
Uniform Comparison of Data Models
Using Containment Modeling

E. James Whitehead, Jr.
University of California, Santa Cruz

Dept. of Computer Science
Santa Cruz, CA 95064

+1.831.459.1227

ejw@cs.ucsc.edu

ABSTRACT
Containment data models are a subset of entity relationship
models in which the allowed relationships are either a type of
containment, storage, or inheritance. This paper describes
containment relationships, and containment data models, applying
them to model a broad range of monolithic, link server, and
hyperbase systems, as well as the Dexter reference model, and the
WWW with WebDAV extensions. A key quality of containment
data models is their ability to model systems uniformly, allowing
a broad range of systems to be compared consistently.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical design – data models;
H.2.3 [Database Management]: Languages – data description
languages; H.3.4 [Information Storage and Retrieval]: Systems
and Software

General Terms
Design, Theory

Keywords
Containment data modeling. Hypertext data models.

1. INTRODUCTION
In our daily lives, we use containers all the time. Students use
backpacks or bags to carry their books, and travelers use suitcases
to carry their clothes. When shopping, we place our purchases
into a basket or cart, and then carry home the goods in a shopping
bag. If we drove to the store, these bags are placed in the trunk of
our car, making nested containers: goods in bag in trunk in car. In
all of these examples, the item is physically contained within the
container, and can only belong to one container at a time.

Unlike physical items, objects in a computer have the quality of
easy duplication at low to trivial cost, and this means that
computer containment is not zero-sum: the same object can
belong to multiple containers. The ease of object duplication
afforded by computers dramatically increases the utility of

containing objects using references, and holding the same object
in multiple containers.

Computer containers fill many roles, providing organization of
large collections of objects into smaller units, a form of
modularization [8], and information hiding via encapsulation
[15,29]. Containers can also be used to model compound
documents, for example, the combination of some text and image
objects to model a document containing figures. Dexter
composites exemplify this use [17]. Just as with physical
containers, computer containers are used to transport items,
examples including ZIP files, and the MIME multipart/related
packaging of documents in electronic mail [21].

It is not surprising that containers frequently appear in computer
information systems as a mechanism for grouping and organizing
data items. What is surprising is the lack of emphasis on modeling
these commonly occurring containment relationships. Ideally, we
would like to model the containment properties of hypertext
systems with a mechanism that has the following properties:

�� Uniformity: model containment properties of systems using a
minimal set of abstractions with constant meaning. Instead of
providing a normative definition of hypertext concepts, and
then mapping system abstractions into these concepts (a la
Dexter [17]), ideally we want to use atomic entities to build
up models of each system’s hypertext concepts.

�� Utility: easily answer basic hypermedia data model questions
such as, “are links to whole works, or to a subregion in a
work (i.e., is there a notion of anchoring?)”, “are links
separate from, or part of documents”, and “is there some
notion of composite?”

�� Support Analysis: be able to examine systems to tease out
different design spaces employed in each system’s data
model.

�� Graphic formalism: Communicate to a wide range of parties,
inside and outside of hypermedia community, with small
time needed to learn graphic representation, and with most
people having an intuitive understanding of the formalism.
Allow commonality among systems to be visually evident.

�� Concise format: Be able to fit the containment models of
multiple systems onto a single page or screen. This allows
more rapid comparison of system data models.

�� Cross-discipline: Can be used to model the containment
properties of other types of information systems, such as
Software Configuration Management and Document

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Hypertext ’02, June 11-15, 2002, College Park, MD.
Copyright 2002 ACM 1-58113-477-0/02/0006…$5.00.

Management systems, and compare them to hypertext
systems.

Previous work by the author introduced the concept of
containment data modeling, using it to describe the design spaces
for link and structure versioning that occur in hypertext
versioning systems [34]. The present paper significantly extends
this prior work by expanding the treatment of containment data
modeling. It then proceeds to give containment data models of a
wide range of hypertext systems, including examples of
monolithic, link server, hyperbase, open hyperbase, and hypertext
versioning systems, as well as the Dexter model [17], and
WWW/WebDAV [35]. Common features visible in the data
models of each class of systems, and across all systems, will be
discussed.

2. CONTAINMENT DATA MODELING
Modeling systems in a uniform way requires that the modeling
mechanism contain system-neutral basic modeling blocks. For
example, the links in the Dexter hypertext reference model [17]
could not be used as the basic modeling block for representing
links in all hypertext systems, since Dexter links embody specific
design choices (links contain two endpoints, where each endpoint
holds a component identifier and an anchor identifier, in the
context of a data model where the anchor is an attribute of the
component) that are not present in other systems. Neither KMS
[2] nor NoteCards [31] has a first-class anchor concept, and
mapping their links onto Dexter links requires creating pseudo-
anchors that are not present in the original system.

Ideally we want to create data models using non-hypertextual
entities that can be mapped onto hypertext system abstractions in
a direct and unforced way. To achieve this goal, extended entity-
relationship models [7], an important member of the class of
semantic data models [26,19], are the basic modeling method
used for containment data modeling of hypertext systems. Since
the notion of an entity carries with it relatively few assumptions, it
carries relatively few biases into the model. This generality of the
entity concept is what leads containment data modeling to have
the property of uniformity when modeling hypertext systems.

A desire to avoid model bias motivates the choice of modeling
entities using each system’s specific terminology. It is possible to
choose an abstract term such as “work” for the documents or
media that are linked together, and then map onto it similar terms
like document, node, component, and resource. This modeling
move would privilege the chosen definition of work, and thus
hide the differences in meaning inherent in the different terms. It
would also make it more difficult to check the correctness of a
model, since the correspondence between model entities and
entities in the original source(s) is no longer one to one. However,
using a single set of terms might improve modeling uniformity,
and ease detection of patterns within the data models. For the
present audience of hypertext researchers, we choose to model
systems using their original terms; for future, more general
audiences we will likely reverse the decision.

Entity-relationship modeling was chosen over alternatives such as
object-oriented modeling [6] due to its emphasis on static
relationships, and the fact that it does not involve modeling
behavioral aspects of systems entities, such as methods and their
parameters. Introducing methods and their parameters into the
model acts, in this case, only to obscure the key containment and

storage relationships. In the past, semantic data modeling using an
enhanced entity-relationship model was successfully employed in
developing the HB1/SP1 system [28].

The essential elements of entity-relationship data models are
entities, and relationships [26,19]. Entities signify abstractions,
such as works (documents), anchors, links, and container types.
Typed relationships exist between the entities, and this type is
either predefined, such as the “is-a” (inheritance) relationship, or
is defined by a specific model. Containment relationships are an
example of these. Graphical representations of entity-relationship
data models can be made using the intuitive notion that entities
correspond to nodes in a graph, while the relationships correspond
to arcs. This is the same intuition that underlies viewing a
hypertext as a graph, with works as nodes, and links as
relationships.

With any modeling mechanism, some elements are emphasized,
while others are abstracted away. Containment data modeling
emphasizes containment and storage relationships among
hypertext data model entities. Other important aspects of the
internals hypertext systems are not visible in these models,
including such items as scripting, search functionality, and
message passing. These additional aspects can be depicted in
other kinds of diagrams, requiring multiple diagrams to capture all
facets of a particular system.

2.1 Modeling Primitives
2.1.1 Entities
A typical entity-relationship (E-R) model uses entities to model
data items. In the traditional use of entity-relationship modeling
for databases, entities contain a series of attributes, and these
attributes are basic data types, such as integers, floating point
numbers, and strings. For example, an address entity would be
represented as containing street, city, and zip code string
attributes. When modeling hypertext systems, entities represent
abstractions such as works, anchors, and links. While the concrete
representation of anchors and links is similar in granularity to
typical entities used in database modeling, the concrete
representation of works is much larger, and can be organized
according to one of many different internal formats, such as a
word processing, spreadsheet, or bitmap image organization.
Objects, which represent works, anchors, and links, typically take
one of three organizations: all data, data plus properties, and all
properties. The data plus properties and all properties
organizations are examples of data aggregation, where the object
is composed of one or more properties, and, in the case of the data
plus properties organization, a data item representing the contents.
Departing from typical E-R diagramming convention, this
aggregation of data items is not modeled by having the properties
and contents be modeled as attributes. Instead, properties and
contents are modeled as entities, and an inclusion containment
relationship binds them to their parent entity.

Entities are also used to model high-level architectural elements,
such as a file system. These high-level architectural elements are
used when modeling storage relationships, and this use of entities
to represent architectural elements is a departure from the typical
database modeling use of E-R diagrams. Placing architectural
elements and data model elements in the same diagram combines
together two concerns that are usually separated. Architecture
diagrams usually only contain architectural elements, and do not

address data modeling issues, while data models only contain data
items, and do not address architectural issues. By combining
them, storage control choices much clearer. For example, the
defining difference between link server and hyperbase systems is
control over storage, with hyperbase systems preferentially
providing storage for works and link server systems delegating
this storage to the filesystem instead. By making storage
relationships explicit, the difference between open hyperbase and
link server systems is more visible.

Entity-relationship models have entities composed of attributes.
This has two drawbacks. One is that it privileges the entity, at the
expense of the attribute, rather than treating abstractions
uniformly. Since entities have an inclusion containment
relationship with attributes, entities are treated as the primary data
item, the thing that is described by the secondary items, the
attributes. Second, it creates a special category for the aggregation
relationship between entities and attributes, rather than treating it
as just one point in a larger design space of containment. We
prefer to treat entities and attributes the same, calling both
entities, and then explicitly model the containment relationship
between them. Hence, when creating data models for hypertext
systems, data aggregation will be represented using inclusion
containment relationships with the characteristics of single
containment, single membership, and no ordering.

In the graphical representations of data models, a rectangle will be
used to represent an entity defined by a hypertext system. An
unboxed textual label represents other entities that exist outside
the hypertext system, such as a file, or filesystem.

2.1.2 Relationships
There are three relationship types used when creating data models
of hypertext systems: containment, inheritance, and storage. In
graphical representations, an arrow-tipped line represents a
relationship. Relationships are directional, and exist in both
directions. So, for example, a container entity “contains” other
entities, which are “contained by” the container.

The containment relationship is used to represent sets of entities.
Containers have two main aspects, described below (and also
presented in [34]).

Abstract properties of the container: Qualities of the container
that are mathematic set properties, rather than properties of a
specific computer representation, these being:

�� Containment: For a given entity, the number of containers
that can hold it. Choices are: (a) single containment, an entity
belongs to just one containment set, or (b) multiple
containment, an entity belongs to multiple containment sets,

�� Membership: For a given container, the number of times it
can contain a given entity. Choices are: (a) single
membership, an entity can belong to a containment set only
once, or (b) multiple membership, an entity can belong to a
containment set multiple times, in which case the
containment set is a bag, or multiset,

�� Ordering: The persistent ordering of a container. Choices
are: (a) ordered, the entities within the containment set have
a fixed successive arrangement, or (b) unordered, the entities
have no prescribed arrangement, (c) indexed, the
arrangement is determined by a specification based on entity
values or metadata, (d) grouped, subsets of members are

ordered, but between subsets there is no ordering (e.g.,
{{a,b},{c,d,e}} or {{c,d,e},{a,b}}).

Containment type: How containment relationships are
represented: (a) inclusion, or (b) referential (both described
below).

Broadly, there are two ways to represent that a container contains
a particular entity. The container can physically include the
contained item, or it can use an identifier as a reference to its
members. The former case is known as inclusion containment, the
latter, referential. Whenever two entities have a containment
relationship between them, this relationship can be represented
using references, following the permutations of identifier storage:
the identifier can be stored on the container, on the containee, or
on both. Additionally, identifier storage can be delegated to a
separate entity, a first-class relationship. However, since the first-
class relationship is itself a container, the same permutations of
identifier storage apply between the container and one endpoint of
the relationship, and between the containee and the other
endpoint. Typically the first-class relationship holds identifiers for
both the container and containee.

Containment relationships have cardinality, depicted as numbers
or the letters M and N (more than one, or many) on the
relationship, expressing the number of entity instances that can
exist at each end of the relationship. Note that the number at the
container end of the containment relationship must agree with
whether it is single containment or multiple containment. Since
single containment indicates the entity can only be contained by a
single collection, it must be represented by a “1”, while multiple
containment is represented by M or N, reflecting that the object
can belong to multiple containers.

The inheritance, or “is-a”, relationship is used only to avoid visual
clutter due to the duplication of similar entities in the data model.
Recapitulating the complete inheritance hierarchy is not a goal,
since this is better accomplished by a separate diagram focused on
inheritance relationships. Entities inherit all of the relationships of
their parent, thus avoiding the need to duplicate all of these
relationships on each child. Following the graphical convention
given in [19], inheritance relationships are graphically represented
using a thick double line.

The storage relationship represents that a specific architectural
element provides physical storage for an entity. Storage can be
viewed as a specialized form of inclusion containment
relationship, where the containing entity is outside the set defined
by a specific hypertext system. For example, in the Intermedia
system, the filesystem provides storage for hypertext webs, and
for documents [38]. It is useful to model this fact, since webs are
stored separate from linked documents, and hence it is possible to
have multiple webs over the same set of documents. Storage
relationships are only used when the storage of entities is split
among multiple architectural elements, as in a link server system,
where objects are stored separate from the links between them.
When only a single architectural element stores all entities, as in
most hyperbase systems, storage relationships are omitted for
clarity. The graphical depiction of a storage relationship is a thick
solid line.

Figure 1 (below) provides the key for the graphical notation used
in containment data model diagrams. Solid lines represent
inclusion containment, and dotted lines represent referential
containment. A single circle at the head of a relationship modifies

the relationship to indicate it is ordered, and a second circle
indicates multiple membership. It is only in the data models of
hypertext versioning systems that multiple membership and
ordered referential containment are encountered.

2.2 Advanced Containment
The aspects of containment described in the previous section
cover the majority of containment relationships, as is termed basic
static containment. However, some systems provide advanced
containment functionality, such as constraints on the containment
relationships, and dynamic containment, which allows included
objects to be determined by a computational process. This
advanced containment capability is described below.

2.2.1 Containment Constraints
Some containers offer additional capabilities that extend the
containment design space. These are:

Type of contained objects: Especially in systems that support a
wide variety of object types, containers may limit, or explicitly
state the type of objects that can be contained. For example, in the
Hypermedia Version Control Framework [18], the association set
is a container that can only contain associations, and in Aquanet
[22], schema relations are containers that may restrict the type of
contained objects. This issue is noted as the “Type” aspect of
composite design in [13], p. 84. Containment data models
represent this constraint by having containment arcs to all of the
allowed entities.

Number of contained objects: Containers may have a fixed size,
or an upper bound on their size. For example, Aquanet schema
relations can have a fixed number of contained items, such as
when modeling an argument relation (see Figure 2 of [22]), which
has two slots for statements, and one slot for rationale. When only
one kind of entity is contained, such as when a link contains only
two anchors, the containment relation’s cardinality can express
the number of contained objects. But, if the constraint is of the
sort, “two instances of the following three entities”, then this must
be expressed in a text description associated with the diagram.

Typing of the container: the previous two capabilities,
specifying the number and type of contained objects, can be
viewed as two kinds of constraints that would be given in the
definition of a specific container type. Aquanet schemas
essentially define new container types with each new relation, and
DHM [11] provides several container subclasses, such as the
GuidedTourComposite and TableTopComposite. Specific
container types can express a wide range of structures, as noted in
[13], p. 84-85. Compound documents can also be expressed using
a container type that provides viewing and editing semantics for
the contained objects that allows the container to behave like a
single document, instead of a set of independent objects.
Subtyping is represented using inheritance relationships in data
model diagrams.

2.2.2 Dynamic Containment
For all containment types except for inclusion, a container can be
viewed as a mapping from the set of all objects to the set of all
containers. For single containment, this mapping is M:1, where M
is the number of objects, while for multiple containment, this
mapping is M:N, where N is the number of collections. With
static containment, the set of members is explicitly listed. For

dynamic containment, the mapping from objects to collections is
generated by a function.

Queries are by far the most common functions used to
dynamically create containers. DHM [11], the Hypermedia
Version Control Framework [18], and CoVer [14] are all
examples of systems that support the population of containers
from query results. There are two ways dynamic containment can
be employed:

Query results specify the endpoint of one containment
relationship: In this approach, each containment relationship can
have a query associated with it, and this query typically is
designed to return a single result, the endpoint. Thus the query
determines a single element of the container. This approach is
frequently employed to pick out a single revision from all the
revisions of an object by scoping the query to just a single
versioned object, and by selecting a query predicate that returns
just a single revision. When scoped to a single revision history,
the query predicate is termed a revision selection rule. The
Hypermedia Version Control Framework supports arbitrary
queries for endpoint selection [18].

Auld Leaky [32] provides another example of querying for
endpoints, in this case, for the source of a link. The set of links
that emanate from a specific node is determined dynamically by
querying the link database for all links that have a matching
context specification. Here “context” is a set of attribute-value
pairs, representing the state of the reader, character, or plot during
the process of reading a hypertext.

Query results specify the membership of a collection: Here the
results of a query comprise the entire contents of the collection. In
DHM [11], one system that supports this kind of containment,
these containers are called virtual composites.

 containment (unordered inclusion)
(inclusion, single containment, single membership,
unordered)

containment (by reference)
(multiple containment, single membership,
unordered, containment relationship on container)

stores

inheritance

containment (ordered inclusion)
(inclusion, single containment, single membership,
ordered)

containment (by reference, ordered, multiple
membership)
(multiple containment, multiple membership, ordered,
containment relationship on container)

containment (by reference, ordered)
(multiple containment, single membership, ordered,
containment relationship on container)

Figure 1 - Key to the graphical notation for relationships in
containment data model diagrams.

2.3 Relationship Abstraction Layers
At its most abstract, a container has an undifferentiated contains
relationship between itself and its containees. The abstraction
layer holding this undifferentiated contains relationship is termed
the abstract relationship layer, since it provides an abstract
depiction of the contains relationship, providing only the type of
the relationships, omitting all other details concerning its specific
properties. Entities in this layer are abstraction signifiers,
indicating that they have distinct intellectual identity as
abstractions, irrespective of whether their eventual concrete
representation has independent identity. The abstract relationship
layer is shown at the top of Figure 2.

Precisely specifying the characteristics of the relationships in the
abstract relationship layer results in a more detailed depiction in
the explicit relationship layer. Containment relationships at this
layer have fully specified their containment, membership, and
ordering properties, along with whether they are using inclusion
or referential containment. Similar to the abstract relationship
layer, entities in the explicit relationship layer are abstraction
signifiers, and may not have distinct identity in the concrete
representation layer. No refinement of entities occurs between the
abstract and explicit relationship layers – only the relationships
are refined. The explicit relationship layer is shown in the middle
of Figure 2, which depicts two possible ways to refine the
contains relationship in the abstract relationship layer into
explicitly defined containment relationships.

In the concrete representation layer, abstract entities and
relationships have been reified into specific data structures and
chunks of state. Similarly, there are many possible computer data
structures that can be used to represent a specific container as
concrete data items [1]. Examples include arrays, linked lists,
hashed lists, comma-separated text strings, and various types of
trees, to name just a few. These data structures all support the
operations of creating a set (or bag—all the following operations
apply to bags too), inserting a member in a set, listing the
members of a set, deleting a member from a set, and deleting a set.
Ordered sets add position information to the insert operation, and
additionally add an operation to order some members of the set.
Other set operations are also possible, such as union, intersection,
difference, etc., but are less frequently used by containers.

Repositories such as databases and filesystems can be used to
realize the concrete representation. These systems themselves are
complex, and often have several layers of abstraction within their
implementation. Figure 2 shows one possible concrete
representation, out of the universe of possible representations, for
each of the examples in the explicit relationship layer. The
inclusion containment example is reified as a file that internally
has a linked list of data chunks, which are each a sequence of
bytes. The referential containment example is represented using a
container data item that holds within it a linked list of identifiers
to contained data items. The internal structure of contained data
items is unconstrained. Both the container and containee data
items have identifiers.

3. HYPERTEXT SYSTEM DATA MODELS
Having fleshed out the details of containment data modeling, we
now examine the fidelity and generality of this technique by
modeling a broad set of systems spanning the categories of
monolithic, link server, and (open) hyperbase, and including the

Dexter reference model and the WWW with WebDAV
extensions. We use the Flag model’s [24] assignment of systems
to categories. Altogether, these figures comprise a significant
survey of existing hypertext system data models.

3.1 Monolithic Hypertext Systems
A representative set of monolithic hypertext systems are shown in
Figure 3, which models the NoteCards [31], KMS [2], Intermedia
[38], HyperCard [4] and StorySpace 1 systems [5]. In this
diagram, the modeled entities directly correspond to those of each
system. So, while the notion of a NoteCards “notecard”, a KMS
“frame”, and a HyperCard “card” are all similar (they are “card
shark” systems), each system’s data model uses the system-
specific term for the card-like entity, instead of a more abstract
term. Each system is modeled directly, without any additional
mapping needed beyond assigning system abstractions to entities.

The KMS and HyperCard systems both have links that are
embedded within a frame/card. These embedded links do not have
distinct identifiers for each link, and hence their identity is not
separable from their containing frame/card. Nevertheless, despite
not having separate identity, these links do play a conceptually
distinct role in the behavior of each system; they are essential to
their “hypertext-ness”. Thus, the links are modeled as distinct
entities, ones that have an ordered inclusion containment
relationship with their parent frame/card. Each link is modeled as
a container, one that contains just a single member.

container

contained entity

contains

Abstract Relationship Layer

Explicit Relationship Layer

Example #1: Inclusion Example #2: Referential

container

contained entity

contains – single containment,
single membership, unordered,
inclusion

container

contained entity

contains – multiple containment,
single membership, ordered,
containment relationship on
container

Concrete Representation Layer

A file with a linked list of content chunks

1

N

M

N

container

A container data item represents its
members using a linked list of identifiers
of contained data items.

id2 id3

id3 id2 id1

Data
item

Data
item

Data
item

id1

id0

Figure 2 – A container at three different layers of abstraction. An
abstract containment relation (abstract relationship layer) is
refined into one example each of inclusion and referential
containment. The explicit relationship layer fully details the
containment relation, specifying containment, membership,
ordering, and containment type. For the inclusion and referential
examples, the concrete representation layer shows an example
reification of the containers as persistent data items.

 NoteCards

notefile

notecard link

filesystem

browser filebox sketch tabletop

1

M

1

N

2 M

frame

filesystem KMS

link annotation

1

N

1

M

M

1

Intermedia

document Web

block
(anchor)

link

filesystem

1 1

N N

2 M

1

M

property

1

M

1

M

property

HyperCard

 stack

 card

link

filesystem

1

N

1

N

1

M

StorySpace 1

document

node link

filesystem

1

M

1

N

2 M

guard field span

1

1

1

2

Figure 3 – Data models of selected monolithic hypertext systems: NoteCards [31], KMS [2], Intermedia [38], HyperCard [4], and
StorySpace 1 [5].

link

Sepia

node link anchor

container

2

M
N

1 1

M

N

M

N
N

all entities:

entity

slot
(attribute)

1

N

HyperDisco
composite

M
N

node

anchor endpoint

link
1

N

M

N

2

1

trigger

1

1 M

N

M N

all entities:

entity

attribute

1

N

HURL (SP3/HB3)

application link anchor

side

bridge

component

association

persistent
selection

1

1 1

M M

M

1

M

1

M M
N

M

N
all entities:

entity

attribute

1

N
M N

1

1

Figure 4 – Data models of selected hyperbase systems: Sepia [30], HyperDisco [37], and HURL (SP3/HB3) [18]. All entities are stored by
the hypertext system, hence storage relationships are not explicitly shown.

The specific concrete representation of these link containers is a
single identifier that specifies the link destination (the member of
the link container), embedded within its parent frame/card.

The NoteCards model demonstrates the use of inheritance
relationships to describe how browser, filebox, sketch, and
tabletop cards are all specializations of the base notecard entity.
Despite using inheritance relationships, this diagram does not give
a complete inheritance hierarchy, instead focusing on only those
cases where inheritance relationships reduce diagram clutter, and
make the inter-entity relationships more clear. For example, it is
also possible to model this system without inheritance
relationships, but this would entail adding four more inclusion
containment relationships between the notefile and all of the
notecard types, and four additional referential containment arcs
between the link and the notecard types. The diagram would be
more cluttered, and make the NoteCards data model appear more
complex.

The StorySpace 1 and NoteCards models show how containment
data models can highlight similarities between system data
models, since both models have a single file that inclusively
contains nodes and links that otherwise act as first-class objects in
the model. StorySpace can be viewed as a refinement of the
NoteCards data model, adding the notion of guard fields and
anchors (spans) to its links.

3.2 Hyperbase and Open Hyperbase Systems
Selected (open) hyperbase systems are shown in Figure 4, which
gives containment data models of Sepia [30], HyperDisco [37],
and HURL (SP3/HB3) [18]. Hyperform [36] is not modeled
because it is a toolkit, with no normative data model of hypertext
concepts. DeVise Hypermedia (DHM) [12] is not modeled, since
a research goal of this system was to use the Dexter reference
model as its internal data model, and Dexter is modeled
separately, in Figure 6 (below). The containment data models of
hypertext versioning systems, many of which are extended
hyperbase systems, are discussed generally in previous work by
the author [34], and are not repeated here.

In the hyperbase systems modeled, all hypertext entities contain a
set of attributes, modeled as an inclusion containment relationship
between object and attributes. Instead of adding significant
additional clutter to the diagrams by showing every entity
containing its set of attributes, a modeling convention is used that
allows properties of all entities to be described in one place, just
to the right of the main data model diagram. Object-oriented
modeling would depict this as a base object, from which all other
object types are inherited. This type of modeling could have been
used as well, but at the cost of adding an additional inheritance
arc for each hypertext system entity. This would add clutter to the
diagram, defeating the purpose of factoring out the commonality
of each entity containing a set of attributes.

The HURL data model (also the data model for SP3/HB3 [20])
clearly stands out as unique among all system data models. While
the “bridge” is somewhat similar to Chimera’s “view” concept,
the notion of “side” is unique, as is its definition of association.
Having three separate paths from an association to a persistent
selection is also unique. Containment data modeling, by concisely
depicting the HURL data model in context with other systems,
makes it possible to quickly identify the unique aspects of this
data model. It also suggests additional avenues of research, such
as examining how other system data models would behave if
entities like sides and bridges were introduced.

3.3 Link Server Systems
Link server systems are shown in Figure 5 (below), which depicts
the data models of Sun’s Link Service [25], Microcosm [9],
Multicard [27], and Chimera [3]. Since the goal of link server
systems is to provide third-party links among a set of documents,
these systems often have an entity that represents, inside the link
server system, a particular external object. This external object
signifier is modeled as a container that contains a single member,
the external object. The containment type is always referential,
since the concrete representation of the container is an identifier
of the external object (often a filename). The same modeling step
is used for Chimera’s viewer, which is a single-member container
referentially containing an application program.

Link servers highlight the utility of the storage relationship. By
explicitly adding the filesystem as an entity to the model, it is
possible to represent which entities are under the control of the
link server system, and which are in its external environment. The
storage relationship shows that the externally linked objects are
stored by the local filesystem (and hence outside the control of the
link server system). Entities inside the link server system are
inside a link database, which itself is stored by the filesystem.
Inside the link database, the link server system controls all
entities.

The data model diagram allows cross-system comparisons. The
data models of Sun’s Link Server and Microcosm are less
complex than those of Chimera and Multicard. Chimera and
Multicard both have additional grouping mechanisms, due to the
presence of a self-containing container in their data models,
namely the Chimera hyperweb, and the Multicard group.
Chimera’s hyperweb only contains anchors and links (in addition
to other hyperwebs), and hence is directly comparable to
Intermedia’s “Web”, whereas the Multicard group can only
contain nodes (in addition to other groups), and hence is similar
to Dexter and HyperDisco composites, and WebDAV collections.
Modeling a broad range of hypertext systems using containment
modeling makes these kinds of cross-system comparisons much
less difficult.

3.4 Dexter Reference Model
Figure 6 shows the Dexter hypertext reference model [16,17].
This diagram highlights several advantages to containment data
modeling. First, the diagram collects in one place a number of
facts that are spread throughout the text in [17] and the formal
model in [16], allowing far more rapid understanding of much of
the Dexter model than from the labor-intensive study of the
primary sources (an observation that applies to other system data
models as well).

The fact that Dexter can be modeled using containment data
modeling means the modeling mechanism has good uniformity,
able to represent both hypertext systems and cross-system
reference models. It also paints a picture of the Dexter reference
model as one member of a family of hypertext data models,
embodying its own specific design choices and tradeoffs. Hence,
containment modeling allows the Dexter model to be directly
compared with its peers, the data models of other hypertext
systems. Consider Dexter links, which contain two endpoints,
where each endpoint contains a document and an anchor, which
must be inclusively contained by the document. These links are
very similar to those in HyperDisco, but are otherwise quite
different from other hypertext systems, where a link typically
contains either an anchor, or a document, but not both. Dexter
composites are similar to HyperDisco composites, WebDAV
collections, and MultiCard groups which all only contain
documents, in addition to self-containment.

object link

Sun’s Link Service

2 M
N

file

1

M

1

Microcosm

filesystem

link database

filesystem

link database

file link
1 1 N

1

M 1

link offset

1

1

object

link

Chimera

anchor

viewer

view

hyperweb
external
object
(file)

application
program

1
1

1

1

1

1

M
N

Chimera database

filesystem

N

1
1

N

1

N

1

N

M N N M

1

1

M

N

Multicard

group
M

N

node

link

anchor

M

N

M
N

M
N

M

N

M 1 file 1 1

filesystem

all system
entities:

entity

script

1

1

Figure 5 – Data models of selected link server systems: Sun’s Link Service [25], Microcosm [9], Multicard [27], and Chimera [3]. All
Multicard entities are stored within the Multicard persistent storage platform (not shown for clarity).

component

attribute content

1

M

1

1

anchor

1

N

presentation
specification

1

1

link

endpoint
specification

1

2

M 1

Dexter Model

composite
M

N

M

N

presentation
specification

direction

1

1 1

1

N

1

Figure 6 – Data model of the Dexter hypertext reference model
[16,17].

3.5 WWW/WebDAV
Figure 7 shows the containment data model of the WWW, with
WebDAV extensions for remote collaborative authoring [35].
WebDAV adds to the base Web data model entities for
containment, and for properties (attributes). As is the case for the
Dexter model, the WebDAV containment model allows the Web’s
data model to be compared, in a uniform way, with other
hypertext data models. While the Web is often treated as a special
case among hypertext systems, due to its ubiquity and impact,
from a data model perspective the Web is not unique. It can be
grouped among the data models of hyperbase systems without
seeming too far out of place.

The Web has a data model for links that is directly comparable to
the KMS and HyperCard models, since all three have the pattern
of a document inclusively containing links, which in turn
referentially contain a single document. The primary different
between the links is the form of identifier used in the concrete
representation, with the Web using the Internet scale URL.
Indeed, the similarity between KMS and the base Web data model
(Figure 7 without containers or properties) is striking, begging the
question of how history may have been different had KMS
developed a protocol like HTTP, rather than depending on a
network file system, and its scalability limitations.

4. CONCLUSION
Containment data modeling provides a modeling mechanism
capable of uniformly representing the data models of a wide range
of existing hypertext systems. Containment data modeling has
been validated by presenting the models of 14 existing hypertext
systems and reference models, the broadest survey to date of these
models.

The uniformity of containment modeling is highlighted by the
ability to decompose and model both Dexter and the WWW in the
same way as other systems, allowing them to be compared with
each other and with other systems using a consistent model. The

understanding of Dexter and the WWW that emerges from this
process shows them to be non-distinguished peers with other
hypertext systems, carrying their own design choices and
tradeoffs, but otherwise with no special distinction to their data
models.

Containment data modeling provides a new technique useful in
comparing hypertext system data models. By concisely
representing system data models, and then grouping thems
together, it is possible to quickly see similarities and differences
among systems, including patterns for handling composites,
anchors, and links.

Since containment data modeling focuses on modeling the static
aspects of system data models, it is complementary to
architecture-focused models, such as Flag [24], and formal
models of system semantics, such as the FOHM model [23], or
Trellis’ Petri-nets [10]. While containment data models are a
powerful and useful modeling technique, they alone do not give a
complete picture of a hypertext system, and should be used in
conjunction with other modeling techniques, providing multiple
views of distinct aspects of each system.

Containment data models show significant promise for modeling
systems in other domains, such as Software Configuration
Management and Document Management. In our future work, we
look forward to extending this technique to these additional
classes of systems, enabling us to perform substantive cross-
domain comparison of information management systems.

REFERENCES
[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures

and Algorithms. Reading, Mass.: Addison-Wesley, 1983.

[2] R. M. Akscyn, D. L. McCracken, and E. A. Yoder, “KMS: A
Distributed Hypermedia System for Managing Knowledge in
Organizations,” Communications of the ACM, vol. 31, no. 7
(1988), pp. 820-835.

[3] K. M. Anderson, “Data Scalability in Open Hypermedia
Systems,” Proc. Hypertext’99, Darmstadt, Germany,
February 21-25, 1999, pp. 27-36.

[4] Apple Computer, HyperCard Script Language Guide.
Reading, MA: Addison-Wesley, 1988.

[5] M. Bernstein, “StorySpace 1,” Proc. Hypertext 2002, The
Thirteenth ACM Conference on Hypertext and Hypermedia,
College Park, MD, June 11-15, 2002.

[6] G. Booch, Object Oriented Design with Applications.
Redwood City: Benjamin/Cummings, 1991.

[7] P. Chen, “The Entity-Relationship Model: Toward a Unified
View of Data,” ACM Trans. on Database Systems, vol. 1, no.
1 (1976), pp. 9-36.

[8] N. M. Delisle and M. D. Schwartz, “Contexts-A Partitioning
Concept for Hypertext,” ACM Transactions on Office
Information Systems, vol. 5, no. 2 (1987), pp. 168-186.

[9] A. M. Fountain, W. Hall, I. Heath, and H. C. Davis,
“Microcosm: An Open Model for Hypermedia with Dynamic
Linking,” Proc. First European Conference on Hypertext
(ECHT’90), Versailles, France, Nov. 27-30, 1990, pp. 298-
311.

 WWW/WebDAV

resource
1

M

1

1

property body

collection

M

N

HTML link

1

M

1

1

M

N

Figure 7 – Data model of the Web with WebDAV [33] extensions.
HTML links also model other document types that have embedded
links.

[10] R. Furuta and P. D. Stotts, “Programmable Browsing
Semantics in Trellis,” Proc. Hypertext’89, Pittsburgh, PA,
Nov. 5-8, 1989, pp. 27-42.

[11] K. Grønbæk, “Composites in a Dexter-Based Hypermedia
Framework,” Proc. 1994 European Conference on
Hypermedia Technology (ECHT’94), Edinburgh, Scotland,
Sept. 18-23, 1994, pp. 59-69.

[12] K. Grønbæk and R. H. Trigg, “Design Issues for a Dexter-
Based Hypermedia System,” Communications of the ACM,
vol. 37, no. 2 (1994), pp. 40-49.

[13] K. Grønbæk and R. H. Trigg, From Web to Workplace:
Designing Open Hypermedia Systems. Cambridge, MA: MIT
Press, 1999.

[14] A. Haake, “Under CoVer: The Implementation of a
Contextual Version Server for Hypertext Applications,”
Proc. Sixth ACM Conference on Hypertext (ECHT’94),
Edinburgh, Scotland, Sept. 18-23, 1994, pp. 81-93.

[15] A. Haake and D. Hicks, “VerSE: Towards Hypertext
Versioning Styles,” Proc. Seventh ACM Conference on
Hypertext (Hypertext ’96), Washington, DC, March 16-20,
1996, pp. 224-234.

[16] F. Halasz and M. Schwartz, “The Dexter Hypertext
Reference Model,” Proc. NIST Hypertext Standardization
Workshop, Gaithersburgh, MD, Jan 16-18, 1990, pp. 95-133.

[17] F. Halasz and M. Schwartz, “The Dexter Hypertext
Reference Model,” Communications of the ACM, vol. 37, no.
2 (1994), pp. 30-39.

[18] D. L. Hicks, J. J. Leggett, P. J. Nürnberg, and J. L. Schnase,
“A Hypermedia Version Control Framework,” ACM
Transactions on Information Systems, vol. 16, no. 2 (1998),
pp. 127-160.

[19] R. Hull and R. King, “Semantic Database Modeling: Survey,
Applications, and Research Issues,” ACM Computing
Surveys, vol. 19, no. 3 (1987), pp. 201-260.

[20] J. J. Leggett and J. L. Schnase, “Viewing Dexter with Open
Eyes,” Communications of the ACM, vol. 37, no. 2 (1994),
pp. 76-86.

[21] E. Levinson, “The MIME Multipart/Related Content-type,”.
Internet Request for Comments (RFC) 2387, August 1998.

[22] C. C. Marshall, F. G. Halasz, R. A. Rogers, and W. C.
Janssen, Jr., “Aquanet: a hypertext tool to hold your
knowledge in place,” Proc. Third ACM Conference on
Hypertext (Hypertext’91), San Antonio, Texas, Dec. 15-18,
1991, pp. 261-275.

[23] D. E. Millard, L. Moreau, and H. C. Davis, “FOHM: A
Fundamental Open Hypertext Model for Investigating
Interoperability between Hypertext Domains,” Proc.
Hypertext 2000, San Antonio, Texas, May 30-June 4, 2000,
pp. 93-102.

[24] K. Østerbye and U. K. Wiil, “The Flag Taxonomy of Open
Hypermedia Systems,” Proc. Seventh ACM Conference on
Hypertext (Hypertext’96), Washington, DC, March 16-20,
1996, pp. 129-139.

[25] A. Pearl, “Sun's Link Service: A Protocol for Open Linking,”
Proc. Hypertext’89, Pittsburgh, PA, Nov. 5-8, 1989, pp. 137-
146.

[26] J. Peckham and F. Maryanski, “Semantic Data Models,”
ACM Computing Surveys, vol. 20, no. 3 (1988), pp. 153-189.

[27] A. Rizk and L. Sauter, “Multicard: An open hypermedia
System,” Proc. Fourth ACM Conference on Hypertext
(ECHT’92), Milano, Italy, Nov. 30-Dec. 4, 1992, pp. 4-10.

[28] J. L. Schnase, J. J. Leggett, D. L. Hicks, and R. L. Szabo,
“Semantic Data Modeling of Hypermedia Associations,”
ACM Trans. on Information Systems, vol. 11, no. 1 (1993),
pp. 27-50.

[29] L. F. G. Soares, G. L. d. S. Filho, R. F. Rodrigues, and D.
Muchaluat, “Versioning Support in the HyperProp System,”
Multimedia Tools and Applications, vol. 8, no. 3 (1999), pp.
325-339.

[30] N. Streitz, “SEPIA: A Cooperative Hypermedia Authoring
Environment,” Proc. Fourth ACM Conference on Hypertext
(ECHT’92), Milano, Italy, Nov. 30-Dec. 4, 1992, pp. 11-22.

[31] R. Trigg, L. Suchman, and F. Halasz, “Supporting
Collaboration in NoteCards,” Proc. Computer Supported
Cooperative Work (CSCW’86), Austin, Texas, Dec. 3-5,
1986, pp. 147-153.

[32] M. J. Weal, D. E. Millard, D. T. Michaelides, and D. C. D.
Roure, “Building Narrative Structures Using Context Based
Linking,” Proc. Hypertext 2001, The Twelfth ACM
Conference on Hypertext and Hypermedia, Århus, Denmark,
August 14-18, 2001, pp. 37-38.

[33] E. J. Whitehead, Jr., “Goals for a Configuration Management
Network Protocol,” Proc. 9th Int’l Symposium on System
Configuration Management (SCM-9), Toulouse, France,
Sept. 5-7, 1999, pp. 186-203.

[34] E. J. Whitehead, Jr., “Design Spaces for Link and Structure
Versioning,” Proc. Hypertext 2001, The Twelfth ACM
Conference on Hypertext and Hypermedia, Århus, Denmark,
August 14-18, 2001, pp. 195-205.

[35] E. J. Whitehead, Jr. and Y. Y. Goland, “WebDAV: A
Network Protocol for Remote Collaborative Authoring on
the Web,” Proc. Sixth European Conference on Computer
Supported Cooperative Work, Copenhagen, Denmark, Sept.
12-16, 1999, pp. 291-310.

[36] U. K. Wiil and J. J. Leggett, “Hyperform: Using Extensibility
to Develop Dynamic, Open and Distributed Hypertext
Systems,” Proc. Fourth ACM Conference on Hypertext
(ECHT’92), Milano, Italy, Nov. 30-Dec. 4, 1992, pp. 251-
261.

[37] U. K. Wiil and J. J. Leggett, “The HyperDisco Approach to
Open Hypermedia Systems,” Proc. Seventh ACM Conference
on Hypertext (Hypertext ’96), Washington, DC, March 16-
20, 1996, pp. 140-148.

[38] N. Yankelovich, B. J. Haan, N. K. Meyrowitz, and S. M.
Drucker, “Intermedia: The Concept and the Construction of a
Seamless Information Environment,” IEEE Computer, vol.
21, no. 1 (1988), pp. 81-96.

