
PCG-Based Game Design: Creating Endless Web
Gillian Smith, Alexei Othenin-Girard, Jim Whitehead, Noah Wardrip-Fruin

Center for Games and Playable Media
University of California, Santa Cruz

{gsmith, ejw, nwf}@soe.ucsc.edu aothenin@ucsc.edu

ABSTRACT

This paper describes the creation of the game Endless Web, a 2D

platforming game in which the player’s actions determine the

ongoing creation of the world she is exploring. Endless Web is an

example of a PCG-based game: it uses procedural content

generation (PCG) as a mechanic, and its PCG system, Launchpad,

greatly influenced the aesthetics of the game. All of the player’s

strategies for the game revolve around the use of procedural

content generation. Many design challenges were encountered in

the design and creation of Endless Web, for both the game and

modifications that had to be made to Launchpad. These challenges

arise largely from a loss of fine-grained control over the player’s

experience; instead of being able to carefully craft each element

the player can interact with, the designer must instead craft

algorithms to produce a range of content the player might

experience. In this paper we provide a definition of PCG-based

game design and describe the challenges faced in creating a PCG-

based game. We offer our solutions, which impacted both the

game and the underlying level generator, and identify issues

which may be particularly important as this area matures.

Categories and Subject Descriptors

I.2.1 [Artificial Intelligence] Applications and Expert Systems –

Games. K.8.0 [Personal Computing] General – Games.

General Terms

Design.

Keywords
Game design, procedural content generation.

1. INTRODUCTION
The goal of procedural content generation (PCG) is often to

mimic a human author as well as possible. Indeed, there has been

a great deal of research in how to produce believable results in a

wide variety of game content domains, from small elements such

as rocks and trees [7,12] to levels and environments [14,18] to

quests and stories [2,6]. With few exceptions, these systems are

used in games to replace or augment human-authored content as

seamlessly as possible. Many games that incorporate PCG are

designed as though all the content could have been authored by

humans, given sufficient development time.

However, PCG offers additional opportunities for game design: a

PCG system can be employed as an on-demand game designer,

capable of crafting a unique experience for each player. The most

established tradition of such games is known as Roguelikes, after

the game Rogue created at UC Santa Cruz and UC Berkeley

around 1980 [23]. This is an unusual game category, because it is

not defined by an element of the moment-to-moment gameplay,

the game audience, the game platform, or the game theme. Rather,

Roguelikes are defined by the fact that they use PCG to create

content (generally levels) that the player may encounter through a

wide variety of mechanics (e.g., the RPG action of Diablo [3] or

the platforming of Spelunky [25]). The argument for PCG in

Roguelikes is not that they enable a new form of gameplay, but

that they can provide variety, replayability, and (especially

important for early Roguelikes) compact representation of a wide

variety of potential content.

However, it is possible to go further. Rather than using PCG to

create fresh levels for fixed gameplay systems, one can seek to

make the PCG system itself a focus of gameplay, reacting rapidly

to player behavior — something the player comes to understand

and manipulate through play. Creating such a game requires the

careful co-design of both game and PCG system, as each has

affordances, limitations, and requirements that influence the

design of the other. For example, any bias in content created by

the generator must be worked into the design of the game.

Similarly, the game's design is likely to push additional

requirements on the content that the generator should be able to

create. The PCG system is so deeply linked to the mechanics and

aesthetics [11] of the game that the player can form strategies

around the generator’s actions and PCG-based dynamics emerge.

We call these PCG-based games.

Endless Web is a 2D platforming game designed as an exploration

of PCG-based game design. It was originally designed to use the

Launchpad rhythm-based level generator [20], which was heavily

modified over the course of the game’s development to meet new

design requirements. Launchpad supports the tuning of its

anticipated output with variables that have a clear impact on the

levels it designs, including the appearance of different

components and level pacing. Endless Web uses Launchpad to

generate a world that adapts to choices the player makes

throughout the game, as they seek goals that are hidden in layers

of Launchpad’s generative space.

Most games permit designers and art teams to have complete,

fine-grained control over the structure and appearance of their

content (e.g., the progression of levels and encounters within

them). The systems that produce emergence within games, such as

interacting combat mechanics or storytelling choices, are

introduced and exercised through carefully-constructed content

combinations. Building a PCG-based game instead involves

relinquishing direct control over content and treating content

generation as a game mechanic. The design of a PCG-based game

introduces a number of new design problems, for both the game

and the PCG system itself. Game design issues, from the moment-

to-moment pacing of a level to difficulty curves, can no longer be

solved through the direct manipulation of game content. The

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

FDG '12, May 29-June 1, 2012 Raleigh, NC, USA.

Copyright (c) 2012 ACM 978-1-4503-1333-9/12/05... $10.00.

188

designer must instead design entire ranges of content that can be

meaningfully controlled by both the designer and the player.

A number of design challenges arose while creating Endless Web

from the use of PCG as the core mechanic. The primary challenge

came in determining how to balance this control over the

generator between the player and the designer, so that the player

makes meaningful decisions but all of those decisions lead to an

engaging, designed experience. Other design problems include

teaching the player to explore a generative space, providing well-

placed goals to encourage this exploration, and art and audio

issues that arose from having no knowledge at design time of how

levels would be structured during play.

The primary contributions of this paper include a description of

the design challenges arising from designing a PCG-based game

and solutions to these problems in terms of both the game and its

underlying PCG system. These challenges are explored via an

examination of the design decisions made in Endless Web and

how Launchpad was modified to accommodate the game’s design.

We also provide a definition of PCG-based games and an

overview of the current use of PCG in games.

2. THE DESIGN OF ENDLESS WEB
The design process for Endless Web followed the principles of AI-

Based Game Design [8], with Launchpad as the AI system.

Launchpad’s existing design offered two main design affordances:

variables that could be exposed during gameplay and a rhythm

model that supported altering pacing. The design process began

by examining these affordances (Figure 1); however, designing

the game quickly uncovered further requirements for Launchpad.

This section describes the design of Endless Web and how it was

informed by Launchpad, and vice versa.

2.1 Endless Web
Endless Web is a 2D platforming game in which the player takes

the role of a member of a fictional race called Eidolons. Eidolons

inhabit humanity's collective Dream; when humans fall asleep and

dream, we wake up in their world. Humans and Eidolons share a

symbiotic relationship, as nightmares disrupt the fabric of the

Eidolons' world — they must seek out and wake up people who

are trapped in their nightmares, thus releasing dreamers from their

fears.

The goal of the game is for the player to rescue six dreamers who

are trapped in their nightmares by exploring the Dream to find

them. The six different nightmares are: Body Horror, Broken

Hearts, Creepy Crawlies, Dolls and Roses, Faceless Crowds, and

Time and Death. Exploration is presented to the player as physical

exploration: jumping onto springs, falling through tubes, or

ascending in beams of light to discover new areas of the world. If

the player continues moving to the left or right, an infinite world

of gameplay unfolds in front of them. However, players are

simultaneously exploring the generative space, i.e. the many

different kinds of levels that Launchpad is capable of producing

by tuning different parameters. Each time the player interacts with

a special, glowing “tuning portal” the game propels her into a new

part of the world that has been generated for her based on the

choices she has made so far and how far she has progressed

through the game. For example, the enemies tuning portal

involves killing a special glowing enemy and then ascending in a

beam of light to newly generated terrain. Depending on whether

the portal was configured to strengthen or weaken its associated

challenge (a setting the player can decide before entering the

portal), the level will contain either a greater or lesser frequency

of enemies at a greater or lesser difficulty level. These choices

lead players to a wide range of content during the course of the

game; Figure 2 shows three drastically different configurations of

the world based on the choices the player has made.

There are six different tuning portals in the world that correspond

to each challenge type (Figure 3). Each challenge type represents

a different fear or negative emotion. Each fear has three different

tiers of difficulty, which the player will encounter in order as they

continue exploring deeper into a particular fear. For example, the

enemies challenge type can be realized as (in order of increasing

difficulty): a moving enemy on a platform, an enemy who jumps

out at the player, and an enemy that hurls projectiles. Each

dreamer is hidden at a combination of tiers for three different

fears; for example, the dreamer having a nightmare about creepy

crawlies is trapped at the intersection of the fears of losing control

(tier 1), stress (tier 1), and conflict (tier 2). When the player

reaches that intersection, the game presents her with a human-

authored level representative of an individual dream that she must

traverse to find the dreamer at the end of it. These six levels

associated with the dreamers are the only levels in the game

authored by a human as opposed to the level generator. Human

authoring means that these level segments can be more surprising

to the player and offer more challenging combinations of content

– they contain configurations of geometry that are outside the

Figure 1. A diagram describing the AI-based game design

process used when creating Endless Web, where Launchpad is

the AI system.

Figure 2. Three different configurations of the Dream. The leftmost screenshot shows two stompers and an enemy patrolling the

long, unbroken platform. The middle shows a world with a lot of springs from all the tiers of difficulty. The rightmost has platform

hazards and gaps. The background color of the world shifts colors to reflect the predominant challenges and difficulty tiers.

189

capability of the generator, such as overlapping platforms or

platforms made entirely out of springs.

In addition to the primary goals of finding all the dreamers, there

are six powerups scattered throughout the generative space as

secondary goals. The powerups are hidden at a combination of

tiers for only two different fears, so they are easier to reach while

exploring to find the dreamers. Collecting a powerup unlocks a

special ability that eases level exploration. Each powerup is

related to a challenge type: enemies/shield, platform

hazards/place block, springs/float, gaps/double jump, moving

platforms/time slow, and stompers/dash. Because of the

relationship between challenges and powers, each powerup is

placed at the second tier of its challenge and the first tier of a

different challenge. Figure 4 shows the visual representation of

the generative space and both the primary and secondary goals;

this visualization is presented to the player as a map that is

accessible at any time during the game. The player also sees a

“mini-map” in the top right corner of the screen during the game

that reflects the player’s current position in each of the color-

coded fears

The player's progress towards the different dreamers is reflected

in both the art and music. Each level component has seven

different art representations: one for each of the dreamers, and one

for the undisrupted world (Figure 5 shows the seven different art

assets for normal platforms). Tile art is procedurally selected at

play time based on the player's proximity to the different

dreamers. As the player gets closer to dreamers, the visual

aesthetic coalesces towards that particular dreamer; for example,

when the player is only a short distance away from the Time and

Death nightmare, the level is likely to look like the screenshot in

Figure 6a, but when the player is a far distance from all the

dreamers, the art is far more jumbled (Figure 6b). Once a dreamer

has been rescued, the art associated with that dreamer is no longer

shown and is replaced with the art for the undisrupted world. The

music played is also procedurally selected; each time the player

makes a choice, the game selects a track to overlay in the game

based on that choice. The more challenging the configuration of

the generator, the more chaotic the music sounds as there are more

tracks that are layered over each other at once.

2.2 Launchpad
Launchpad is a rhythm-based level generator for 2D platforming

games that uses grammars to construct both the rhythm that

dictates intended player actions and the geometry that matches

that rhythm. A designer has input to the generator in the form of

parameters that specify the general path that the level should

follow and the frequency with which different level components

should occur. Launchpad guarantees that levels will be playable

with its underlying physics system, which knows the maximum

speed the avatar can move, how high it can jump, and the sizes of

different level components. The key underlying principle in

Launchpad is a separation of the pacing of a level from the

geometry in it: it is possible for designers to control level pacing

largely independently from the composition of level geometry. A

more detailed description of the original version of Launchpad has

been published previously [20].

While designing Endless Web, Launchpad underwent a number of

changes to support game design decisions. The largest change was

the introduction of the tiered difficulty system mentioned earlier;

Figure 5. The six different kinds of tuning portals, left to

right: enemies/conflict, platform hazards/betrayal,

springs/entering the unknown, gaps/failure, moving

platforms/losing control, and stompers/stress.

Figure 6. The Web: a visualization of all the different goals

available to the player that serves as a map of the generative

space. The player has six primary goals to collect the

dreamers (upper right) and six secondary goals to collect the

powerups (lower right). The six colored circles on each strand

of the Web signifies the player’s current location – circles are

larger when they are at an important location along an axis.

When the player mouses-over an icon, all identical icons are

highlighted.

Figure 3. The seven different art assets for non-hazardous

platforms. The top asset is for the undisrupted Eidolon

world, the remainder correspond to the nightmares (top to

bottom): Body Horror, Broken Hearts, Creepy Crawlies, Dolls

and Roses, Faceless Crowds, and Time and Death.

Figure 4. As the player approaches a dreamer, the art style

slowly coalesces to that of the nightmare (left: near the Time

and Death nightmare). When further away from any one

dream, the art is more jumbled (right: a level showing art for

Body Horror, Broken Hearts, and Creepy Crawlies).

190

the original version of Launchpad was agnostic about the

difficulty of challenges it presented to a player. The new version

takes additional parameters for the tier of each challenge, which

the generator uses to determine the kinds of components it will

insert in the level.

The influence of precise timing on level component placement

was also relaxed, to create a higher variety of content when

certain restrictive elements were needed. For example,

Launchpad’s expressive range is diminished when asking it for

levels composed mainly of springs [21]. By relaxing timing

constraints so that the time spent in the air is no longer factored in,

it is possible to use springs for a wider range of beats.

3. PCG-BASED GAME DESIGN
Endless Web was designed to be an entirely PCG-based game,

which we define as follows:

A PCG-based game is one in which the underlying PCG system is

so inextricably tied to the mechanics of the game, and has so

greatly influenced the aesthetics of the game, that the dynamics—

player strategies and emergent behavior—revolve around it.

Hunicke et al. describe an approach to game design and analysis

called Mechanics, Dynamics, and Aesthetics (MDA) [11]. In this

framework, the mechanics are the core rules of the game and the

aesthetics are the desired emotional response that should be

evoked in the player. The dynamics sit between the mechanics

and aesthetics as the “run-time behavior of the mechanics acting

on player inputs and each others’ outputs over time”.

PCG has been used in games for many reasons, including

addressing technical limitations, improving replayability, and

providing infinite worlds for the player to explore. We use the

definition of a PCG-based game as a lens with which to examine

existing games that include PCG elements, exploring whether

they do or don’t satisfy the elements of the definition.

3.1 Non PCG-Based Games
There are three major ways that PCG has traditionally been used

in digital game design: to improve replayability, to resolve

technical limitations, and to provide players with an environment

to explore that is so vast it could not be created by human

designers.

As discussed earlier, Rogue [23] and its descendent roguelikes

(e.g. Diablo [3] or Spelunky [25]) all use PCG to enhance

replayability. Both the mechanics and aesthetics of these games

are largely unrelated to the PCG system; while players are aware

that they have a different experience each time they play, the use

of PCG does not affect their playing experience, with the notable

exception of making failure “permanent” for any generated world.

The Civilization games also use PCG to improve replayability;

however, it is also forms an important aspect of the early game

experience. The maps generated by the game influence strategies

that players can take. For example, if a player’s starting area does

not have a particular important resource, they might choose to

expand towards a known source of the resource or negotiate a

trade with another civilization. However, while important, the

PCG does not make up the core game experience for most players.

Most strategies are less related to the generated environment and

more about building certain technologies and resource allocation.

Civilization IV [9], for example, comes with several human-

authored maps that still provide a great deal of replayability

through these other, non-PCG systems.

Elite [5] is an example of a game that uses PCG as a form of data

compression; with a platform that allowed only 22K of memory, it

was impossible for the designers to author and store all the

content they wished for the game. However, while the galaxies

and worlds of Elite were algorithmically generated, they were

entirely static – the designers had the ability to curate the content

that was created [4], and had retained control over the world the

players would explore. While the aesthetics of the game—the

player’s awe at being able to explore a huge universe—were a

result of using PCG to compress the world, the mechanics were in

no way related to the PCG system. The technique of using PCG

for compression is also common in demoscenes. For example, the

game .kkrieger [1] is a first-person shooter that uses only 96K of

disk space.

Minecraft [16] and Terraria [22] are modern examples of using

PCG for both replayability and exploration (as in Elite). The

player is provided with an inconceivably vast world to explore,

and the formation of the world guides the player’s strategies.

However, again, the PCG system is not influenced by the player,

so no PCG-based dynamics can arise.

3.2 PCG-Based Games
There are a small number of games that we do consider PCG-

based. For example, in Galactic Arms Race [10] the players’

battle strategies determine the next round of weapons that will be

available to them; the creators of the game have shown that there

is a large variety in the kinds of weapons players will customize.

Because it is a multiplayer game, players can see the different

kinds of guns they could have created if they played with different

tactics.

Inside a Star-Filled Sky [17] is a another good example of a game

whose mechanics are built around PCG. Players navigate a space

in which they can zoom into or out of recursively nested levels,

each one generated from a seed passed from an object in a higher

or lower level. Play events that take place on one level of play

affect levels above and below themselves.

Both Galactic Arms Race and Inside a Star-Filled Sky use PCG as

a game mechanic; however, both are different from Endless Web

in one crucial aspect: the player’s direct influence over content.

Actions players take in these two games have, at most, an indirect

effect on the content generator: the games are designed so that the

generators are entirely invisible to the player. Endless Web

intentionally places the generator as something that players are

encouraged to strategize around when determining the path they

should take through the generative space to reach different goals.

3.3 Endless Web as a PCG-Based Game
Recalling the definition of a PCG-based game given earlier in this

section, understanding Endless Web as a PCG-based game

requires an analysis in terms of its mechanics, dynamics, and

aesthetics. Mechanics-wise, Endless Web is consciously

positioned within the traditions of the 2D platformer. The basic

actions available to the player are those typical of existing

platformers, including jumping over gaps, killing enemies, and

avoiding stompers. The level elements used in the game are also

commonly seen in traditional platformers; enemies patrol back

and forth along platforms, stompers descend from the “ceiling” of

the level, and springs propel the player to greater heights.

However, one of the main core mechanics of Endless Web is not

one of these platforming mechanics. Endless Web is

fundamentally a game about manipulating a generative space, and

the core mechanic involves the player deliberately choosing to

influence the generator in different directions through interacting

with the glowing tuning portals. This core mechanic is intertwined

191

with the generator; each tuning portal the player interacts with

directly changes parameters to the generator.

A key aesthetic in Endless Web is a sense of exploration and

wonder, both in terms of physical exploration and uncovering the

generative space of the game. As the player progresses through

the game, the generator provides increasingly challenging

combinations of content, and the variety of potential content is

quite high. The world the player is exploring is infinite; as

mentioned above, the player could choose to keep moving in one

direction forever and the generator would continue to provide

content appropriate to the choices the player has made. This

aesthetic could not be achieved without the use of procedural

content generation—there is a limit to the amount of human-

authored content that can be made for a game and thus the extent

to which players can explore a world, and the generator makes it

possible to remove this limitation.

This aesthetic comes from the player’s interactions with the

generator using the tuning portals and desire to achieve the goals

that are scattered throughout the generative space. The dynamics

of the game involve the player building strategies around which

direction to push the generator at any given time. To achieve each

goal, the generator must be configured to a particular location in

generative space, but there are many ways for the player to reach

these locations. The player can choose to manipulate the generator

in different ways in order to achieve goals in different orders, or

to reduce the difficulty of a particular challenge that isn’t needed

for the current goal. Thus, the player is building strategies around

the procedural content generator to make sure that the content

seen is of an appropriate challenge and interesting composition.

4. DESIGN CHALLENGES
Building a game around a PCG system introduces some unique

design challenges, including how to best integrate the particular

PCG system into the game, how to design for always having

desirable content while still giving the player control, and how to

teach the player to understand entirely new rules within common

genre conventions. Some problems arise from the abilities and

biases of the generator, while others arise from technical decisions

made to support an infinite world. This section discusses these

challenges in the context of designing Endless Web.

4.1 Using PCG as a Mechanic
The primary design goal for Endless Web was to create a game

that could not exist without procedural content generation. The

design process began with an analysis of the capabilities of

Launchpad, with a view to how these capabilities afford new

game mechanics. Launchpad’s key feature is how the input

parameters are directly tied to the levels that it can create, and

altering these parameters was identified as a core mechanic. Early

design ideas involved altering the parameters indirectly; for

example, one proposed idea was a platformer game for Facebook

where beat density would be determined from the frequency of

status updates and components would be selected based on the

tone of posts. However, in keeping with the definition of a PCG-

based game as one whose dynamics are strongly influenced by the

procedural content generator, we decided instead to provide the

player with relatively direct control over Launchpad’s input

parameters, thus offering players the opportunity to build

strategies around the generator.

This also fit in with the desired aesthetics for the game. PCG is

well-suited for an exploration game due to its capability for

creating new territory for the player to explore infinitely in any

direction. By giving players control over Launchpad’s input

parameters, they are able to explore not only the physical space of

the world but also Launchpad’s generative space.

However, it is important that the parameters made available to the

player are not confusing or overwhelming. An early technical

prototype for Endless Web exposed every parameter to Launchpad

as sliders on the right side of the screen to make it easy to rapidly

play with different parameter configurations (Figure 7). This

prototype was useful in determining which parameters were most

obvious when changed, and the relationships between these

parameters. For example, there are parameters for the frequency

of wait and jump actions in a rhythm that are set separately from

the parameters for different geometry components, but these

parameters are dependent on each other. While previous work

[21] had shown relationships between Launchpad’s parameters

through an analysis of thousands of generated levels, creating this

prototype made it possible to understand the ramifications of these

dependencies on the player’s experience. The parameters chosen

for the player to manipulate were those that provided the greatest

variation in player experience while minimizing potential

undesirable dependencies (e.g. we do not allow players to modify

the physics of the game despite being a noticeable change because

it has too many implications on the availability of different level

components).

4.2 Balancing Control for a Generative Space
Using PCG as a mechanic requires the player to have control over

the kind of content that appears in the game. However, there is a

measured amount of control that the designer should retain over

the generator as well, to handle design concerns such as difficulty

or pacing. In Endless Web, the game state determines the value of

certain parameters to the generator while the player controls

others through play. The player retains a great deal of control over

the generator, but within the boundaries set by the game’s design.

Launchpad’s separation of pacing from level components seemed

a natural fit for drawing a boundary between player and designer

control. Thus, the player was provided with control over the

components that appear in the level, rather than rhythm

parameters. Control over the pacing of the level was kept in the

game, as level pacing is a global consideration related to

difficulty, which we wanted to be able to manipulate ourselves as

game designers rather than leave in the hands of the player. Any

PCG-based game must have a similar separation in its underlying

generator so that the designers still have control over some aspect

of player experience.

4.2.1 Designer Control: Difficulty and Pacing
Retaining control over difficulty and pacing was a response to

playtesting feedback from an earlier iteration of the game [19].

There was not enough variety in the levels being created, and

there was no clear difficulty progression. This problem was

addressed in two ways: through the creation of a tiered difficulty

Figure 7. The technical prototype built to understand the

impact of altering parameters on the player’s experience.

Sliders on the right control every parameter of the generator.

The area on the left allows the designer to play levels as soon

as they are generated.

192

system in Launchpad, and by providing the game with control

over the level’s pacing.

Launchpad was originally designed to choose from all

components according to a probability specified by the designer.

The tiered difficulty system altered this by adding more

components at different difficulty levels, and having the generator

choose the difficulty of a component independently from the

component type. Endless Web keeps track of player progress into

a particular challenge and requests the appropriate tier of

difficulty from Launchpad when the player uses a tuning portal.

The player can choose whether the difficulty of that challenge will

be increased or decreased before entering the portal by hitting a

direction box (similar to a question mark box from Super Mario

World [15]). Raising the difficulty of a challenge type raises the

probability that a more difficult component will be chosen. This

design decision also solved the problem of variety in levels by

tripling the number of components available to the generator

while maintaining uncertainty about which components will be

chosen.

While variety and unpredictability in content is considered good,

that variety must still be carefully structured to provide an

engaging and fair experience with an appropriate level of

challenge. Endless Web controls the rhythm and pacing

parameters by slowly increasing them as the player reaches his

goals. Level segments start out as short, slower paced segments

and change (as dreamers are rescued) to be longer and faster

paced. Note that increasing the parameters actually alters the

probability that a segment will have the appropriate length and

density, not the actual frequency itself. This adds some extra

variation and can surprise the player with a more challenging than

usual section early in the game, but on average the segments meet

the intended difficulty curve.

4.2.2 Player Control: Level Structure
While the game retains control over the pacing of the generated

levels, the player is given control over the overall composition of

the world. Each time the player uses a tuning portal, the

probability of the appearance for the corresponding component is

altered. Launchpad then generates 50 different candidate level

segments and returns the one that most closely meets the

parameters for component frequency. This provides players with

appropriate feedback about the changes they are making to the

generative space, resulting in players feeling like they are

controlling what they see in the game.

4.3 Navigating a Generative Space
The aesthetic of exploration in Endless Web is designed to feel

natural and organic. The tuning portals are designed to be familiar

level elements that, while clearly marked as transitions to a new

location, still feel like they belong in the game world. Using

familiar level components provides a cue to players about what

they should expect the generator to do when they are used. We

found that one of the most challenging aspects of navigating

generative space is the lack of waypoints or landmarks that can be

used when navigating a physical space, since all of the content is

generated. This issue was further addressed through the use of art

assets and audio to provide each configuration of the generative

space with a unique “fingerprint” (Sections 2.1 and 4.6).

Important decisions that made generative space navigation less

frustrating were made when designing the algorithm for how

tuning portals should be scattered throughout the world. In

Endless Web, to make exploration feel more organic and well-

paced, there is only one tuning portal that appears between level

segments, allowing the player to keep moving through the level to

find more portals.

Originally, these portals were placed entirely randomly. However,

the entirely random placement was jarring to players. One player

described the experience as “being at the mercy of a random

number generator”. Players would frequently express frustration

at being unable to find the one portal they needed to reach a goal.

Tuning portal placement needed to be done intelligently, not

randomly. Indeed, while Endless Web uses random numbers

frequently, they are always part of a directed experience.

This problem was addressed by probabilistically placing tuning

portals based on how likely the game judges the player is to need

them. For example, if the player is only two portals away from

reaching a goal, the game is more likely to show the player the

portal that he needs, intentionally assisting the player in reaching

the nearest goal. However, if the player ignores the portal and

continues moving to the left or right, he will see the full sequence

of portals before seeing any repeats. The set of available portals is

reset whenever the player uses one. This guarantees that the

player will always be able to find the portal he wants to use, but is

more likely to see the portal that he needs.

4.3.1 Making the PCG Visible
A key issue in building games around AI systems is avoiding the

Tale-Spin effect [24]; the underlying AI system must be

transparent enough that the player can understand what it is doing.

The Tale-Spin effect occurs when there is no “means for

interaction that would allow audiences to come to understand the

more complex processes at work within the system”.

The decision to make exploration completely seamless means that

the player never sees Launchpad in action. There is no geometry

popping into the screen, and no way for the player to see

Launchpad construct levels and choose between different options.

Thus, Endless Web’s only path to avoiding this effect is making

sure the player’s choices have a clear and predictable effect on the

world. Playtests have shown that this works well at lower tiers,

when elements are first introduced. However, it is currently

unclear how well this works at higher difficulty tiers, or when all

the tiers are at equal values. When this occurs, the probability of

each component appearing is so similar to the others that it can be

hard to see an immediate impact from choices. We intend to better

understand how players interpret the consequences of their

choices in future work.

4.3.2 Reusing Genre Conventions
Another challenge faced in Endless Web was the player’s

interpretation of certain genre conventions. Experienced

platformer players naturally tend towards moving to the right

instead of the left, and assume that falling down gaps leads to

death. Since three of Endless Web’s tuning portals transport the

player downwards, and the player always has the ability to move

to either the left or right at the end of a portal, this presented

problems in our design. Early versions of the tuning portals

involved the player falling down gaps. This issue was addressed

by changing the downward moving portals to have the player

move through a tube instead of falling in mid-air. Playtests run

before and after these changes show that using tubes for

downward portals reduces player confusion.

4.4 Goals for Exploring Generative Space
The dreamers in Endless Web are scattered throughout the

generative space. Goals are placed in generative space rather than

physical space to reinforce the design goal that players should be

exploring the capabilities of the generator, and that physical

193

position in space is immaterial. The tiered difficulty system

offered seemingly obvious goal placement; with six challenge

types and six dreamers, there was initially one dreamer at the end

of each challenge, and the player would be rewarded for finding a

dreamer by giving her a powerup.

However, placing goals at the end of the web strands was not

interesting enough. It provided the player with no motivation to

actually explore the generative space because they were always

simply aiming to max out each axis. This problem prompted us to

move goals to be hidden within “layers of the Dream” at different

world configurations, and de-coupled powerups from the dreamer

locations. While this added more complexity to the game,

requiring the player to learn another system (section 4.5), this did

successfully encourage players to explore the generative space

and see more interesting configurations of content. The powerups

became secondary goals that helped the player through the game,

although they are not required. Since Launchpad has no

knowledge of the powerup system, there is never a level that

cannot be completed without a powerup.

4.5 Teaching the Player
The hardest aspect of designing Endless Web was teaching the

player how to understand an entirely new game genre that, on the

surface, appears identical to other, more familiar, platforming

games. After the main part of the game was designed, we

introduced a tutorial series that guided the player through the

different systems of the game. The first phase of the tutorial

teaches the player the controls and core platforming concepts, and

requires the player to take the platform hazards tuning portal. This

section of the tutorial is hand-authored. While it could have been

made with a different level generator that would sufficiently

control the content and placement of instructions, we don’t expect

players to replay the tutorial level once they understand the

mechanics so a procedurally generated tutorial would offer little

value over a hand-authored one.

After the player uses the platform hazards tuning portal, the game

continues with procedurally generated content. The Eidolon is

given a small goal to find his elder tutor, who is waiting at a

minor configuration of the world. The player cannot see the entire

Web at this point, only a small subsection of it. The tutorial

familiarizes the player with the concept of using tuning portals to

change the world configuration and aligning the world to a

specific configuration. After the player finds the Elder, the rest of

the game opens up and the player is given the main goal of

finding all the dreamers.

Designing the Web was particularly challenging, as players

expected it to be a physical map of the world. Many early

playtesters assumed that the positions on the web corresponded to

physical positions in the world, and that by moving upwards in

space they would move “up” on the Web. This is another example

of genre standards confusing players, in this case by repurposing

physical direction to mean something completely different. It is

not immediately clear to players that the world they are exploring

is endless, as it looks identical to other platformers they have

played in the past. To solve this problem, the Web was never

referred to in the game or any tutorial text as a “map” and

additional tutorial information was added to the Web screen itself.

4.6 Art Influence and Challenges
Having a visually compelling world was critical to our design

goals; we wanted players to have the sense of being in a surreal

dreamscape, surrounded by familiar nightmare motifs. Therefore

there is human-created art incorporated into the game, rather than

procedurally generated assets. These assets were designed to be

modular so that they could be procedurally selected during play.

Modular art design introduced a large challenge for the art team,

as there is no way of knowing ahead of time the exact placement

of platforms or enemies.

The art direction had a large influence on the final story of the

game. One round of early concept art included 26 ideas for what

spikes might look like – from broken hearts and spiky high heels

to teeth and electric fences (Figure 8). The diversity in art we saw

for spikes influenced our decision to introduce the nightmares to

the game, and the role of the player shifted from being a single

human dreamer to a creature who is trying to find and rescue

multiple dreamers trapped in these nightmares.

Designing new art assets also revealed implicit assumptions and

inconsistencies in Launchpad’s physics system. Launchpad was

designed to support changing physics parameters (e.g. the player’s

movement speed or the sizes of level components) without

altering the generator at all. However, the original design for

Launchpad had not accounted for constraints among these

parameters, and when new sizes of art assets were added, the

physics system in Launchpad broke due to failing to enumerate

these constraints. For example, the height of enemies must be set

such that they are no taller than the player’s maximum jump

height, otherwise the player will not be able to jump over them or

jump on top of them. Using art assets that had a different ratio

from the originally intended size for Launchpad revealed such

inconsistencies, and prompted a redesign of the physics system

such that these constraints are taken into account.

4.7 Technical Design Decisions
In addition to the game design issues detailed above, there were

also two key technical design decisions that guided the creation of

Endless Web: memory limitations for an infinite world and the

potential for delayed response from the generator.

4.7.1 Memory Limitations
With an infinite world, it is impossible to store all of the generated

content in memory. Although a stored seed could have re-

generated content on demand, simply deleting all off-screen

content provided a much simpler architecture and reduced any

need for worrying about memory management. This architecture

decision played a large role in initial story concept development.

Endless Web’s setting—the surreal landscape of dreams—also

grew from the incorporation of procedural content generation and

the limitation that content is generated off-screen and deleted off-

screen, meaning that if the player turns around they will see

different level geometry than was there before. Dreams provided a

good setting that could explain these issues, since the landscape in

dreams frequently shifts in unexpected ways.

4.7.2 Client/Server Split
While Launchpad is capable of producing levels extremely

quickly—usually requiring less than a second—any lag in

response from the generator must be handled in the game. This lag

Figure 8. A selection from the 54 original concept art sketches

for the spikes challenge.

194

was compounded by the use of a client/server architecture;

Launchpad is a web service that is called by Endless Web

whenever a new level segment is needed. A new segment is

required once every 5-20 seconds. Having Launchpad as a web

service provides flexibility in updating the game and testing it

with different PCG techniques, and also permits gathering of

gameplay metrics. However, it does introduce a potentially

significant problem in handling server lag and lost connections.

Auto-saving the game at every transition point, and requiring each

tuning portal to be able to extend indefinitely while waiting for

server response, addressed this problem. For example, the enemies

tuning portal involves the avatar being lifted up in a beam of light.

This beam extends off-screen until the server has responded to the

generation request. This maintains the sense of seamless

exploration as long as possible. If the request fails, the player is

placed in a human-authored level segment that tells the player

they’ve lost their connection to the dream.

5. CONCLUSION
While the discussion thus far has largely been specific to Endless

Web, there are a number of general lessons that can be drawn.

Balancing control over content. Dan Kline, speaking of

designing the game Darkspore, noted that all aspects of the

player’s experience should be directed—purely randomized

aspects of content stand out to the player as undesirable [13].

Control over the content generator must be balanced between the

player and the game itself. When creating a PCG-based game, the

role of the game designer shifts from being a creator of instances

of content to an entire, parameterizable range of content. The

challenge here comes in ensuring that, while the content the

player experiences will be varied, the overall game experience is

still appropriately controlled. For example, Galactic Arms Race

retains control over when new weapons are evolved and seeds the

pool with content that is known to be enjoyable.

Keeping the PCG visible to the player. It is crucial for players

to understand the effect they have on the world, and this can only

be done by making the use and consequences of PCG as visible to

the player as possible. Without knowing that the world is being

generated around them, players lose agency as the choices they

make feel meaningless.

Building support for art. Building complete games requires

effort from not only engineers and designers, but also artists and

musicians. While procedurally generating art and music are

possible and can lead to successful results [16,17], the resulting

aesthetic is not always desirable. Thus, it is vital to build in

support for art and music to the PCG system, and design the

system to be flexible enough to accommodate a changing art or

music style over the course of the game’s design. For example,

Launchpad was designed to create levels for variably sized

content, which was helpful when testing different size art assets

for Endless Web.

This paper has presented the design of the PCG-based game

Endless Web, the challenges faced during the design process, and

how these challenges were addressed. There are still very few

PCG-based games in existence, and it is our hope that the lessons

we have learned from creating Endless Web will be helpful as this

field matures and new PCG-based games are created.

6. Acknowledgments
Endless Web was developed by a student team of engineers,

designers, and artists. The authors extend thanks to Ari Burnham,

Jon Gill, Rob Giusti, Umi Hoshijima, Masami Kiyono, Jameka

March, Joshua Ray, Christian Ress, Rob Segura, and Vencenza

Surprise, without whom the game would not exist. This work is

supported by the National Science Foundation, grant no. 1002852.

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation.

7. References
1. .theprodukkt. .kkrieger (PC Game). 2004.
2. Ashmore, C. and Nitsche, M. The Quest in a Generated World.

Proceedings of the 2007 Digital Games Research Association (DiGRA)

Conference: Situated Play, (2007), 503–509.
3. Blizzard North. Diablo (PC Game). Blizzard Entertainment, 1997.

4. Boyes, E. Q&A: David Braben -- from Elite to today. GameSpot UK,

2006.
http://uk.gamespot.com/news/6162140.html?part=rss&tag=gs_news&subj

=6162140.

5. Braben, D. and Bell, I. Elite (BBC Micro). Acornsoft, 1984.
6. Cutumisu, M., Onuczko, C., McNaughton, M., et al. ScriptEase: A

generative/adaptive programming paradigm for game scripting. Science of

Computer Programming 67, 1 (2007), 32–58.

7. Dart, I.M., De Rossi, G., and Togelius, J. SpeedRock: procedural

rocks through grammars and evolution. Proceedings of the 2nd

International Workshop on Procedural Content Generation in Games,
ACM (2011), 8:1–8:4.

8. Eladhari, M.P., Sullivan, A., Smith, G., and McCoy, J. AI-Based

Game Design: Enabling New Playable Experiences. Technical Report,
UCSC-SOE-11-27, 2011. http://www.soe.ucsc.edu/research/technical-

reports/ucsc-soe-11-27.

9. Firaxis Games. Civilization IV (PC Game). 2K Games, 2005.
10. Hastings, E.J., Guha, R.K., and Stanley, K.O. Automatic Content

Generation in the Galactic Arms Race Video Game. IEEE Transactions on

Computational Intelligence and AI in Games 1, 4 (2009), 245–263.
11. Hunicke, R., LeBlanc, M., and Zubek, R. MDA: A Formal Approach

to Game Design and Game Research. Proceedings of the 2004 AAAI

Workshop on Challenges in Game Artificial Intelligence, AAAI Press
(2004).

12. Interactive Data Visualization Inc. SpeedTree (PC Software).

Lexington, SC, 2010.
13. Kline, D. and Hetu, L. AI of Darkspore (Invited Talk). 2011

Conference on Artificial Intelligence in Interactive Digital Entertainment.

http://dankline.files.wordpress.com/2011/10/ai-in-darkspore-aiide-
2011.pptx.

14. Müller, P., Wonka, P., Haegler, S., Ulmer, A., and Van Gool, L.

Procedural Modeling of Buildings. ACM Transactions on Graphics 25, 3
(2006), 614–623.

15. Nintendo EAD. Super Mario World (SNES). Nintendo, 1990.

16. Persson, M. Minecraft (PC Game). 2011.
17. Rohrer, J. Inside a Star-Filled Sky (PC Game). 2011.

18. Smelik, R.M., Tutenel, T., de Kraker, K.J., and Bidarra, R. Integrating

Procedural Generation and Manual Editing of Virtual Worlds.
Proceedings of the 2010 Workshop on Procedural Content Generation in

Games (co-located with FDG 2010), (2010).
19. Smith, G., Gan, E., Othenin-Girard, A., and Whitehead, J. PCG-Based

Game Design. Proceedings of the 2nd International Workshop on

Procedural Content Generation in Games, co-located with FDG 2011,
(2011).

20. Smith, G., Whitehead, J., Mateas, M., Treanor, M., March, J., and

Cha, M. Launchpad: A Rhythm-Based Level Generator for 2D

Platformers. IEEE Transactions on Computational Intelligence and AI in

Games (TCIAIG) 3, 1 (2011).

21. Smith, G. and Whitehead, J. Analyzing the Expressive Range of a
Level Generator. Proceedings of the Workshop on Procedural Content

Generation in Games, co-located with FDG 2010, (2010).

22. Spinks, A. Terraria (PC Game). Re-Logic, 2011.
23. Toy, M., Wichman, G., Arnold, K., and Lane, J. Rogue (PC Game).

1980.

24. Wardrip-Fruin, N. The Tale-Spin Effect. In Expressive Processing:
Digital Fictions, Computer Games, and Software Studies. MIT Press,

2009.

25. Yu, D. Spelunky (PC Game). http://www.spelunkyworld.com/, 2009.

195

