
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profi t or commercial advantage and that copies bear this notice and the full citation on the fi rst page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee.
SCM 2005, September 5-6, 2005, Lisbon, Portugal. Copyright © 2005 ACM

Towards a Suite of Software Configuration

Management Metrics

Lars Bendix, Lorenzo Borracci

Department of Computer Science, Lund Institute of Technology,

Box 118, S-210 00 Lund, Sweden
����������������� �������������������

Abstract. Software Configuration Management (SCM) is an important support

activity in software development. However, its transparent nature as a service

that makes life easier for others and as an insurance against disasters, often

makes it difficult to justify investments in tools and processes that apparently

do not have any direct return. We have made a first step towards establishing a

model for showing the return on investment in SCM, making the costs and

benefits explicit. In this paper, we also sketch how we plan to take the next im-

portant step and establish a set of metrics that can be used to manage and tune

the SCM processes and tools.

1 Introduction

Development and maintenance of software require the use and interaction of many

disciplines and groups of people. In the CMM model Software Configuration Man-

agement (SCM) is one of the key process areas that needs to be mastered to progress

from the initial level of ad-hoc chaos to level 2 (Repeatable). However, unlike other

key process areas, such as requirement engineering, SCM is not a discipline that ends

up with a tangible product that can be weighed and judged for cost and quality. It is

transparent (service and insurance) yet vital to help other disciplines carry out their

work. Most of its benefits are “invisible” and spread over many groups (budgets),

whereas the costs are mostly explicit and placed in the SCM group. So how do we

justify initial or further investment in SCM?

It would be nice if there existed a simple model to calculate the Return On Invest-

ment (ROI) for SCM. Of previous academic work we are only aware of Larsen and

Roald [LR98], that does not give a complete model, but measures some data pre and

post implementation of an SCM tool and process. Many tool vendors have some pro-

motional material, that use a simple ROI model [Merant01], but these models are not

complete, nor are the values they claim credible. Such simple models may be ade-

quate to justify the initial introduction of SCM, but they are not sufficiently complete

to calculate the ROI of upgrading the SCM tool or introducing new SCM processes.

We want to do a more thorough analysis of the costs and benefits of investing in

SCM to get a more complete picture. We are well aware that it is very difficult to get

the full picture and that many costs and especially benefits are subjective and/or hard

to quantify. This has to be dealt with in some way in such a model. Such a ROI model

76 Lars Bendix and Lorenzo Borracci

can have many uses and must be tailored for that. In our model, we aim both at com-

panies that want to introduce SCM and at companies that want to upgrade their SCM

tool and/or processes. Our motivation for doing this is the simplicity of handling only

one model and the fact that it is indeed possible to use a complete model to establish

the costs and benefits and calculate the ROI both for initial introduction of SCM and

for later adding to a partial implementation of SCM.

However, the ROI model is not our ultimate goal. We find it more interesting to go

one step further and provide help for the SCM manager to daily monitor, manage and

tune their SCM tool and processes – and to be able to predict specific SCM costs and

benefits for projects. Therefore we are looking for a set of SCM specific metrics.

Traditionally metrics and SCM is thought of as data supplied by SCM to monitor

other software development processes and not the SCM processes. In this work in

progress, we will treat the ROI model as an intermediate result and use it as a step-

ping-stone towards uncovering a set of SCM specific metrics.

Establishing a model for calculating the ROI, as well as finding SCM specific met-

rics and benchmarks, is something that calls for both theoretical analysis and empiri-

cal validation. However, as it was also pointed out by the previous work of Larsen

and Roald [LR98], this is something that requires a long period of time and this ongo-

ing work is currently entering the phase of the empirical validation, so in this paper,

we can present only the theoretical analysis.

In the following, we first present the ROI model for SCM and the analysis that led

to it, then we outline how we intend to use the coming validation of this model to

identify a set of SCM specific metrics and benchmarks, and finally we draw our con-

clusions.

2 Step One – A Return On Investment Model

To get the broadest possible coverage of potential costs and benefits, we wanted to

analyse SCM from several different perspectives. The first – and most obvious – was

to analyse costs and benefits of the four canonical activities of SCM, as laid out by

standards like ISO 10007:2004 and ANSI/EIA-649: configuration identification,

configuration control, configuration status accounting and configuration audit. To get

a better idea of the extent of especially the benefits, we wanted to widen our analysis

and focus not only on the coding phase of software development, but cover the entire

life cycle from requirements analysis through to maintenance. Finally, we wanted to

look at the people involved with SCM tasks to be sure to get a complete coverage of

benefits and – in particular – costs.

In the following, we briefly describe the results of the analysis from each of the

three perspectives. This is followed by the presentation of the model that results from

these analyses.

77Towards a Suite of Software Confi guration Management Metrics

2.1 Analysis by SCM activities

In general, SCM is looked at as a management discipline that can help in planning

and running a project. As such, it provides a SCM plan that describes the processes

that have to be followed and a tool – or set of tools – that to some degree can auto-

mate some of these processes. The general costs that we get are those associated with

the tool(s) (licences, maintenance), the making and maintenance of SCM plans, and

the training of people to understand and follow the established processes and tool(s).

To know more about the benefits we treat each of the four activities in turn.

Configuration identification. This activity deals with the recording and communi-

cation of information of identified configuration items and the baselining of these

items. It establishes clear and effective naming conventions and how to hierarchically

structure sets of configuration items. This creates a clear navigational structure for

information retrieval and explicitly addresses traceability in different contexts.

Configuration control. Most important here are the change process and the Change

Control Board (CCB) that defines how changes are handled. This ensures that the

impact of changes is assessed and analysed, and that changes are planned and man-

aged. This allows us to trace the status of changes as well as the entire product

through its various baselines.

Configuration status accounting. This is a system of formatted reports created

based on the data available in the SCM system. The associated cost is that of creating

the original data, the benefits those of traceability and better information for manage-

ment.

Configuration audit. Audits verify the functional characteristics and the form and

fit of the product. The costs are those of carrying out the audits, the benefits are im-

proved stability and quality of baselines/releases.

2.2 Analysis by the product’s life cycle

Usually SCM is considered an activity that is aimed only at the coding phase of a

software development project. However, all phases can and should apply the configu-

ration management principles and methods to their work products. We will look at

each of the life cycle phases in turn.

Requirements. By applying SCM to the requirements phase products we can get

the same benefits (and costs) as for the Coding phase. Furthermore, we can obtain

traceability between the work products of the different phases.

Design. This phase is equivalent to the Requirements phase.

Coding. The costs are getting tool(s), processes and training in place. Benefits

come from being able to handle variations, reused code, work in parallel (and/or dis-

tributed), automated builds and facilitating the co-ordination and collaboration be-

tween programmers and teams. Furthermore, traceability, both between phases and

between versions (or variants), is a benefit.

Testing. Testers benefit from the use of documented baselines to create the builds

that are to be tested. This way is always clear exactly what is being tested.

Release. The use of documented baselines makes is possible to always recreate old

releases. Furthermore, configuration audits ensures the quality of the release.

78 Lars Bendix and Lorenzo Borracci

Maintenance. This phase probably has the most benefits from SCM. From the “in-

formation base” that SCM provides we obtain traceability and history that helps in

tracking down and removing bugs. Benefits when adding new functionality are the

same as for the coding phase.

2.3 Analysis by people involved

In the analysis so far, we have mostly looked at SCM from the company’s point of

view. In this section, we acknowledge that there are different roles that are related to

using SCM and that these roles have different interests, as is also pointed out by Hass

[Hass03].

Senior management. They share many interests and benefits with the company –

better quality of the product, faster and more flexible response to customer requests

and shorter time-to-market times.

Project management. Most benefits are related to the planning, scheduling and

managing of activities. Status accounting gives improved insight into the project

status and the use of a CCB ensures that all changes are controlled and impact ana-

lysed so they can finish in time and within budget.

Developer. As pointed out by Babich [Babich86], SCM is just as much about team

collaboration and co-ordination as it is about management. In our case, we use the

term developer in a very broad sense, as also people from other phases of the life

cycle can use SCM for “developing” their products. The concepts of baseline and

workspace allows for stability in the developer’s daily work. The flexible merging of

parallel work improves productivity, as people (or projects) do not have to wait for

each other. The possibility to return to an older version gives courage and security.

Traceability and the ability to highlight differences between two versions is a great

help both during development and in particular during maintenance (debugging).

SCM manager. The fact that this role exists, indicate that there are also personnel

costs from SCM. Someone has to take care of SCM plans and processes. Usually the

SCM manager also takes part in the CCB meetings as secretary.

2.4 The resulting model

We are now ready to put all the pieces of costs and benefits together. However, before

we can do that, we have to deal with a problem that we mentioned in the Introduction

– the fact that that many costs and benefits are subjective or/and hard to quantify.

The aspect of subjectivity has to do with the fact that often we cannot exclude the

specific context in which things are carried out. For instance, the degree of benefit we

have from being able to handle variants depends on the degree to which we actually

have to deal with variant products. Another factor that can cause problems is that it

can be difficult or impossible to quantify a certain benefit or cost. For instance it

would be difficult to quantify the actual advantage of getting to the market two

months earlier than your competition – in some cases it would be a matter of survival

of the company and as such the parameter should have an infinitely high value.

79Towards a Suite of Software Confi guration Management Metrics

Figure 1. Characterising the measurability of parameters

To reflect these difficulties, we have divided up the parameters into three catego-

ries: measurable, partially measurable and not measurable, as shown in Figure 1. Our

intention with this categorization is that the measurable parameters can be used in a

general, basic ROI model, where the values of the parameters can be taken from

common benchmarks and will vary very little from company to company. The par-

tially measurable parameters will not apply to all companies and will have values that

can vary wildly from company to company and as such has to be estimated by each

company in question. Finally, the not measurable parameters will have to be consid-

ered an added bonus to the result from actually calculating a ROI – they do not apply

to all companies and it does not make sense to try to estimate values for these parame-

ters.

Using this categorization of costs and benefits, we obtain the two-by-three matrix

of parameters shown below in Figure 2. We can see that for the costs, most are

measurable, whereas for the benefits most are not measurable. This goes for the

number of costs and benefits, not necessarily for their economical impact.

It is not a good property for a ROI model to have a high number of parameters that

are not measurable. However, our model is still preliminary and we hope to be able to

move parameters towards being measurable as we work with the empirical validation

of the model. Furthermore, we can see that for the cost side most parameters are

measurable whereas for the benefit side most parameters are not measurable. This

means that if we use only measurable and partially measurable parameters to calculate

the return on investment, we can be quite sure not to get unpleasant surprises from

“hidden” costs and expect even more benefits in addition to the calculated ROI.

The model we present in figure 2 shows only an overview of the parameters. Obvi-

ously many details will be needed about the parameters to clarify their exact nature

and definition. This can be done [Borracci05]; however, we leave it out here for rea-

sons of space.

80 Lars Bendix and Lorenzo Borracci

Measurable Partially measurable Not measurable

C
o

st
s

� Tool costs

� Licenses and maintenance

costs

� Training costs (cost of

training the system admin-

istrator and the developers

to the tool and the new

SCM processes

� Added work associated

with new SCM tasks for

the:

� Config. Manager

� Admin &

� Developer technician

� Change process may

be more complicated

(loss of time and

money waiting for

authorization, average

CCB-time)

� Loss of time for doing

the status accounting

reports (depending on

the tool and the level

of automation)

� Fear of new procedures

� Decrease of the externally

reported defects (defect re-

port arrival rate)

� Less time per bugfix

� Ability to trace the original

product through its devel-

opment

� Save time with automated

software builds

� Manage versions, parallel

work, automatic merges

� Traceability implies less

time for V&V and testing

� Decrease of number

of staff changes / help

to integrate new em-

ployees (less cost of

training a new em-

ployee)

� Allows to handle very

complex activities

(variation of a prod-

uct)

� Reusing existing code

and reducing repeti-

tive development ef-

forts

� Gain factor fixing

bugs in different vari-

ants

� Helps the maintenance

� Changes are planned,

their impact is as-

sessed

� Reducing the number

of errors

� Employees are happier

� Provides for communication

and coordination in the

group

� Pleasure of working in

stability with a baseline and

an own workspace

� Working from home and

distributed development

� Ability to bring out the

product earlier

� Decrease the time required

to respond to user requests

� Assures that the customer

gets what he paid for

� Audit at the end of each

phase assures consistency of

the work

� Provides visibility of the

project

� Achieves a sense of organi-

sation and control instead of

chaos

B
en

ef
it

s

Quantitative � Qualitative

Figure 2. The Return-On-Investment model

We have not stated an explicit formula to calculate the ROI in this paper, but have

left it at the model showing the parameters. Such a formula can be made [Borracci05],

but it becomes very complex and is probably of little use. What complicates matters

the most is that some costs and benefits are one-time (like buying the tool) or once a

year (like licenses), whereas others are daily (like the support for parallel work). Yet

others are not linear (low benefit until you get to know the tool/process). Therefore it

81Towards a Suite of Software Confi guration Management Metrics

is difficult to make a precise calculation that takes into account all these factors.

However, the previous study of Larsen and Roald [LR98] indicates that the ROI in

SCM is high enough that such a precise calculation should not be necessary to justify

the introduction of SCM tools and processes. When it comes to upgrading tools

and/or processes, the number of relevant parameters will probably be low enough to

allow a precise calculation. However, in many cases the most interesting will not be

to calculate the profitability of SCM, but rather to estimate the SCM costs of a project

as the tool(s) and processes are already given by the company standard.

In the present model, we have not considered such parameters as compliance re-

quirements and support of development methods. We believe that these are political

issues that will not be influenced by SCM economics nor by the ability or not of SCM

to support them – we may, though, be wrong about this.

3 Step Two – Looking for Metrics

Now that we have a model for the costs and benefits of SCM, we can use that model

and its parameters to arrive at what we are really looking for – a set of metrics that are

targeted specifically at measuring the SCM processes.

The project information base, that the SCM repository constitutes, is an obvious

source of data for metrics. In fact the Configuration Status Accounting activity is

mostly concerned with putting together data that can be used to monitor and manage

projects and processes. However, these metrics are mostly targeted at general soft-

ware engineering processes and very rarely are the SCM processes ever considered.

We know of only the two cases of Farah [Farah04] and Jönsson [Jönsson04] and feel

that the field needs more work to advance it to a more mature and complete state.

Just like other processes, SCM processes need to be kept an eye on and to be im-

proved. This cannot be done if we do not have data from a set of SCM specific met-

rics that can be used to measure the performance of the SCM processes. We need

information about the current state to make data-driven decisions about changes. And

we need to track our progress to be able to assess the impact of SCM process changes.

In a project course at our department [HBM05], teams have to do four releases dur-

ing the course of six XP-iterations (each iteration being 14 hours of work). We keep

an explicit SCM metric for the time it takes to produce a release (extract code from

the repository, compile it and carry out unit and acceptance tests, and put together

system, source code, manual and documentation in one package ready to ship to the

customer). The first release is done manually in 2-4 hours, teams improve for each

release and most teams have an automated forth release – with a record to beat of 38

seconds. The customers guarantee that the teams do not trade quality for speed.

A set of SCM metrics and associated benchmarks can also be used to predict SCM

costs for new projects drawing on data from old and current projects. But we need to

find and define a set of SCM metrics and to collect data. The SCM metrics will tell us

when our SCM processes are working as expected – and more importantly, the

anomalies will give us early warning about SCM processes with potential problems.

In parallel with the project where we validate the ROI model, we also intend to es-

tablish a tentative set of SCM metrics. During a longer time-span we want to experi-

82 Lars Bendix and Lorenzo Borracci

ment with those metrics to see what stories they can tell about the company’s SCM

processes and a possible change of tool. We do not expect all the parameters from our

ROI model to become useful SCM metrics – and we expect more to pop up.

Already now we have some ideas for what metrics could be used for improving the

SCM processes. The time to produce a release, as mentioned above, is just one. Oth-

ers could be: number of merge conflicts, time to do a configuration audit, accuracy of

impact analysis – and many more. However, we still need to do a lot of work here and

would like to discuss our preliminary findings and our ideas for the continued work in

a forum of experts.

4 Concluding Remarks

We have screened our proposed ROI model with the local branch of a global com-

pany. They have found it useful and want to adopt it, not for calculating the ROI of

introducing SCM as they already has that in place, but to evaluate the profitability of

proposed changes to their SCM tool and/or processes.

During the course of the model’s validation, we want to look for a set of SCM spe-

cific metrics to help manage and tune SCM processes. The empirical validation of the

ROI model will surely show that some parameters have only marginal effect and are

best left out in order to reduce the model’s complexity. We also expect new parame-

ters to emerge that we have overlooked. And finally, it is our hope that with practical

experience, we can move some of the parameters towards being more measurable.

The ROI model that we have presented is just to be considered an intermediate

step; our ultimate goal is to uncover a set of “pure” SCM specific metrics. This is

work in progress that we want to evaluate and discuss now that we are in the transi-

tion from phase one (the ROI model) to phase two (the SCM metrics).

References

[Babich86]: Wayne A. Babich: Software Configuration Management – Coordination for Team

Productivity, Addison-Wesley Publishing Company, 1986

[Borracci05]: Lorenzo Borracci: A Return on Investment Model for Software Configuration

Management, Masters Dissertation, Lund Institute of Technology, May 2005.

[Farah04]: Joe Farah: Metrics and Process Maturity, The Configuration Management Journal,

December 2004.

[Hass03]: Anne Mette Jonassen Hass: Configuration Management Principles and Practice,

Addison-Wesley Publishing Company, 2003.

[HBM05]: Görel Hedin, Lars Bendix, Boris Magnusson: Teaching eXtreme Programming to

Large Groups of Students, Journal of Systems and Software, January 2005.

[Jönsson04]: Henrik Jönsson: Graphs for Change Requests, The Configuration Management

Journal, December 2004.

[LR98]: Jens-Otto Larsen, Helge M. Roald: Introducing ClearCase as a Process Improvement

Experiment, in proceedings of the SCM-8 Symposium, Brussels, Belgium, 1998.

[Merant01]: Assessing Return on Investment for Enterprise Change Management Systems,

Merant White Paper, 2001.

