
Hypertext Versioning for Embedded Link Models

Kai Pan, E. James Whitehead, Jr., Guozheng Ge
Department of Computer Science

Baskin Engineering
University of California, Santa Cruz

{pankai, ejw, guozheng}@cs.ucsc.edu

ABSTRACT
In this paper, we describe Chrysant, a hypertext version control
system for embedded link models. Chrysant provides general-
purpose versioning capability to hypertext systems with an
embedded link model. To apply Chrysant for a specific hypertext
system, we require the containment model for this system’s data
model, the containment model of the version repository for this
system, the hypertext role definition, the versioning role
definition, and the filesystem mapping definition. Additionally, a
specific parser that retrieves the link targets from the hypertext
resources is needed. Hypertext versioning is different from
versioning an individual resource in the traditional way, in that
both the content of a hypertext resource and the relationships
between it and other resources related by hypertext links are
versioned. In Chrysant, the structure container and the content of
a hypertext resource are versioned separately. We describe the
architecture of Chrysant, and explain the procedure of the check-
in and check-out functions. An AF-BTU algorithm is introduced
in the paper to check in the hypertext network of a hypertext
resource. As a case study, the application of Chrysant for HTML
content is introduced. We create necessary definition
specifications for the HTML system and a parser to retrieve link
targets from a HTML document. Some examples of HTML
versioning with Chrysant are shown.

Categories and Subject Descriptors
D.2.2 [Document preparation]: Hypertext/hypermedia;
H.2.1 [Database Management]: Logical design – data models.

General Terms
Design, Documentation

Keywords
Containment model, hypertext versioning, structure versioning,
link versioning, HTML versioning, version control system, SCM.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

HT’04, August 9–13, 2004, Santa Cruz, California, USA.

Copyright 2004 ACM 1-58113-848-2/04/0008…$5.00.

1. INTRODUCTION
Hypertext resources evolve just as other unlinked resources do
and we need to record their version history for configuration
management purposes. Here, a resource is “anything that has
identity” [1], such as a bitmap image, a source code file, or a
directory. Regular resources are usually versioned individually in
version control systems like RCS [2], CVS [3], and SCCS [4].
More advanced SCM systems, such as Subversion [5] and
ClearCase [6], support directory versioning or project-level
versioning, where the filesystem hierarchy is versioned as well as
individual files. The distinction of hypertext is that a hypertext
resource is not isolated. The links inside or outside hypertext
resources form a hypertext network. So, versioning a hypertext
resource goes beyond the individual document boundary and
reaches outside to the other resources it links to, and so on. In
other words, versioning a hypertext resource means versioning the
whole hypertext network. That is, not only the content of a
hypertext resource is versioned, but also its relationships with
other resources as referenced by hypertext links.
Why should we version the hypertext network as a whole? Here
are some scenarios that show the necessity of tracking the
evolution of the whole hypertext network.

• An online reference manual for a database system has an index
of chapters in the root hypertext document, with each chapter
saved in an individual document. Every time changes are made
to some of the chapter documents, the whole reference manual
should have a new version, though the root document is
unchanged. In this case, all the documents should be versioned
as a whole, because all the documents related by the links are
in fact treated as one document logically.

• An HTML page uses an external CSS (cascading style sheet)
file to define the page presentation. When the CSS file is
changed, the HTML page will have a new presentation, though
the HTML page itself will not have a new version. Ideally we
would like to version the two documents together to effectively
record the evolution of the presentation of the document.

• An HTML page has multiple frames, and each frame links to
another HTML document. Now, the presentation history of this
HTML page will depend on the history of the linked-to HTML
documents.

Links are treated differently across hypertext systems [7], with
some systems, like HTML(WWW), Hypercard [8], and KMS [9]
having links embedded in the content of the hypertext document,
while other systems, such as Chimera [10], Aquanet [11], and
HyperDisco [12] have external links.

This paper only focuses on the approach to version those
hypertext models with embedded links. Embedded links eliminate
the need to handle the issues raised by Østerbye concerning the
immutability of versions and the versioning of links [13], since
the embedded links are versioned together with the content of the
hypertext resource that contains them, and link modification will
definitely cause a change to the containing hypertext resource in
embedded link models. But, at the same time, embedded links
introduce the difficulty of retrieving links from the content of the
hypertext resources, since a hypertext content parser is required to
identify links and then discover link targets. It is thus somewhat
more difficult to reason about embedded link structures.
Previous hypertext versioning work has focused almost
exclusively on external link versioning, treating embedded links
as a trivial case [14]. This work focuses on embedded link
versioning, but with an approach that gains the advantages of both
embedded and external link models.
This paper presents Chrysant, a system that provides general-
purpose hypertext versioning capability to hypertext systems with
embedded link models. That is, the check-in, check-out and other
version control functions in Chrysant work for any embedded link
hypertext model. Several necessary model definitions for a
specific hypertext system are needed for Chrysant to work for this
system. These definition specifications include the containment
model for this system’s data model, the containment model of the
version repository for this system, the hypertext role definition,
the versioning role definition, and the filesystem mapping
definition. A hypertext parser for a specific hypertext system is
also required as an external module to Chrysant to retrieve the
link targets from the hypertext resources in this hypertext system.
To version the hypertext network, the hypertext link structure and
the content of a hypertext resource (document/node) are versioned
separately in our approach. Using terminology defined in [14], a
hypertext resource has two roles in the Chrysant system: one is
structure container, since a hypertext resource contains a set of
embedded links; the other is the resource content, which needs to
be versioned as regular files. Both of the structure container and
the resource content have their own version histories.
There are several unique contributions made by our work. First,
Chrysant provides hypertext versioning capability for hypertext
systems with embedded link models. Second, a versioning
mechanism is introduced to version the structure container and the
content separately for a hypertext resource. Third, an algorithm,
AF-BTU, is developed to version a hypertext network as a whole.
Last, as an application case, HTML versioning is implemented
with Chrysant, which has practical usage.
In the next section we discuss the containment model and other
definitions which are used to generalize hypertext systems. In
Section 3, we explain the architecture, design, and core algorithm
of Chrysant. In Section 4, we present the practical application of
hypertext versioning for HTML. Last, we discuss our future work
and conclude in Section 5.

HTML

HTML_Body

NLC_
Resource 0..n

1
1

1
1

Stack

Card

Link

1
1..n

1
0..n

1

0..n

HTML HyperCard

Referential
Containment
Inclusive
Containment

Container

Atom

0..n

0..n
0..n

Content

1 1

Figure 1. Containment Model of HTML and HyperCard

NLC_
Resource_

Body

2. MODELING HYPERTEXT AND
VERSIONED HYPERTEXT
To create a hypertext version control system that works for
various hypertext systems, a general-purpose modeling approach
should be applied to the data model of hypertext systems. This
section introduces all the definitions needed by this hypertext
version control system. These definitions include the containment
model of a hypertext system, the containment model of the
version repository of this system, the hypertext role definition, the
versioning role definition, and the filesystem mapping definition.
All these 5 definitions are represented in XML format, so that
Chrysant can read them into memory when running.

2.1 Containment Modeling of Hypertext
Containment modeling [7, 15] is a uniform approach to represent
system data models. A containment model is a specialized form of
entity-relationship model in which entities and relationships are
two primitives, and the only valid relationship is of type
‘contains’. Two kinds of containment are allowed, referential or
inclusive. The entities in contentment models can be of type
container or atom. A container can referentially or inclusively
contain other entities, while an atom cannot. An atom can hold
content data, while a container only holds (references to) its
containees. Compared to entity-relationship models, which allow
all kinds of user-defined relationships, containment models only
capture the containment (or aggregation) relationships in data
models. The simplicity and the focus on containment relationships
make containment models a suitable model to represent the
repository data models of a wide range of content management
systems. To date, containment modeling has been used to model
the data models of 13 configuration management systems [7, 15,
16] and 15 hypertext systems [7, 15].
Two example containment models for HTML (WWW) and
HyperCard are shown in Figure 1.
In the HTML example, the HTML entity represents a logical
HTML document and the HTML_Body entity represents the
content of the HTML document, so the relationship between the
HTML entity and the HTML_Body entity is inclusive containment.
The NLC_Resource entity represents a different logical document,
those resources without links in them such as bitmap image
documents. The NLC here stands for Non-Link Containing. The
HTML entity has a many-to-many referential relationship with

both the NLC_Resource entity and the HTML entity, since an
HTML document can link to other HTML documents and non-
HTML documents through its embedded links. For example, an
HTML document can embed an external JPEG resource in its text
through a tag. In this example, the HTML document is an
instance of the HTML (and inclusively contained HTML_Body)
entity, and the JPEG file is an instance of the NLC_Resource (and
inclusively contained NLC_Resource_body) entity.
In order for a program to process the containment models, we
create an XML document type to represent the containment model.
There are two major elements, entities and er_model, defined in
the XML containment model document. The entities element
defines all the entities in the data repository of a system; these can
have sub-elements container or atom. The er_model element
defines all the relationships (arcs) between the entities in a data
repository. Taking the HTML containment model in Figure 1 as
an example, there are 4 sub-elements under the entities element in
the XML containment model document for HTML. They are
HTML, NLC_Resource, HTML_Body, and NLC_Resource_Body.
The former two are containers, and the latter two are atoms.
Accordingly, there are 4 sub-elements under the er_model
element in the XML document to represent the relationships
between those entities, which are HTML to HTML, HTML to
HTML_Body, HTML to NLC_Resource, and NLC_Resource to
NLC_Resource_Body.
Containment models provide the basic entity-relationship
information for the data model of a hypertext system, but they do
not carry any versioning or hypertext information, which are
required for general-purpose hypertext versioning tasks. These
definitions are introduced in the following subsections.

2.2 Hypertext Role Definition
The hypertext definition specification defines the hypertext roles
for the entities in the containment model, and hence adds
hypertext semantics to them. Though there could be many kinds
of entities defined in a containment model for a hypertext system,
there are only a few predefined hypertext roles these entities can
be mapped to. Previous research [14] has summarized the
hypertext semantics for entities in hypertext version control
systems. For a general-purpose hypertext version control system
for embedded link models, we define the following hypertext
roles based on [14].
Non-link Containing (NLC) Resource: An artifact that does not
contain any links, such as an image file, a song file, or a pure text
document.
Structure Container: A container that contains (references to) a
set of links, NLC resources, or other structure containers.
Structure Container Content: The body content of an artifact
which also serves as a structure container. Structure container
content always maps to an atom in the containment model and is
always inclusively contained by a structure container.
Link: An association among a set of structure containers and non-
link containing resources.
As an example, we map the entities in the HTML containment
model in Figure 1 to the hypertext roles as follows.

HTML Structure Container
HTML_Body Structure Container Content
NLC_ Resource NLC Resource

In XML format, this mapping can be represented as follows.
<hypertextMapping>
 <mapping containmentClass="html"
 hypertextRole="h_structure_container"/>
 <mapping containmentClass="html_Body"
 hypertextRole="h_sc_content"/>
 <mapping containmentClass="NLC_resource"
 hypertextRole="h_NLC_resource"/>
</hypertextMapping>

The HTML entity is mapped to structure container, since a
HTML resource has embedded links in it. The HTML_Body entity
is mapped to structure container content. Last, the NLC_Resource
entity is mapped to NLC resource.
We should notice that the link role is not explicitly represented in
the HTML containment model. Links in a version control system
for embedded link models can be ignored, since links do not have
their own version history, and we only care about the
relationships caused by links. We should also notice that a
hypertext resource in reality has two roles in our modeling
approach, one is structure container, and the other is structure
container content. Both of them have their own version history.

2.3 Containment Model of the Version
Repository
The containment model of a hypertext system records the original
data model for the hypertext resources in that system. Adding
version control support to existing hypertext systems involves a
process of extending the original data models. The added
versioning information includes the version history object that
stores all checked-in versions of the resource, the author who
checks in the resource, the time the resource is checked in, the
check-in comments, etc.
The entities with different hypertext roles have different
representations in the version repository. The Structure container
has a version history on its structure to record the evolution of the
structure of a hypertext resource. The Structure container content
has a version history on its content to record the evolution of the
content of a resource. NLC resources have a version history on
their content to keep track of the evolution to the content of a
NLC resource.
The benefit of this means of versioning embedded links is that it
separately versions the link structure and body content. Since they
are independently versioned, we can version link structure as a
first class entity.
Let’s take the HTML containment model as an example. The
containment model of the version repository for HTML is shown
in Figure 2.
After comparing the containment model for versioned HTML
(Figure 2) with the original HTML containment model (Figure 1),
we see that there is a VO (versioned object) entity (HTML_VO,
HTML_Body_VO, NLC_Resource_VO) added for every entity
with the hypertext role of structure container, structure container
content, or NLC resource in the original model. A versioned
object is an object containing the version history of a logical
entity. Every VO entity has a one-to-many relationship with its
contained version entity, which means a version history object
can contain many versions of a resource. In Figure 2 these version
entities are HTML_Version, HTML_Body_Version, or

NLC_Resource_Version, which correspond to the HTML,
HTML_Body, and NLC_Resource entities in the original HTML
containment model respectively.

Table 1. Versioning Roles and the Mapping to the Entities in
the Containment Model of the Version Repository for HTML.

Versioning Role Meaning and Usage Mapping Entity in
Version Repository for
HTML

s_revision version entity in versioned
HTML containment model.

HTML_Version,
HTML_Body_version
NLC_Resource_Version

s_rev_content textual or binary content for
version entity

HTML_Body_Content
NLC_Resource_Body

s_rev_identifier unique identifier for each
version, usually the version
number

The version_identifier
entity under each version
entity.

s_rev_checkin_timestamp timestamp for each version
when it is checked in

The checkin_timestamp
entities under each
version entity.

s_rev_comment log information for each version The comment entities
under each version
entity.

s_rev_author author that checks in a version The author entities under
each version entity.

s_rev_history version history entity, usually
the container for version

HTML_VO,
HTML_Body_VO,
NLC_Resource_VO

s_rev_history_identifier handler to locate version history The fileName entities
under each VO entity.

s_rev_trunktip latest version in the main branch The head entities under
each VO entity.

Some atomic entities are not shown in Figure 2 due to limited
space. In fact, each VO entity has a fileName entity, which records
the filename of the resource when checked out to the filesystem,
and a head entity, which stores the last version number of the
resource. Every version entity contains several atomic entities
which are not shown in Figure 2, namely checkin_timestamp,
author, comments, version_identifier and is_root. The
checkin_timestamp, author, and comments entities record the
check-in time, author, and comments metadata when checking in
a resource. The version_identifier entity records the version
number of a version. The is_root entity indicates whether this
version of the resource is a root hypertext resource.

2.4 Versioning Role Definition
The containment model of the version repository for a hypertext
system has many entities added to represent versioning
functionality (e.g. HTML_VO in Fig. 2), but the containment
model itself does not carry any versioning information. That is,
the versioning semantics in the containment model is unknown to
the program. For example, without any additional information, it
is impossible to differentiate between normal containers and those
intended to act as VOs. VOs support additional operations for
check-in, check-out, and retrieving version history. For a version
control system to understand the versioning semantics in a
containment model, it is necessary to define several versioning
roles and then map the entities in the containment model to these
versioning roles, similar to the mapping performed for hypertext
roles. Table 1 shows the versioning roles defined, and their
according mapping entities in the containment model of the
version repository for HTML.

These versioning roles are understandable to the program and
general to all the version repositories for hypertext systems, so
they make it possible to develop a hypertext version control
system that provides general-purpose version control functions.

2.5 File System Mapping Definition
Embedded-link hypertext systems tend to (but don’t always) use
the filesystem to store hypertext resources – examples include
KMS [9], HyperCard [8] and the Web. We assume that users edit
their hypertext resources in an isolated local disk area, called a
workspace. After editing is complete, a check-in function can be
used to store the changed resources into the hypertext version
repository as new versions. Check-out is the reverse procedure to
check-in, in which a certain version of a resource is retrieved
from the hypertext versioning repository and saved into the
workspace in the filesystem. So, in this approach the hypertext
version control system always interacts with the filesystem.

HTML_
Version

HTML_Body
_Content

NLC_
Resource_

version

NLC_
Resource_

Body

0..n

1..n
1

1
1

Referential
Containment
Inclusion
Containment

Container

Atom

0..n

0..n
0..n

HTML_
VO

HTML_
Body_VO

HTML_
Body_
version

NLC_
Resource

_VO

1
1..n

1

1..n

1
1..n

1
1

Head fileName

1
11

Figure 2. Containment Model of Version Repository
for HTML.

Hypertext versioning involves many kinds of files, and treats
them in different ways according to their entity type in the
containment model. A filesystem mapping is hence necessary for
hypertext versioning. In our approach, we map the filename
suffixes to the entities of the containment model. For example, in
the HTML model, the filename suffixes, .htm and .html, are
mapped to the HTML entity, and the other filename suffixes are
mapped to the NLC_Resource entity.
Having this information, the hypertext version control system
versions a .htm or .html file as a structure container, where the
structure versioning is considered, and versions other files as an
individual NLC resource file, where only the evolution of the
resource content is tracked.

3. HYPERTEXT VERSIONING This section introduces our approach for structure versioning, the
design and implementation of Chrysant, and the core algorithm
for versioning a hypertext network.

3.1 Structure Versioning

Figure 3. Version History of an HTML document,
a.htm.

c.htm
version

1

b.htm
version

1

a.htm
version

1

c.htm
version

1

b.htm
version

2

a.htm
version

2

Time 1

Time 2

Change the
content of
b.htm and
check in

a.htm

c.htm
version

2

b.htm
version

3

a.htm
version

3
Time 3

Add a new
link into

c.htm and
check in
a.htm

a.htm
Body

Version 1

b.htm
Body

Version 1

c.htm
Body

Version 1

a.htm
Body

Version 1

b.htm
body

Version 2

c.htm
Body

Version 1

a.htm
Body

Version 1

b.htm
Body

Version 2

c.htm
Body

Version 2

d.gif
resource

Version 1

Time

Structure versioning is a key problem in hypertext versioning,
since the objective of structure versioning is to keep track of the
state of the entire hypertext network by creating snapshot images
for both the data and structure of the hypertext network over time
[13, 17]. Backtracking to a previous state of a structure means to
find all the node resources that were newest at some point in time
[13]. The structure here is not the internal structure of a document,
but the structure formed by links in hypertext resources. [13] and
[17] have discussed the structure versioning problem.
A hypertext network is a DCG (directed cyclic graph) structure.
For an arbitrary unversioned structure, a change in structure
means a new node was added to the structure, or a node was
deleted. But, for a versioned structure, the change to the structure
is caused by changes to the nodes this structure contains. That is,
besides deleting a node or adding a new node, a structure has a
new version when any node in the structure has a new version.
In our approach, as discussed in the previous section, the structure
and the content of a hypertext resource are versioned separately,
since a logical document with embedded links has two roles, one
as structure container (just the links), and the other is the resource
content, structure container content (the content with embedded
links). Hypertext versioning in this case involves structure
versioning plus content versioning. Figure 3 shows an example of
the version history of a HTML document in the repository.
The smaller circles in Figure 3 stand for the instances of the
HTML_Version entity as described in Figure 2. The larger circles
stand for the HTML_Body_Version entity, such as the versions of
a.htm Body, b.htm Body, and c.htm Body, except the circle for
d.gif resource Version 1, which is an instance of the
NLC_Resource_Version entity. The shaded circles indicate the
changed instances at each time instance. The arrows in Figure 3
represent the instances of the relationships among the entity
instances in this example.

To version a specific hypertext system, Chrysant requires a
containment model specification of the hypertext system without
version control, the containment model of the repository for this
system with version control, the hypertext role definition
specification, the versioning role definition specification, and the
filesystem mapping specification. These 5 definition
specifications serve as configuration files for versioning a specific
hypertext system, and Chrysant will read these specification
documents into memory structures when executing. Besides, an
external module is needed by Chrysant to retrieve the link targets
from the hypertext resources. This module has to be model-
dependent, since it carries knowledge of how to parse the
document structure and extract embedded links.

Figure 3 shows that, in hypertext versioning, changes propagate
from the bottom of the hypertext network to the top. If a node in
the network changes, it will cause the structure container
containing it to have a new version too. This impact will be
imposed recursively from bottom to top.

3.2 Architecture of Chrysant
In Figure 4 we show the system architecture of Chrysant. The
major parts of Chrysant’s functionality are the modules that
implement general-purpose version control functions, such as
check-in, check-out, log, which displays the version history of a
structure container or regular resource, and scdiff, which shows
the structure difference of two versions of a structure container.

Chrysant is a general-purpose hypertext version control system
for hypertext systems using the embedded link model. That is, the
check-in, check-out and other version control functions in
Chrysant work for any embedded link hypertext model without
changing its source code. Since the underlying data model for
embedded link hypertext systems can vary, our system must be
capable of adapting to a range of data models. We accomplish this
by explicitly representing the data model using containment
modeling, and then identifying the roles (e.g. Structure Container,
s_revision, etc.) played by specific entities.

Chrysant also has a module, the hypertext parser interface, which
interacts with an external hypertext parser for a specific hypertext
model through system call. This specific hypertext parser is
responsible for retrieving all the link targets in a hypertext
document and returning them to the hypertext parser interface. In
this way, we are able to accommodate the range of document
formats across embedded link systems by isolating link extraction
(which requires deep knowledge of document format) to a single,
plugable module. The hypertext parser takes in the filename of a
hypertext file as a parameter, and returns a string list that contains
all the filenames of the link targets this hypertext file contains.

Figure 4. The Architecture of Chrysant.

Repository
Filesystem

Chrysant

Check-in
Check-out

log
scdiff

Hypertext
Paser

Interface

5
specifications

Specific
Hypertex

Parser

Check-in Check-in

Check-out Check-out

Chrysant has a repository to store the version history of the
hypertext resources, a MySQL database with 2 tables, entity and
relationship. The entity table stores the instances of all the entities
in the containment model, and the relationship table stores all the
instances of the relationships among the entity instances.
The 5 specification documents for a specific hypertext system
define the containment model and other properties of this system.
These documents are in XML format, which will be read by
Chrysant into memory structures when Chrysant begins to run.
Chrysant resides on the machine where the hypertext resources
are stored. The Chrysant repository database can be on the same
or different machine as Chrysant.

3.3 Check-in and Check-out
The check-in function in Chrysant checks in a hypertext resource
with the according hypertext network from the filesystem to the
repository. Usually Chrysant checks in a root hypertext document
and its hypertext network. If the resource the user specifies is not
a root hypertext root, Chrysant will find this resource’s root
hypertext resources in the version repository and check in these
root hypertext resources instead. The following procedure
explains how Chrysant checks in a root hypertext resource and
how the 5 definition specifications are used in the check-in
procedure.
1. Chrysant uses the hypertext parser to get all the resource

filenames of the link targets from the content of the
hypertext resource. (The hypertext parser is used in this step.)

2. For every resource identified in step 1, Chrysant finds its
hypertext role by looking up its filename suffix in the
filesystem mapping definition and hypertext role definition.
For those resources whose hypertext role is structure
container, Chrysant finds all the resources linked by these
resources. This is a recursive procedure. After that, Chrysant
gets a hypertext network rooted at the resource to be checked
in. The hypertext network is an instance of the containment
model of this hypertext system. (The containment model
specification, the filesystem mapping definition, the
hypertext role definition, and the hypertext parser are used in
this step.)

3. For every changed node in the hypertext network, Chrysant
checks in that node to the repository. For the node resource
whose hypertext role is a structure container, Chrysant

checks whether its structure has changed. (The hypertext role
specification is used in this step.)

4. Versioning information according to the containment model
of the version repository is added to the repository when a
resource is checked in. Relationships are also built among
the newly created resource versions based on the
containment model of the version repository. (The versioning
role specification and the containment model specification of
the version repository for this hypertext system are used in
the step.)

5. If it is the first time this root hypertext resource is checked in,
Chrysant marks this resource version as ‘root’ in the
repository by setting its atom entity, is_root, to ‘true’.

From the dataflow perspective, the check-in function transforms
the data in this way: filesystem files instances of containment
model instances of containment model for the version
repository. Check-out functions transforms the data in the
reversed way: instances of containment model for the version
repository instances of containment model filesystem files.
Checking out a resource in Chrysant has the following process
steps.
1. Based on its filename and version number, Chrysant finds

the resource version to be checked out in the repository.
2. Chrysant saves this resource version to the filesystem. If the

checked-out resource is a NLC resource, the check-out
procedure is done.

3. For a resource with structure container role, Chrysant finds
all the containee resource versions contained (linked) by this
resource version in the repository through the relationships
between resource versions.

4. Chrysant checks out all the containee resource versions to
the filesystem. This step is a recursive procedure.

The main purpose of versioning a structure container is to version
a collection of related resources as a whole so that if one resource
changes, a new version gets created for that resource and a new
version is also created for the structure container that contains it.

3.4 AF-BTU Algorithm
Checking in a hypertext resource is much more difficult than
checking in a regular resource, since it involves checking in the
whole hypertext network rooted at the resource. In check-in,
Chrysant creates a new version only for those changed nodes in a
hypertext network. For a node with a hypertext role of NLC
resource or structure container content, its current content is
compared to the content of its previous version in the repository
to determine whether this node has changed. For a node with a
structure container role, the structure change has to be checked
since it holds a hypertext network. Now, the difficulty lies in how
to detect structure changes. As we have discussed in section 3.1,
changes to a structure container depend on the changes to the
containee nodes contained by this structure container. But, the
containee nodes could be structure containers too. So, it is a
recursive procedure to check for structure change. In essence,
changes propagate from the bottom to the top in a hypertext
network. Since a hypertext network is a directed cyclic graph,
several special cases of the graph topology of a hypertext network
should receive special study before we design the check-in

algorithm. Figure 5 shows two study cases of the hypertext
network.

Structure Container
Instance

Structure Container
Content or NLC
Resource Instance

Figure 6. An Example of Checking In a Hypertext
Resource. The shaded nodes stand for those will have a new
version.

A

B C

Content
of A

Content
of B

Content
of C

NLC Resource
D

B
A
C

The final state of
the checked-in list
for structure
container instances

From the two cases in Figure 5, we can see that there can be
cycles in the graph of a hypertext network. In case 1, the cycle is
B C B. In case 2, the cycle is A B C A. When a
cycle appears, the nodes in the cycle depend on each other. For
example, in case 1, changes to B depend on changes to C. At the
same time, changes to C depend on changes to B.
Another characteristic of the hypertext network is that the
structure container content node and NLC resource node, called
atom nodes, will not appear in a cycle, since they don’t depend on
any other nodes and they are always leaf nodes in the network
graph. Changes to atom nodes always cause change to the
structure container above them. Due to these characteristics of
the hypertext network, an atom-node-first, bottom-to-up (AF-
BTU) algorithm is used in Chrysant to detect changes and check
in changed nodes in the hypertext network. This algorithm also
maintains a list of the nodes that have been checked in to avoid
checking in a node for more than once or circular check-in. The
detailed AF-BTU algorithm is described as follows.

1. Nodes Content of B and NLC Resource D are checked in.
2. From the node content of B, the upward traversal path is

Content of B B A.
1. For the hypertext resource to check in, retrieve the hypertext

network of this hypertext resource, i.e., the resources
reachable by following the links from the resource, and save
this hypertext network in a memory structure.

3. Check in B and A, and add them to the checked-in list.
4. From the node NLC Resource D, there are three upward

traversal paths. One is NLC Resource D B A. The
second one is NLC Resource D C B A. The third
one is NLC Resource D C A. 2. For every atom node (structure container content or NLC

resource) in the hypertext network, check whether they have
changed by comparing them with their previous version in
the version repository.

5. For the first path, NLC Resource D B A, the algorithm
stops when B is met, since it is already in the checked-in list.

6. For the second path, NLC Resource D C B A, the
algorithm checks in C and adds it to the checked-in list, and
stops when B is met, since B is already in the checked-in list.

3. Check in the changed atom nodes found in step 2.
4. From every changed atom node, traverse upwards through its

parent containers, the parent containers of its parent
containers, and so on. For every structure container node in
the upward path, check it in and add it to the checked-in list
if it has not been checked in before. Every bottom-to-up
traversal procedure will stop whenever it meets a node that
has been checked in or a node that has not any parents.

7. For the third path, NLC Resource D C A, the algorithm
stops when C is met, since C is already in the checked-in list.

After executing the algorithm to check in all changed nodes in the
hypertext network, one more step will be taken to reconstruct the
relationships between the new versions of the changed nodes in
the repository, since the check-in actions in the AF-BTU
algorithm only create new version instances for changed node in
the repository, and the relations between the newly created entity
instance versions and their containers, which could be newly
created versions too, need to be built in the repository.

Here is an example of applying the AF-BTU algorithm. Suppose
the hypertext network is like the one in Figure 6, and the atom
nodes Content of B and NLC Resource D have changed. The
execution steps of the AF-BTU algorithm to check in the
hypertext network rooted at A are as follows.

The algorithm for checking out a hypertext network is much
easier than check-in. Only a top-to-bottom traversal is enough.
That is, for a structure container node in the hypertext network,
find the resource versions it contains, and check out all these
containees recursively. For checking out an atom node, create a
file on the filesystem according to its fileName property, and
retrieve the content of the atom node from the repository and put
it to the created file. Also, a checked-out list needs to be
maintained during the check-out process to avoid circular check-
out.

Case 1

Structure Container
Instance

Structure Container
Content Instance

Figure 5. Study Cases of Hypertext Network.

A

B C

Content
of A

Content
of B

Content
of C

Case 2

A

B C

Content
of A

Content
of B

Content
of C

4. VERSIONING HTML
As a case study, we apply Chrysant for HTML to version HTML
documents. The 5 definition specifications for HTML used by
Chrysant have already been introduced in section 2. This section
will introduce the HTML parser for Chrysant and the application
examples of Chrysant for HTML documents.

4.1 HTML Parser for Chrysant

HTML File,
Image File, or
CSS file

Figure 7. Versioning the Web Pages for the Bamboo
Project. These Web pages are rooted by index.htm.

Hyperlink

index.htmState 1
news.htm

cont_model.
htm

credits.htm

bamboo_files/soe.css
bamboo_files/ucsc.gif

......
bamboo_files/admin.gif

index.htmState 2
news.htm

cont_model.
htm

credits.htm

bamboo_files/soe.css
bamboo_files/ucsc.gif

......
bamboo_files/admin.gif

(Version 1.1)

(Version 1.2)

New File or Changed
File Compred to
Previous State

index.htmState 3
news.htm

cont_model.
htm

credits.htm

bamboo_files/soe.css
bamboo_files/ucsc.gif

......
bamboo_files/admin.gif(Version 1.3)

generator.htm

demo.htm

index.htmState 4
news.htm

cont_model.
htm

credits.htm

bamboo_files/soe.css
bamboo_files/ucsc.gif

......
bamboo_files/admin.gif(Version 1.4)

generator.htm

demo.htm

reference.htm

downloads.htm

An HTML parser is required by Chrysant to version HTML
documents. This HTML parser should be able to retrieve the link
targets from a HTML document. We wrote a parser using an open
source HTML parser library, El Kabong [18].
In the parser, we added call back functions to monitor several tags
when scanning a HTML document. These tags may contain some
parameters which indicate the resources this HTML document
links to. Table 2 shows the HTML tags and their according
parameters that indicate the link target.
The parser will output the URLs contained in the tags and
parameters listed in Table 2 during parsing. The full URLs, e.g.
those starting with http://, are ignored, and only local URLs are
retrieved. Also the section after ‘#’ or ‘?’ in the URL will be
discarded. Chrysant checks the existence of the files indicated by
these retrieved local URLs and discards those local URLs that
don’t actually have a file mapping to them in the local filesystem.
The base tag is also considered, but it has to be a local URL.
Special treatment is given to the @import url and the background:
url sections in the comment text of a HTML document, which
may also contain local link targets.

4.2 Examples
For an experiment, we used Chrysant for HTML to version the
contents of the home page for the Bamboo project
(http://www.soe.ucsc.edu/research/labs/grase/bamboo/index.htm).
We simulated the process used when we wrote the Bamboo Web
pages, and used Chrysant to version them. We took four steps to
finish editing the Bamboo Web pages. After each step we edited
the Bamboo web pages at the local filesystem, and checked them
in using Chrysant for HTML. Figure 7 shows the state of the
Bamboo Web page structure at each step and the sequence of
editing for Bamboo Web pages.

Table 2. HTML Tags and Parameters Containing Link
Targets.

HTML Tag Parameter

a href

img dynsrc, src

bgsound src

body background

area href

link href

form action

input src

frame src

embed src

object object, data

param value

script src

In this example, index.htm is the root HTML document for the
Bamboo Web page. Index.htm contains links to other HTML files
which are sections of content of the Bamboo Web pages. Each of
these HTML files for section content also contains a link that
points to index.htm. After each step in Figure 7, we checked in the
Bamboo Web pages using the command: chrysant ci index.htm,
so that the structure container of index.htm got a new version, as
well as the content of the changed files in the hypertext network
and affected other structure containers.
We should note that the structure container of index.htm has 4
versions, from version 1.1 to 1.4, though the content of index.htm
has not changed since version 1.1. That is how we treat the
version history of a hypertext resource in Chrysant: we version
the structure container and the content of a hypertext resource
separately. In this example, the content of index.htm always has
version 1.1. We use the command, chrysant log index.htm, to
display the version history of the structure container of index.htm.
For example, the version 1.4 of index.htm is shown as follows.
index.htm, rev 1.4: pankai | 2004-03-06 20:53:49

 ~~~index.htm(Content), Version:1.1, pankai, 2004-03-06 20:51:51  

~~~bamboo_files/soe.css Version:1.1, pankai, 2004-03-06 20:51:50  

~~~bamboo_files/ucsc.gif, Version:1.1, pankai, 2004-03-06 20:51:50  



…… 

~~~bamboo_files/admin.gif, Version:1.1, pankai, 2004-03-06 20:51:51  

~~~news.htm(SC), Version:1.4, pankai, 2004-03-06 20:53:49  

~~~cont_model.htm(SC), Version:1.4, pankai, 2004-03-06 20:53:49  

~~~generator.htm(SC), Version:1.2, pankai, 2004-03-06 20:53:49  

~~~demo.htm(SC), Version:1.2, pankai, 2004-03-06 20:53:50  

~~~reference.htm(SC), Version:1.1, pankai, 2004-03-06 20:53:50  

~~~downloads.htm(SC), Version:1.1, pankai, 2004-03-06 20:53:50  

~~~credits.htm(SC), Version:1.4, pankai, 2004-03-06 20:53:50 

The results displayed above show all the resources linked by 
version 1.4 of the structure container of index.htm and their 
version information. In the results, the (content) after a resource 
name indicates it is the content of a hypertext resource, and the 
(SC) after a resource name indicates it is a structure container of a 
hypertext resource. In this example, we can see that version 1.4 of 
the structure container of index.htm contains version 1.1 of the 
index.htm content, and it links to the structure containers of other 
hypertext resources at version 1.1, 1.2, 1.4 respectively. 
Using the command, chrysant sdiff index.htm 1.1 1.4, we can see 
the structure difference between version 1.1 and version 1.4 of 
index.htm. The results of this command are as follows: 

index.htm(content): 1.1 <--> 1.1 

bamboo_files/soe.css: 1.1 <--> 1.1 

bamboo_files/ucsc.gif: 1.1 <--> 1.1 

…… 

bamboo_files/admin.gif: 1.1 <--> 1.1 

*news.htm(SC): 1.1 <--> 1.4 

*cont_model.htm(SC): 1.1 <--> 1.4 

*credits.htm(SC): 1.1 <--> 1.4 

+generator.htm(SC): NULL <--> 1.2 

+demo.htm(SC): NULL <--> 1.2 

+reference.htm(SC): NULL <--> 1.1 

+downloads.htm(SC): NULL <--> 1.1 

The ‘+’ symbol before the resource name in the results means this 
node appears in the latter version of the structure container, but 
not in the former version. The ‘-’ symbol, not appearing in this 
example, has the contrary meaning to the ‘+’ symbol. The ‘*’ 
symbol indicates that this node has different versions in the two 
versions of the structure container. 

4.3 Discussion 
4.3.1 Full URLs in HTML 
In our implementation, the URLs that point to resources on 
another site, e.g. the URLs starting with http://, are ignored by the 
HTML parser, since remote resources are out of the versioning 
scope. There are two issues here. First, some of the full URLs 
may actually indicate local resources. In this case, those local 
resources will not be versioned, since Chrysant does not know the 
base URL of the resources it is managing, and hence cannot 
determine if the base of a URL corresponds to the local server. 
Second, web pages can be distributed across multiple web sites 
for an enterprise. By far, Chrysant can only version local 
resources on one server. One possible solution to these two issues 

is that a mapping list can be created in the Chrysant repository. 
This list maintains the mappings between the full URLs, which 
point to local resources or resources on the web servers in the 
enterprise, and the local resource paths on each web server. When 
Chrysant checks in an HTML document, the full URLs in it will 
be used to locate the target resources on local machines by 
looking up the mapping list, so that the whole hypertext network 
can be checked in. 

4.3.2 Too Many Versions Due to Change 
Propagation 
An issue in the Chrysant approach is that, since changes to nodes 
will propagate through the hypertext network, there will be many 
versions generated. Some versions are necessary, e.g., those 
versioning the relationships between the main web page and its 
subsection pages, but some are not, e.g., those links created for 
reference purpose or convenience for navigation purpose. 
Applying version selection rules in Chrysant is a solution to this 
issue. For those links for reference or navigation purpose, version 
selection rules can be used on it instead of versioning them. For 
example, through the version selection rule on a link, the parent 
node can select the latest version of its child node, so that when 
the child node has a new version, the structure container of the 
parent node does not have to have a new version created. How to 
decide which links should use version selection rules, which links 
should be versioned is another issue. One solution to this issue is 
the user’s interference. The user will decide which approach 
should be used for every links. The other solution is that a 
‘linkType’ parameter can be added to the tags that link to other 
resource, and Chrysant will know which versioning approach to 
use based on the ‘linkType’ for every link. 

4.3.3 Dynamic Pages 
A limitation of Chrysant is that it can not handle the dynamic web 
pages, e.g., those web pages that contain the Javascript or those 
web pages generated by CGI programs. A HTML parser does not 
work well for them, since links will be generated dynamically. 
The possible solution can be the user’s help to build the 
relationship between those web pages with the pages they actually 
link to. Or the relationships can be found out via dynamic analysis 
on the running history of the web application. 

5. CONCLUSION AND FUTURE WORK 
In this paper, we present Chrysant, a system that provides 
general-purpose hypertext versioning capability to hypertext 
systems with embedded links. We describe the architecture of 
Chrysant and a mechanism for versioning the structure container 
and the content separately for a hypertext resource. An algorithm, 
AF-BTU, is introduced in this paper to version a hypertext 
network as a whole. As an application case, HTML versioning is 
implemented with Chrysant, which has practical usage. 
Our future work will include more design considerations for 
structure versioning, including metadata and directory versioning. 
It is interesting to version an environment mixed with directories, 
metadata, and more than one type of hypertext documents with all 
of them under version control.  

Chrysant should support version selection rules and external link 
versioning in the future. A general link representation in the 
filesystem and in the repository will be designed. 



In the future, we anticipate adding features for workspaces, locks 
and branching to make Chrysant a complete version control 
system. Chrysant will also need to support versioning of web 
pages that are distributed across multiple web sites. 

Link properties will also be studied. Links should be classified by 
the degree of cohesiveness to which they relate two resources. 
Based on it, a finer-gained hypertext versioning policy can be 
designed and applied. 

6. ACKNOWLEDGMENTS 
This project is supported by the National Science Foundation 
under Contract Number NSF CAREER CCR-0133991. Any 
opinions, findings, and conclusions or recommendations 
expressed in this material are those of the author(s) and do not 
necessarily reflect the views of the National Science Foundation. 
We also want to thank Sung Kim for his help on the HTML parser. 

7. REFERENCES 
[1] T. Berners-Lee, R. Fielding, and L. Masinter, "Uniform 

Resource Identifiers (URI): Generic Syntax," in Network 
Working Group Request for Comments: 2396 Standards 
Track, 1999. 

[2] W. F. Tichy, "RCS - A System for Version Control," 
Software-Practice and Experience, vol. 15, pp. 637-654, 
1985. 

[3] S. Dreilinger, "CVS Version Control for Web Site Projects," 
vol. 1999, 1998. 

[4] A. L. Glasser, "The Evolution of a Source Code Control 
System," presented at Software Quality and Assurance 
Workshop, 1978. 

[5] Subversion, "Subversion project home page," vol. 2001, 
2004, http://subversion.tigris.org. 

[6] D. Leblang, "The CM Challenge: Configuration 
Management that Works," in Configuration Management, W. 
F. Tichy, Ed. New York: Wiley, 1994, pp. 1-38. 

[7] D. Gordon and E. J. Whitehead, Jr., "Containment Modeling 
of Content Management Systems," presented at 
Metainformatics Symposium 2002 (MIS'02), Esbjerg, 
Denmark, 2002. 

[8] Apple Computer, HyperCard Script Language Guide. 
Reading, MA: Addison-Wesley, 1988. 

[9] R. M. Akscyn, D. L. McCracken, and E. A. Yoder, "KMS: A 
Distributed Hypermedia System for Managing Knowledge in 
Organizations," Communications of the ACM, vol. 31, pp. 
820-835, 1988. 

[10] K. M. Anderson, R. N. Taylor, and E. J. Whitehead, Jr., 
"Chimera: Hypertext for Heterogeneous Software 
Development Environments," ACM Transactions on 
Information Systems, vol. 18, pp. 211-245, 2000. 

[11] C. C. Marshall, F. G. Halasz, R. A. Rogers, and W. C. 
Janssen, Jr., "Aquanet: a hypertext tool to hold your 
knowledge in place," presented at Third ACM Conference on 
Hypertext (Hypertext'91), San Antonio, Texas, 1991. 

[12] U. K. Wiil and J. J. Leggett, "The HyperDisco Approach to 
Open Hypermedia Systems," presented at Seventh ACM 
Conference on Hypertext (Hypertext '96), Washington, DC, 
1996. 

[13] K. Østerbye, "Structural and Cognitive Problems in 
Providing Version Control for Hypertext," presented at 
Fourth ACM Conference on Hypertext (ECHT'92), Milano, 
Italy, 1992. 

[14] E. J. Whitehead, Jr., "Design Spaces for Link and Structure 
Versioning," presented at Hypertext 2001, The Twelfth 
ACM Conference on Hypertext and Hypermedia, Arhus, 
Denmark, 2001. 

[15] E. J. Whitehead, Jr., "Uniform Comparison of Data Models 
Using Containment Modeling," presented at Hypertext 2002, 
The Thirteenth ACM Conference on Hypertext and 
Hypermedia, College Park, MD, 2002. 

[16] E. J. Whitehead, Jr. and D. Gordon, "Uniform Comparison of 
Configuration Management Data Models," presented at 11th 
International Workshop on Software Configuration 
Management (SCM-11), Portland, Oregon, 2003. 

[17] D. L. Hicks, J. J. Leggett, P. J. Nurnberg, and J. L. Schnase, 
"A Hypermedia Version Control Framework," ACM 
Transactions on Information Systems, vol. 16, pp. 127-160, 
1998. 

[18] J. Travis, "El-Kabong HTML Project Homepage," 2004, 
http://ekhtml.sourceforge.net. 

 


	INTRODUCTION
	MODELING HYPERTEXT AND VERSIONED HYPERTEXT
	Containment Modeling of Hypertext
	Hypertext Role Definition
	Containment Model of the Version Repository
	Versioning Role Definition
	File System Mapping Definition

	HYPERTEXT VERSIONING
	Structure Versioning
	Architecture of Chrysant
	Check-in and Check-out
	AF-BTU Algorithm

	VERSIONING HTML
	HTML Parser for Chrysant
	Examples
	Discussion
	Full URLs in HTML
	Too Many Versions Due to Change Propagation
	Dynamic Pages


	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

