Understanding Bug Fix Patterns in Verilog

Sangeetha Sudhakrishnan
sangeetha@soe.ucsc.edu

Janaki T. Madhavan
janaki@soe.ucsc.edu

E. James Whitehead Jr.
ejw@soe.ucsc.edu

Jose Renau
renau@soe.ucsc.edu

University of California, Santa Cruz CA

ABSTRACT

Today, many electronic systems are developed using a hard-
ware description language, a kind of software that can be
converted into integrated circuits or programmable logic de-
vices. Like traditional software projects, hardware projects
have bugs, and significant developer time is spent fixing
them. A useful first step toward reducing bugs in hardware
is developing an understanding of the frequency of different
types of errors. Once the most common types are known, it
is then possible to focus attention on eliminating them. As
most hardware projects use software configuration manage-
ment repositories, these can be mined for the textual bug
fix changes. In this project, we analyze the bug fix history
of four hardware projects written in Verilog and manually
define 25 bug fix patterns. The frequency of each bug type
is then computed for all projects. We find that 29 — 55% of
the bug fix pattern instances in Verilog involve assignment
statements, while 18 — 25% are related to if statements.

Categories and Subject Descriptors: D.2.4 [Software]:
Program Verification

General Terms: Languages, Design

Keywords: Fault, bug, fix, Patterns.

1. INTRODUCTION

During the 1990’s, the design of integrated circuits shifted
from the traditional labor intensive process of schematic
layout towards the use of hardware description languages
(HDLs), such as Verilog and VHDL. Similar to the trade-
off of early programming languages, HDLs produced less
efficient ciruits, but at higher designer productivity. One
consequence is that hardware development now has a heavy
software development flavor.

Verilog is one of the most widely used hardware description
languages. The language supports the design, verification,
and implementation of analog, digital, and mixed-signal cir-
cuits at various levels of abstraction. It is similar to the
C programming language since its preprocessor and control

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

MSR'08, May 10-11, 2008, Leipzig, Germany.

Copyright 2008 ACM 978-1-60558-024-1/08/05 ...$5.00.

flow keywords are C-like. The language differs from C in
the following. It uses Begin/End to specify a block instead
of the curly braces. The definition of constants requires a
bit width along with their base and Verilog does not have
structures, pointers, or recursive subroutines. The concept
of time is important in HDLs, and is not found in C. An-
other major difference from a conventional language is that
the statements are not executed strictly linearly.

Just as in software, a hardware project goes through de-
sign, development, and testing phases. A designated team
of testers usually checks whether the project exhibits the
required external behavior. When undesirable behavior is
detected, a log is maintained, similar to bug tracking in soft-
ware projects. This undesirable behavior is called a bug and
fixing the bug involves modification of the HDL source code.
Software configuration management repositories are widely
used to record the evolution of hardware projects. Simi-
lar to SourceForge, there is a publically available repository
of open source HDL software, www.opencores.org, that con-
tains over 450 HDL projects including arithmetic cores, com-
munication controllers, memory cores, video controllers, and
microprocessor cores. As in software projects, changes made
to HDL projects include a brief description of the change,
recorded in the SCM change log. More often than not, words
like “fixed” and “bug” are used to describe the changes re-
lated to bug fixes. Hence, these repositories can be mined
for log messages containing these words to obtain the bug
fix changes. Indeed, it appears that many of the techniques
developed to exploit information found in the development
history of software projects can be applied to the develop-
ment history of HDL projects too.

Given this similarity between HDL and high-level program-
ming languages, one question that arises is whether the types
and frequencies of bugs in an HDL like Verilog are similar
to those in, say, Java. In prior work, Kai Pan manually
developed a series of fine-grained bug fix patterns in Java
software [1]. These bug fix patterns are automatically ex-
tractable from the history of a software project. The bug fix
patterns can be viewed as a kind of error taxonomy. Unlike
existing work to categorize software errors into specific cat-
egories, the bug fix patterns are automatically categorized;
prior work involved a human manually performing the cate-
gorization work, resulting in poor scalability and unreliable
categorizations. This paper reports on an effort to translate
this idea of bug fix patterns over to Verilog.

We present a series of bug fix patterns observed in four open
source Verilog projects The patterns we found were seen to
be related to assignments (blocking, non-blocking and as-

sign), “if” statements, module declaration and instantiation,
“always” and “switch” statements. We have obtained the
frequency of their occurence in the four projects we have
analyzed. Errors in assignment were found to be the most
common pattern, followed by the “if” related ones. In order
to understand them in greater detail, we have characterized
them further into many sub-patterns.

The remainder of the paper is organized as follows. Sec-
tion II discusses the methodology used to obtain the bug fix
changes from the change history of the projects analyzed.
Section IIT describes the identified Verilog bug fix patterns
in detail. The frequency of the observed patterns in the four
projects are presented in Section I'V. Section VI discusses the
related work in this area. And finally, Section VII presents
ideas for future work and concludes the report.

2. METHODOLOGY FOR IDENTIFYING
BUG FIXES

In this paper, we use the term bug for a mistake made
in the source code by the developer, which results in an
undesirable external behaviour during the execution of the
code. When the developers commit the changes that repair
a bug to the software configuration management repository,
they usually log a brief note about these changes. The bug
fixes are typically denoted by the words “bug” and "fixed”.
Therefore, by going over the change history, we can obtain
the revision that contains the changes that fix a bug (bug
fix revision) and the one that has the bug (buggy).

There are two main approaches to get the bug fix revisions
and their corresponding buggy revisions. One of the techin-
ques involves looking for references to bug reports; this was
introduced by Mockus and Votta [2]. The other one, intro-
duced by Fischer et al [3] and by Cubranic and Murphy [4],
involves scanning the change logs for keywords like “fixed” or
“bug”; the revisions, whose change logs contain these words
are considered to be the bug fix revisions and the revisions
prior to them are their respective buggy revisions. We follow
the second approach and manually look for the above men-
tioned keywords in the change logs of the Verilog projects,
we analyzed. After obtaining the buggy and the bug fix re-
visions, we compute the changes to each file involved in the
latter by doing a “diff” with their counterparts in the former.
Adopting the terminology used by [1], we call this textual
difference a bug fix hunk pair. A bug hunk refers to the code
section in the buggy version, that is modified or deleted in
the bug fix revision. The corresponding fix hunk comprises
the modifications in the bug fix version that fixes the bug.
These two together form the bug fix hunk pair. A bug fix
change is typically a modification, addition or deletion of
some specific lines of the source code.

To get some insight into the kind of changes developers make
to repairs bugs in Verilog, we have looked for syntax-based
patterns in the bug fix hunk pairs. The patterns found by
us are explained in detail in the next section.

3. BUG FIX PATTERNS

To obtain all the bug fix patterns in Verilog, we man-
ually analyzed the four open source projects downloaded
from www.opencores.org. They are listed in Table I. By
following the methodology described in the previous section,
we obtained the bug fix hunk pairs and identified the bug
fix patterns present in them. These patterns are grouped

Table 1: Projects Analyzed
| Project Name | # of Revisions | # of Bugs |

Uart_16550 32 128
0OC_8051 22 121
ORI1K 17 108
Mem_ctrl 45 169

into the following major categories: if-related (IF), module-
declaration (MD), module-instantiation (MI), assignment(A
S), switch (SW), always (AL) and class field (CF). Exam-
ples of the bug patterns are shown below. Due to lack of
space we explain only 2 patterns. A more detailed explana-
tion can be found at [14]. Using code snippets from these
projects, two of the 25 patterns is explained in detail below.
In the code snippets provided as examples, the lines that
begin with — belong to the buggy revision, while the lines
that begin with + belong to the bug fix revision.

1. Addition of an if statement (IF_APC): This pat-
tern is observed when an if statement is added to fix a bug.
This statement is usually added to ensure that a certain con-
dition is met before performing an operation.

Example:

+ if(rst) ma_issue < 1'b0

2. Addition of “assign” statement (ASG_ADD): An
assign statement is used to model combinatonal logic, and
this pattern occurs when additional logic previously not in-
cluded in the code is added to the existing logic

Example:

+ assign muzx_out = sel? a : b;

We have ignored changes related to comments, synthe-
sis statements, include statements, param statements, code
cleanup and code formatting. Excluding these, we have clas-
sified all the changes observed in the four projects and the
results are summarized in Table 2. In the next section, we
characterize the bug fix patterns obtained in these projects.

4. CHARACTERISTICS OF BUG FIX
PATTERNS

In this section, we show the frequency of bug fix patterns

in the four verilog projects analyzed. Figure 1 gives the fre-
quencies of all the bug fix patterns across projects.
It is clear that the assignment related patterns are the most
common. They account for 29-55% of all observed patterns.
This is followed by the if related patterns. They account
for 18-25% of the observed patterns. The combined fre-
quency of module declaration and module instantiation is
seen to be 4.7-25%. The class field related patterns occur
with frequency 4.7-16%. The frequency of the always re-
lated patterns is about 2.8-21%. And finally, case related
patterns account for only about 1.8-4.6%. Apart from the
assignment and the if related patterns, which follow similar
trend across all the four projects (most common and second
most common respectively), we cannot say anything conclu-
sive about the rest of the projects.

CATEGORY PATTERN NAME SHORTNAME | UART 16550 0C8051 OR1K MEM_CTRL
% # % # % # %
IF Addition of else related branch IF_ABR 2 1.56 12 10 9 8.3 6 3.5
Addition of if branch IF_APC 6 4.7 2 1.7 0 0 12 7.1
Change of if condition expression IF_CC 14 11 9 7.4 6 5.5 20 11.8
Removal of else branch IF_RBR 4 3.1 1 0.8 3 2.8 1 0.6
Removal of if branch IF_RMV 5 4.6 3 2.5 1 0.92 4 2.3
TOTAL 31 24 27 223 19 18 43 25
MI Module instantiation with different number of ports MI_DNP 2 1.56 4 3.3 7 6.5 3 1.8
Module instantiation with different values for the ports MI_DCP 0 0 2 1.65 9 8.3 7 4.1
TOTAL 2 1.6 6 4.9 16 15 10 6
MD Module declaration with different number of ports MD_DNP 4 3.1 5 4.1 11 10 7 4.1
TOTAL 4 3.1 5 4.1 11 10 7 4.1
AS Change of expression for non_blocking assignment NB_CE 21 164 9 7.4 6 5.5 5 3
Change of expression for blocking assignment B_CE 0 0 4 3.3 1 0.92 6 3.5
Change of expression for assign statement ASG_CE 6 4.7 13 10.7 27 25 5 2.95
Change of expression for assign statement ASG_CE 6 4.7 13 10.7 27 25 5 2.95
Assign statement added ASG_ADD 28 21.8 5 4.1 4 3.7 7 4.1
Assign statement removed ASG_RMV 4 3.1 5 4.1 1 092 8 4.73
Non_blocking statement added NB_ADD 10 7.8 5 4.1 1 0.92 3 1.78
Non_blocking statement removed NB_RMV 1 0.8 8 6.6 0 0 0 1.18
Blocking statement added B_ADD 0 0 3 2.5 0 0 7 4.14
Blocking statement removed B_RMV 0 0 1 0.8 0 0 6 3.55
TOTAL 70 54.6 53 44 40 37 49 29
SW Addition or removal of case branches SW_ABRP 5 4.6 3 2.5 2 1.9 3 1.77
TOTAL 5 4.6 3 2.5 2 1.9 3 1.77
CF Addition of reg RG_ADD 4 3.1 10 8.26 5 4.7 11 6.5
Addition of wire WR_ADD 1 0.8 4 3.3 8 7.4 7 4.14
Removal of reg RG_RMV 1 0.8 4 3.3 1 0.92 0 0
Removal of wire WR_RMV 0 0 0 0 3 2.8 4 2.366
TOTAL 6 4.7 18 15 17 16 22 13
AL Sensitivity list changes AL_SE 1 0.8 2 1.65 1 0.92 11 6.5
Always added AL_ADD 5 4.6 5 4.1 2 1.9 20 11.83
Always removed AL_RMV 4 3.1 2 1.65 0 4 2.36
TOTAL 10 7.8 9 7.5 3 2.8 35 21
TOTAL | [128 [121 [108 [169

Table 2: The count and frequency of the extracted pattern instances across projects

SW CF

AL

OUart16550
Oocsos1

HOR1k
OMem Ctd

Figure 1: Bar chart of the frequency distribution of bugs in the projects analyzed

5. RELATED WORK

Bugs in software are difficult to find and costly to fix.
Therefore, static code analysis to detect bugs is a very ac-
tive area of research in software engineering.

The closest work to the work presented in this paper is by
[9]. The authors study 4 student hardware design projects
and present error distributions. The major difference with
the work presented here is that designers were asked to cre-
ate new revision via CVS whenever a design error was cor-
rected or whenever the design process was interrupted. In
this paper, we mine the revision history after the project was
created and looked for revision logs containing the words
“Bug” or “Fix”, thereby considering only changes made to
code to correct a design bug. Further, the taxonomy used
by Campenhout et al. [9] is ambiguous when compared to
the taxonomy presented in this paper.

Many techniques have been developed over the years to auto-
matically detect bugs in software. These techniques are usu-
ally based on syntactic pattern matching, data flow analysis,
type systems and theorem proving. FindBugs [5], JLint [6,
7], ESC/Java 2 [8], PMD [10] are some examples. These
tools are applied to find bugs in Java, which has many po-
tential coding pitfalls [11]. There has also been work that
compares the effectiveness of these tools [13]. All these tools
are based on static analysis and the bug patterns are based
on known program errors. These tools do not use the change
history of a software project to find the real bugs reported
by the developers.

FindBugs is a tool to detect bug patterns in Java. Its
main technique is to analyze the bytecode and syntactically
match source code to known suspicious programming prac-
tice. This approach is similar to ASTLog [12]. It also uses
data flow analysis to look for bugs. JLint is also based on

analysing bytecode, performing syntactic checks and dataflow

analysis. PMD also performs syntactic checks on program
source code and does not have the dataflow component.
ESC/Java is based on theorem proving and performing for-
mal verifications of properties of Java source code.

The change history of a software project can give consider-
able information about the common bugs and the patterns
found in their fixes. This information has been exploited to
develop an extractor tool to automatically extract 27 bug fix
patterns in Java projects [1]. All the tools described above
have been developed for Java; to our knowledge, there has
been no work on statically analyzing bugg code patterns in
hardware description languages. Our approach, based on
[1], looks for the bug fix patterns in the software change his-
tory of Verilog projects. We have thus categorized all the
observed bug-fix related changes into 25 bug fix patterns.

6. CONCLUSIONSAND FUTURE WORK

In this paper, we obtained the bug fix patterns in a hard-
ware description language, Verilog, observing 25 categories
of bug fix patterns. Among them, the assignment related
patterns are found to be the most common, followed by if
related ones. The former accounts for 29-55% of all observed
patterns, while the latter accounts for 18-25%. In contrast,
the bug fix patterns in Java are dominated by the if state-
ments and the method calls [1]. They account for 45-60.3%
of all defined bug fix patterns. The correlation analysis on
the extracted pattern instances on the four projects indicates
that most of them have similar bug fix pattern distributions.

We could only examine four Verilog projects as our analy-
sis was manual. Also, finding Verilog projects with long
history of evolution was difficult. In our future work, we
would like to examine more projects to investigate whether
the trend found in this paper holds across other projects. If
it does, then it should be possible to leverage this pattern
knowledge in the creation of static analysis bug finders for
Verilog. These patterns can be used to develop bug predic-
tion mechanisms for Verilog. A similar analysis can be done
for other hardware description languages to see whether the
bug fix patterns are similar to those of Verilog.

7. REFERENCES

[1] Pan, Kai, “Using Evolution Patterns to Find Duplicated Bugs”,
Ph.D Dissertation, Computer Science, UC Santa Cruz, 2006.
Available at http://www.soe.ucsc.edu/ " ejw/
dissertations/pan-dissertation.pdf

[2] A. Mockus and L. G. Votta, Identifying Reasons for Software

Changes Using Historic Database, In Proceedings of

International Conference on Software Maintenance (ICSM

2000), San Jose, California, 2000, pp 120-130.

M.Fischer, M. Pinzger and H. Gall, Populating a Release

History Database from Version Control and Bug Tracking

Systems, In Proceedings of 2003 International Conference on

Software Maintenance (ICSM’03), Amsterdam, Netherlands,

2003, pp 23-32.

[4] D. Cubranic and G. C. Murphy, Hipikat: Recommending
Pertinent Software Development Artifacts, In Proceedings of
the 25th International Conference on Software Engineering,
Portland, Oregon, 2003, pp 408-418.

[5] D. Hovemeyer and W. Pugh, Finding Bugs is Fasy, ACM
SIGPLAN Notices, vol. 39, no. 12, pp 92-106, 2004.

[6] C. Artho, Finding Faults in Multi-threaded Programs,
Master’s Thesis, Institute of Computer Systems, Federal
Institute of Technology, Zurich/Austin, 2001.

[7] JLint, http://artho.com/jlint .

[8] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, R. Stata, Fxtended Static Checking for Java, In
Proceedings of the 2002 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp
234-245, Berlin, Germany, June 2002.

[9] D. Van Campenhout and H. Al-Asaad and J. Hayes and T.
Mudge and R. Brown, High-level design verification of
microprocessors via error modeling, Trans. Design
Automation of Electronic Systems, 3(4):581-599, October 1998.

[10] PMD/Java, http://pmd.sourceforge.net .

[11] E. Allen, Bug Patterns in Java, APress, 2002.

[12] R. F. Crew, ASTLOG: A Language for Ezamining Abstract
Syntaxz Trees, In Proceedings of the Conference on
Domain-Specific Languages, Santa Barbara, California, Oct
1997.

[13] N. Rutar, C. B. Almazan and J. S. Foster, A Comparison of
Bug Finding Tools for Java, in The 15th IEEE International
Symposium on Software Reliability Engineering (ISSRE’04),
pp 245-256, Saint-Malo, Bretagne, France, November 2004.

[14] S.Sudhakrishnan, J.Madhavan, E.J.Whitehead, J.Renau.
Understanding Bug Fixz Patterns in Verilog Available at
http://wuw.soe.ucsc.edu/"sangeetha/ papers/bug-patterns.pdf

3

