developers who care if their code works, only issue major version
numbers, allowing them to test their code with all of the files that it will use. This approach introduces
another problem, however. With complex code, it is possible that a single application may require two
versions of a single package. The high-level code may not even be aware of this conflict if two packages
themselves cach require a different version of the same lower-evel package, as shown in Figure 1. The
developer of the root object may not even know of the conflict if she received the code for the two top-
level packages from different sources. This can also introduce naming problems for unwary code
designers because it requires that every version of a package have a unique file name. Of course, this can
be done by appending the version number to every file in a package, leading to the problem of deleting
old files when the package using them is gone. Figure 1 shows an example of an application built using
two libraries: a mesh library and a sparse matrix library. Both these packages use versions of the a
common linear algebra package. However, each one uses a different version of the library.

Application

Sparse Matrix
Library

Mesh Library

Linear Algebra
Package v2.0

Linear Algebra
Package v3.0

Figure 1 : Package requirement conflicts in a complex application.

The basic concept underlying content-naming is that a complex software installation can be
thought of as a directed graph of procedure calls, and that procedures are grouped together into packages.
The user does not care about internal package names; names are for the convenience of developers only.

218 J. K. Hollingsworth, E. L. Miller & K. Akala

While external function names are important to those using a package, the name of the package itself is
still largely irrelevant. A CDN provides all of its benefits by converting a package name from a name and
version number meaningful to a developer into a Content-Derived Name that can be used to check library
integrity and support secure remote retrieval. Since this name is probabilistically guaranteed not to
conflict with other library names, it may be shared between different computers without fear of name
duplication.

The overall structure of an object in our scheme is shown in Figure 2. An object consists of the
object body, external object references, customization region, and its CDN. The object body contains the
majority of the object, including its executable code. References to other objects or customization data are
represented as pointers to the appropriate section of the object. Each object reference can be a list of
CDNs for equivalent objects. Although this information is immutable, it needs to be in a designated
section of an object so that the object manipulation routines can identify an object's external object
references. The customization region has two sections. One to store customized references to other
objects and the second to store free format data. The only requirement is that pointers from the object
body can't be modified due to customization since this would change the object’s CDN.

[Afternative object

: references

Object Body ,,4'

. R

' ——1

' =,

— .

! ’

Object - - —
References - ——-—"—‘ 1

1

! \l ~J

} """"" \\

! Other objects named
' - ™~ CDNs
Customization

Area

1

] — > P)

, Customized

' Cbject - - e

1 References

1 =

Figure 2: Layout for an object using CDNs.

4. Advantage of Content-Naming

In this section, we describe some of the advantage of using CDNs relative to using other
approaches to version management and network software distribution.

4.1 File System Independence

A tedious aspect of installing software packages and libraries is managing the directories that they
will be installed in. Many sites have developed their own (often incompatible) conventions for naming
directories that contain software. For example, some sites put each package in a separate directory, others
use common directories. Some sites install software with the version number as part of the directory
name, or install different versions of software in different subdirectories grouped by application. By
assigning Content-Derived Names, we guarantee that each version of each package has a unique name.
Thus, we can store all packages in a single directory with no fear of name conflicts. Because all package

Binary Version Management for Computational Grids 219

files reside in a single directory, the application will work regardless of what that directory is actually
named. There is no need to embed directory information directly or indirectly into programs; instead, the
CDN system has a single directory in which it looks for components.

Of course, the efficiency of a file system may drop when handling directories with potentially
thousands of files, but this problem has been solved by using B+ trees for directory lookup in recent file
systems such as SGI’s XFS[8] and Microsoft’s NTFS[6]. Placing all installed libraries in one directory
eliminates the need for users to specify information about where the software packages will reside, and
mabkes it simpler for designers to test the software because they no longer have to worry about users with
different package search paths. For computational grids, eliminating the need to manage directory-naming
conventions among different sites greatly eases the process of ensuring that applications can run at
different locations.

4.2 Locating Software Components

One of the best feature of the CDN systems is that it permits automatic downloading of missing
software compoents. If a required package is not found in the single directory that holds CDN-named
packages, it may be fetched from a remote Web server using HTTP. This can be done without the user’s
knowledge; the only evidence that the network was consulted is the increased delay. For computational
grids, this allows applications to automatically install packages when an application that needs them starts
to execute on a node.!

When an attempt is made to load a library, the system first looks in the directories specified for
conent named files on the local system. If the library is not found there, it proceeds to query each of the
URLs contained in a list of likely download sites. This list is searched in order, so a site may put its own
package cache server first before more comprehensive, but more distant caches. Additionally,
applications can augment the site list, enabling an application to specify a Web server from which its
component packages may be obtained.

By using this two-level approach, a site may maintain a cache of packages for use by many
machines at the site. If the object is not available there, our system can go to either a public server with
many packages (perhaps a version of netlib or the High-Performance Software Exchange) or to the
developer’s own site to download the required files.

The integrity of packages found on the Web is of utmost concern because it is far too easy to
implement a trojan horse. Thus, our system checks the integrity of any downloaded. If an integrity check
fails, the package is treated as if it were never there, and other servers will be consulted to determine if
they contain a valid copy of the file. If no valid copy of the file is found locally or on any server, and error
is reported.

5. Tcl Prototype

To demonstrate the ideas of Content-Derived Naming, we have created a prototype
implementation that works with the Tcl programming language. Tcl is a widely used scripting language
that has been used to build a varicty of applications. In addition, many libraries (called packages) exist
that provide useful functionality. As a result, package management in Tcl is similar that that of compiled
binaries. We selected Tcl as our initial implementation platform since as a freely available scripting
language, the details of implementation were easier than if we used native binary programs. Our
prototype, called tedn, has been used to convert several applications, and the software is available for
downloading from the Intemet (http://www.csee.umbc.edu/~elm/Projects/CDN/).

! Software licensing issues must be handled However, they would also need to be handled if traditional naming were employed.

220 J. K. Hollingsworth, E. L. Miller & K. Akala

5.1 Existing Tcl Version Management

Tcl has a mechanism to accommodate packages with different version numbers that permits
applications to request a package with a specific version number or any version number later than a
specific version. A piece of code may request a package using a package require statement; this causes
Tcl to search through the package index file for an entry that provides the package.

This index is built by searching files for package provide statements. The index file is
constructed by looking through files in the order specified by a Tcl specific variable, and it must be
constructed statically (though it could be run automatically when an unknown function is encountered).
Nonetheless, the standard Tcl approach requires that a user install all required packages before running an
application.

5.2 Design of tcdn

The goal of tcdn is to convert a directed package into a package graph using Content-Derived
Names, such as that shown in Figure 3. In this figure, a hypothetical SNMP client is shown. The
application consists of the root object (the application itself), and five packages. The graph has unique
names for all packages. Notice that both the Graphlt package and the NetObjects package use the
DrawingUtil package. However, the Graphlt package relics on version 3.0 and NetObjects uses version
5.0. By using tcdn, each package get the required version.

To see how tcdn ensures the correct versions of all packages transitively from the root object,
consider the package Graphlt. The code for Graphlt v1.2 includes tcdnpackage require statements
that reference the packages that it wuses (£b2729a8852d2clc78a8d2alf0d43£3 and
3ae6c72e98bb07£47ace823901328£6b). Since the Content-Derived Name for Graphlt-1.2 is a
cryptographic hash over its entire code, including the statements that reference the packages used by
Graphlt-1.2, it is impossible for a malicious user to change the references to the two packages without
changing the hash, and thus the CDN, of Graphlt-1.2. Thus, the CDN of each object ensures not only the
correct version of that object, but of all objects used by that object.

Root object (SNMP Client)
35f6725e03c07 c9b250d0ca2d3dc9685

Package NetObjects v-1.0
3567 25e03c¢07¢c9b250d0ca2d3dc9685

Package
3516725e03c07c9b250d0ca2d3dc9685

Package DrawingUtil v-5.
deSa8e57e68baaeBdb601¢13¢688be03

Package Graphit v-1.2
5f5df3043ea1188615eb7091bf7c7 1ea

Package 3d Utils v-6.0
©2729a8852d2¢1¢78a8d2a1f0d43f3
A\ 4
Package DrawingUtil v-3.0
3aebc72e98bb0747ace823901328f6b

Figure 3: Packages converted to tcdn format.

Binary Version Management for Computational Grids 221

More generally, the user need only trust a single Tcl package, that contains the routine that is
called to start the whole application. If the name for that object is obtained from a trusted source (perhaps
as part of a financial transaction in which a user purchases the software), the user can obtain the root
object itself, as well as all objects it requires, from any computer willing to provide them. If the user does
not trust other servers they can check the cryptographic hash of a downloaded object against the name she
provided. If they do not match, the object is faulty.

5.3 What the Developer Sees

Developers need not radically change the way they write code to benefit from tcdn. Packages to
be turned into tcdn packages are written in largely the same way as normal packages. There are, however,
a few restrictions that must be followed to allow CDNs to work. The restrictions are:

o Fach package must have its own namespace. This namespace must be named so that its name
is different from that of every other package, including different versions of this package. If
two versions of a package share the same namespace, they cannot each use different versions
of underlying CDN-identified packages in a single program. Giving different versions of a
package each a unique namespace is not difficuit, however, because the version information
can be appended to the namespace name to guarantee a unique name’.

e Each package must be contained in a single file. As a result, each file must have a package
provide statement.

e Packages may not use mutual recursion. In other words, if package A requires package B,
package B may not in turn require package A. The simplest way around this problem is to
break up one of the packages into two pieces, removing the cycle in the package graph. An
alternative solution would be to combine packages A and B into a single, larger package.

Once the code is complete, a tool is used to rewrite all of the package names into Content-
Derived Names. This is accomplished using a Tel procedure with similar semantics to the function used
to build the index files used by the current Tcl loader. The routine to perform name conversion is called
as follows:

tedn: :tednify <destination> <source files...>

This command translates all of the source files named in the command, and places the resulting
CDN files into the directory named by <destination>.

After converting files with tcdnify, packages may then be distributed to other developers who can
use the package with tcdn::tcdnpackage require or to end users. Of course, this distribution may include
all of the files if desired. A distribution would include all required files if the destination were likely to
have poor or non-existent access to the Internet. A more attractive option, however, is to distribute the
package by simply providing the Content-Derived Name (the entire object can be sent, but is not
necessary) to the user. Future invocations will then automatically fetch the desired objects from either the
developers Web server or any other Web server that has a copy of the file.

5.4 Installing tedn

The tcdn package was written so that it can coexist and work with the existing package system.
The tcdn package links the two worlds, and is both a tcdn package and a regular package. In fact, it is
necessary to use the regular package mechanism to install and use the tcdn package. Traditionally,
installing software to be used by all users on a system will entail placing the package in directories where

2 Currently Tcl requires that every package have its own namespace to support its explicit version management. Our additional
restriction could be accommodated easily with a pre-processor that attaches the version number onto the package name.

222 J. K. Hollingsworth, E. L. Miller & K. Akala

writing is restricted. However, with tcdn, this is only required for the initial installation of tedn package
itself. Since the tcdn package is itself a CDN-based package, later updates can be made automatically.
Any package or application that uses the tcdn package needs to include a package require tcdn command.
Following this, the package or application can use an upgraded tcdn package if it is available by including
a tcdnpackage require statement. The semantics of using a CDN-named package will be covered shortly.
For now, the important thing to know is that the original version of the tcdn package can be replaced at
any time by a newer version if one is available.

The initial installation will also require a small amount of configuration. The only configuration
is to specify the directory where the downloaded CDN-named packages will reside. Surprisingly, the
CDN-named packages should be stored in a completely public directory, readable and writable by all.
Usually, this would be a problem because it would open the end user up to all manner of trojan horse
attacks. If tcdn were not in use and packages were stored in this manner then any user would be able to
replace a package with whatever they wanted. This would be like making /bin world writable! Tcdn
protects against this by making sure that the package an application is loading really is the right one. With
tcdn, the offending package would simply be deleted and replaced with the correct one. The details of this
process are covered in the next two sections.

Keeping packages in a public directory is an immense advantage because it allows the end user to
use an application without having to get the access required to download and install all of the packages
required by the application. It also allows the installation process to be more completely automated, thus
making distribution much easier.

5.5 Creating a CDN-Named Package

The tcdn librafy was designed so that it would be easy for newly CDN-named packages to be
created. The goal here is to make things simple so that the programmer will not have to go to
unreasonable lengths to create a CDN-named package.

There are several conventions that must be followed when creating a package. CDN-named
packages should contain a single package provide statement. The name of the package does not matter
because it will be removed. This is necessary to allow for the conversion of multiple packages with
multiple files each at the same time. Global variables should, of course, be avoided. Namespaces are not
required, but they are recommended. If no namespaces are used, tcdn cannot ensure that the correct
version of required packages are loaded for the same reason that vanilla Tcl cannot do so. Care must be
taken when naming namespaces, as namespace collisions can still occur. The easiest method of assuring a
unique namespace is to append the version number of the package to its name and use that as the
namespace name. Following this short list of rules should be easy, as it allows the programmer to create
packages in a more normal fashion.

CDN-named packages should also contain a command named tcdnlnit. This command should
exist in the global namespace. The purpose of this command is to allow the package to do initialization if
it needs to. Remember, a package may not have existed on a system prior to the first time it is used. The
tednInit command will allow the package to perform any setup that it needs to. If the package does not
need to perform any special setup then the command can be left out. The command is executed right after
the package is loaded and before control returns to the application. It is very important that the command
have as few side affects as possbile, because it will be running in the context of the application.

CDN-named packages should store their configuration information in the user’s directory. This is
just like storing user options, and in fact just adds global options. The tcdninit command should check for
this configuration information before creating it or asking for it. The package programmer should make
sure that this information will not take up too much space, and should also insure that any errors in its
creation or reading will be handled without crashing the application. This requirement is not unique to
tedn, since no one would want to use a regular package that caused applications to crash.

Binary Version Management for Computational Grids 223

Using another regular package in a CDN-named package is simple. The programmer just inserts
package require statements as usual. Of course, the package being requested must exist on the system
where the package is used or the package require command will fail. Using a package in this way may be
necessary sometimes, especially since not all packages may be available as CDN-named packages. If
CDN-named packages were used all around then the normal package mechanism could be replaced
completely, but until then CDN-named packages may require a regular package every now and then.

Using a CDN-named package is just as simple. Tcdn provides a tcdnpackage require statement
that handles the loading of CDN-named packages. In this case the requested package does not need to
exist on the system at all, because tcdn will find and download it when it is needed. This frees the
programmer from having to specify what packages are needed in order to be able to use their package.
With tedn the end user does not have to manually download the needed packages or even install them.

Once written, a CDN-named package must be converted. Tedn was written as a library, so anyone
can create an application that does the actual conversion. This was done so that the process could be as
flexible as possible. To make simple conversion easy, tedn provides a tednify command to do this
conversion. The tcdnify command works on properly written regular packages that are to be converted to
CDN-named packages. It strips the package of package provide statements and resolves any package
interdependencies which may exist between packages being converted at the same time. It then outputs
the CDN-named package with the correct Content-Derived Name as the file name. The current version of
tedn does this because it is assumed that programmers will be more comfortable with creating packages in
the manner they have been used to. Future versions will provide a mechanism for simply generating the
pame of a package that has been written as a CDN-named package from the beginning.

5.6 The tcdnify Process

The tednify procedure has three steps. First, it creates a list of packages, resolving any source
statements it finds. Next, it orders the packages by their dependencies on cach other. If package A
requires package B, then package B must be converted first because the secure hash for package A
depends on the Content-Derived Name for package B. A sample dependency graph for the packages listed
in Figures 1 and 2 is shown in Figure 3. The order in which files are processed is noted next to each file.
Note that, in all cases, a package is processed after all of its children have been processed.

Once the files have been ordered, tcdnify runs through a loop for each package in order. For each
package, all package require statements are converted to tcdnpackage require statements with the
appropriate CDNs, and then the entire file is hashed with MD5. The result is stored in the specified
destination directory.

Perhaps the most difficult part of this process is ordering the packages by their dependencics.
While this could have been left out by simply requiring the user to convert a single package at a time, we
felt that it was important to make the process as automatic as possible. As a result, a developer need only
run tednify on an entire project to prepare it for distribution. Once this has been done, the resulting files
can be made available for distribution via http or fip, with only the root object distributed to potential
users.

5.7 Using a CDN-Named Package

The user’s view of a large Tcl application is greatly simplified using tedn. Rather than having to
download and place dozens of files, some of which may overwrite previous files, users simply request a
single object that automatically fetches other objects over the Web. There is no longer a need to add a
new directory to the package search path for the new application, and users who prefer the old package
may continue to use it with no naming conflicts.

224 J. K. Hollingsworth, E. L. Miller & K. Akala

Using a CDN package is easy. Because tcdn is not the primary package mechanism the
application will need to have a package require tcdn command. This will load tcdn and all of its
commands. From here all that is needed is a cdnpackage require statement for each CDN-named
package that will be used. After this the process is automatic.

If the CDN-named package is located on the system it is checked and then loaded. The check
involves regenerating the Content-Derived Name. The generated name is then compared with the
requested name. If the two match then the package has been located and verified and can be loaded. If the
two do not match, then it is assumed that the package file is corrupt and it is thrown away. If there are
other directories to search, then this process is repeated for each of them. If not, the package must be
retrieved from a server.

The loading process for remote CDN-named packages is similar to the loading process for local
packages. Each server is queried in tum for the desired package. Tcdn has been written so that different
protocols can be used for each server. If none of the available servers returns the desired cdn package then
the cdnpackage require command fails. This is not a normal situation, and would only happen if the
network was unavailable or some other occurrence somehow prevented access. Usually, at least one
server will return the requested package. The Content-Derived Name is then verified, just as it would be if
it were local. If the generated CDN matches the requested CDN then the package file is usable and can be
saved. If not, the package is discarded and the process continues.

6. Future Directions

Having demonstrated the usefulness of CDNs in Tcl, we hope to extend our work to other
languages. In particular, we are building similar functionality into the dynamic library loaders for
Windows NT and Linux, allowing them to reap the benefits of automatic installation of software
packages. Doing so will also provide an additional benefit: the ability to dynamically load binary libraries
into Tcl.

This technology should also be applicable to Java (2], providing additional security for complex
applications at little overhead. Rather than authenticate all applets, requiring a relatively expensive check
for each small piece of code, our system requires only that a root object be authenticated. Once this is
done, the integrity of the objects immediately below the root is ensured because their names are
embedded in the authenticated objects. This can transitively be applied to the entire dependency graph,
allowing a computer to check most applet code locally without relying on external certificate providers.

Content-Derived Names are also useful in supporting software checkpoint and migration. For
example, the Condor system([4] currently copies the full versions of all shared libraries when applications
are migrated to new nodes. This is done to ensure that the correct version of the library is available on the
target node. Since Condor uses checkpoints to move processes to non-idle nodes, the application may be
stopped during execution of a call to a shared library. Also, libraries may contain state. As a result, when
a program is restarted, the exact version must be used on the new node. CDNs provide exactly the
semantics required for this environment, and could allow condor to migrate libraries only when they are
not available at the target node. We are currently discussing the possibility of using CDNs as part of the
Condor system.

7. Conclusions

This paper has presented Contend-Derived Naming, an approach to binary version management
that has several advantages over current management methods: freedom from version conflicts, integrity
checking for packages, and the ability to dynamically download needed modules from remote sites. It is
our hope that this will ease the dynamic library miss-match problem that plagues Windows PCs, as well
as help to ease the problem of configuration management for computational grids. All that is necessary to
install an entire application is the Content-Derived Name of its root object and a location from which to

Binary Version Management for Computational Grids 225

get it; from there, everything is handled automatically. If the software is upgraded, the user need only get
a new root object from the developer, and the package dependencies are updated automaticaily.

Because CDNs can provide integrity checking and the ability to fetch missing packages from

remote server sites, we believe it will be essential for application developers who wish to make software

available via the Web.

References

1. Secure Hash Standard, FIPS-180-1, National Institute of Standards and Technology, U.S. Department of
Commerce, April 1995.

2. J. Gosling, B. Joy, and G. Steele, The Java Language Specification. 1996: Addison-Wesley.

3. J. K. Hollingsworth and E. L. Miller, "Using Content-Derived Names for Configuration Management,"
Symposium on Software Reusability (SSR). May 1997, Boston, ACM Press, pp. 104-109.

4. M. Litzkow, M. Livay, and M. Mutka, “Condor - A Hunter of Idle Workstations," International Conference
on Distributed Computing Systems. June 1988, pp. 104-111.

5. J. W. Moore, "The Use of Encryption to Ensure the Integrity of Reusable Software Components,”
International Conference on Software Reuse. Nov. 1994, Rio de Janeiro, pp. 118-123.

6. S. M. Moore, ed. Microsoft Windows NT Resource Kit. 1996, Microsoft Press: Redmond, WA. 1350.

7. R. L. Rivest, The MD5 Message-Digest Algorithm, RFC 1321, Network Working Group, April 1992

8. A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and G. Peck, "Scalability in the XFS File
System," Winter 1996 USENIX Conference. January 1996, San Diego, CA, pp. 33-44.

9, A. van der Hoek, R. S. Hall, D. Heimbigner, and A. L. Wolf, "Software Release Management," 6th

European Software Engineering Conference. Sept. 22-25, 1997, Zurich, Switzerland, pp. 159-175.

