
Textual and Behavioral Views of Function Changes
Kai Pan, E. James Whitehead, Jr., Guozheng Ge

Dept. of Computer Science
Baskin Engineering

University of California, Santa Cruz

{pankai, ejw, guozheng}@cs.ucsc.edu

ABSTRACT

In this paper, we describe an approach that automatically

computes function change information between consecutive

revisions along the revision history of C language projects.

Function changes are computed at two abstract levels. First, we

compute the textual changes between two function revisions.

Computed results include function additions and deletions, and

the quantity and the ratio of textual change in changed functions

across two revisions. Second, we compute the behavioral changes

of functions using program slicing techniques. We use an XML-

formatted document to represent computed function change

information. The function change information, together with the

SCM change log, helps maintainers understand code changes

between two revisions. The structured format of the function

change information also helps create traceability links between the

changes and other artifacts. We describe our prototype

implementation for computing function changes, and we evaluate

our approach through a case study on the Sed project.

Categories and Subject Descriptors

D.2.7 [Distribution, Maintenance, and Enhancement]: Version

control.

General Terms

Algorithms, Documentation.

Keywords

Version control, program slicing, program slice encoding.

1. INTRODUCTION
Software Configuration Management (SCM) tools such as CVS

[1], Subversion [2], and ClearCase [3] are intensively used to

perform version control and manage source code changes in

modern software development projects. When submitting source

code changes using these tools, best practice is for programmers

to write a brief explanation of the change into the change log,

which is saved together with the source code deltas in the SCM

repository. After the source code of a software project has

undergone many revisions, the change logs help maintainers to

understand how the source code evolves, providing details on

who changed which part of the code, and for what purpose.

Unfortunately, the quality of change logs varies greatly. Their

quality depends on the programmers that submit the changes: how

disciplined they are in making log entries, how well they

understand the source code, and how well they write the change

logs. Unclear or empty change logs make it difficult for software

maintainers to understand the code. Even when they are present,

the change logs are written in natural language and are mostly

format-free. These facts make it hard to build traceability links

based on information found in change logs.

To address the understandability and traceability issues in change

logs, we propose an approach that automatically computes

function-level change information across software revisions. Since

functions are the basic functional block in C programs, we

compute source code change information at the function level of

granularity. Function change information has two abstract levels.

The first level is the textual changes between two revisions of a

function, which records the addition or deletion of text content. In

our implementation, we use a C program analyzer to compute the

text boundary of each function in the source code file of every

revision. We retrieve the text body of a function and compare it

with the text body of the same function in the previous revision

using diff (GNU Diffutils) [4]. The diff results are used to check

whether this function has textual changes in the new revision and

compute the change ratio if new changes exist.

The second abstract level is behavioral changes of functions. We

identify fine-grained function behavior aspects by using program

slice information to compute the behavioral change of functions

between two revisions. Program slicing techniques [5, 6] study

the behavior of source code through the flow dependency and

control dependency relationships among statements. The concept

of program slicing was introduced by Mark Weiser [5], who

defined a slice as all the program code that may influence the

values computed at a criterion, which consists of a (line-number,

variable) pair [5]. Horwitz et al. [6] introduced a method to

compute intra-procedural and inter-procedural slices based on

program dependence graphs. Since program slices capture the

behavior aspects of a program, we can use them to identify the

behavioral changes of functions across different revisions. A

behavior aspect of a function can be represented by a program

slice with respect to the sensitive components of a function at the

end of the function. A sensitive component of a function is a

variable that is or may be modified in this function and may be

used by the other parts of the program. A function may have

multiple sensitive components, such as the function return value,

and the non-local variables directly or transitively modified in the

function. We developed an algorithm, PSE (program slice

encoding), that encodes a program slice to a hash value, so the

change of a slice hash indicates the change of the behavior of this

program slice. We store the slice hashes for functions in each

revision in the function change information to identify function

behavioral changes across revisions.

Combining the information for function textual changes and the

information for function behavioral changes, the function-level

change information serves as complement to the change logs to

help maintainers to understand the changes better.

We represent the function change information in XML format, so

the change information can be identified at various granularities,

including file, function, and function behavior aspect. The XML

format also permits traceability links to be built between the

change information and other software development artifacts.

2. FUNCTION TEXTUAL CHANGE
SCM tools such as CVS, Subversion, and ClearCase provide the

capability to manage the text differences between two successive

revisions of a file. diff [4] is a tool usually used to compute the

text difference of two files based on line string matching. It

calculates the longest common subsequence (LCS) of two text

files at the line level.

The text differences computed by SCM systems are usually at the

file level, even for source code files, since the diff tools used by

SCM systems are general tools that are applicable to a broad

range of programming languages and other artifacts, and hence

they are unaware of source code syntax. However, to enhance the

ability to understand source code changes, it is useful to compute

change information at finer granularity than the file level,

leveraging the software’s syntactic structure.

We propose an approach that computes function textual change

information between two revisions of C programs. This approach

takes three steps.

Step 1: use a C program parser to compute the line range of every

function in the source code files.

Step 2: find deleted and added functions by comparing the

function lists of both revisions.

Step 3: for the functions existing in both revisions, we retrieve the

function text from each revision and then compare them using

GNU diff. This information is used to compute change

information, including the number of lines changed and the ratio

of line changes to the maximum number of lines of the function in

the two revisions.

We compute the number of line changes and the ratio of line

changes of two revisions of a function based on the output from

GNU diff. GNU diff takes two arguments as input, which we term

revision1 and revision2 according to input order. The output

consists of a sequence with the following format:

change-command

< from-file-line

< from-file-line...

> to-file-line

> to-file-line...
The change-command consists of the line range of revision1, the

change type, and the line range of revision2. The change type can

be a for add, c for replace, or d for delete. For example, 5a3,5

means adding the lines 3-5 in revision2 after line 5 of revision1.

6,7d12 means deleting the lines 6-7 in revision1, and line 6-7

would have appear after line 12 in revision2 had they not been

deleted. 10-12c18-21 means replacing line 10-12 of revision1

with line 18-21 of revision2.

We compute the number of line changes between two revisions of

a function by scanning the diff results, and for every change type a,

accumulating the number of added lines to the number of line

changes; for every change type d, accumulating the number of

deleted lines to the number of line changes; for every change type

c, accumulating the maximum lines between the two line ranges in

the change-command to the number of line changes. We compute

the ratio of line changes by dividing the number of line changes

by the maximum number of lines of the two revisions of the

function.

3. FUNCTION BEHAVIORAL CHANGE
Though the function change information computed in Section 2

shows us the straightforward facts of the textual changes of a

function in the new revision, no behavioral change facts are

revealed. We know that some textual changes, such as changes to

comments, code beautification, and variable renaming, do not

affect program behaviors at all, while others may affect some

aspects of program behaviors.

A behavioral aspect of a function can be represented by a program

slice that computes the return value of the function, or a program

slice that may modify a global variable in the function, etc. A

function can have multiple behavioral aspects.

A program slice can be represented by a program dependence

graph (PDG) [6]. To detect behavioral changes of two program

slices, we compare their corresponding PDGs. To make the

comparison process efficient and make the comparison results

reusable, we developed a program slice encoding (PSE) algorithm

that encodes a program slice to a hash value, thereby allowing the

slice hashes of a function to be used to detect function behavior

changes across revisions.

3.1 Program Dependence Graph
Our program slice encoding (PSE) algorithm works on program

slices represented by the program dependence graph (PDG)

defined by Horwitz [6]. A PDG is a directed graph, where each

vertex in the PDG represents a statement or predicate in the

program, and each edge represents a data dependence or control

dependence relationship between the two statements

corresponding to the two vertexes connected by the edge. Figure 1

shows an example program and its corresponding PDG.

As defined by Horwitz [6], there are three kinds of dependence

edges in a PDG, flow dependence, control dependence, and def-

order dependence. The flow dependence edges can be further

broken down into loop-independent flow dependence and loop-

carried flow dependence. The detailed definitions of these

dependence edges can be found in [6].

3.2 The PSE Algorithm
Inspired by Horwitz’s isomorphic-testing algorithm in [7], which

checks the isomorphism of two PDGs, we developed the PSE

algorithm to encode the PDG for a program slice. The basic

process of the PSE algorithm starts with a depth-first graph

traversal in the PDG of a slice, normalizing every node visited.

Next, it encodes the transformed PDG to a string value, which is

then fed to a hash algorithm to produce the final result, the hashed

slice encoding.

Due to space limitations, we only explain the PSE algorithm for a

simplified language that supports just assignment, if and while

statements, and scalar variables. In our prototype implementation,

we developed a full version of the PSE algorithm that works on C

functions with arbitrary control flows, non-scalar variables,

function calls and pointer variables. The basic idea is the same,

though the full version of PSE copes with all advanced features

present in C. There are four steps in the PSE algorithm.

Step 1 of the PSE Algorithm – Preprocess

This step follows the Preprocess step in the isomorphic-testing

algorithm described in [7]. The purpose of this step is to mark

every edge to make them distinct from one another in the

incoming edges to a vertex. This permits a unique graph traversal

path to be determined for the isomorphic PDGs to ensure the

isomorphic PDGs are mapped to the same hash value.

In this step, the operand number labels and the ordering number

labels are added to the flow dependence edges in the PDG. An

operand number i is added to a flow dependence edge from u to v

if a variable x is defined by u and x is the ith variable occurring

from left to right in the expression at the right side of the

assignment statement of v. The ordering number is defined to sort

the incoming flow dependence edges that have the same operand

number. In the example of Figure 2, the edge from k=0 to return k

has the same operand number, 1, as the edge from k=k+i to

return k. But, since the statement k=0 appears before the

statement k=k+i in the program, we assign an ordering number of

0 to the edge from k=0 and assign an ordering number of 1 to the

edge from k=k+i.

Figure 2 shows the preprocessed PDG based on the original PDG

in Figure 1. The first number on the flow dependence labels

indicates the operand number, and the second number indicates

the ordering number.

Step 2 of the PSE Algorithm – Normalize the graph

The second step of the PSE algorithm is to make a PDG walk in

the preprocessed PDG in a certain order and normalize the

variable names in the vertices. The PDG walk part in PSE follows

the strategy used in the isomorphic-testing algorithm [7] to select

the walk path in the PDG. The walk in the preprocessed PDG is a

depth-first graph search starting from the slicing criterion vertex

and then proceeding backwards along the flow and control

dependence edges.

The order of the vertices visited in this depth-first PDG walk

depends on the path selection rule that determines the traversal

order of the incoming edges to a vertex. The detailed path

selection rule is as follows:

(1) Take the control dependence edge first.

(2) Then, take the flow dependence edges by the order of their

operand number from the smallest to the largest.

(3) For the flow dependence edges that have the same operand

number, sort them by their ordering number from the smallest to

the largest.

(4) For the flow dependence edges that have both the same

operand number and the same ordering number, take the loop-

independent flow dependence edge first, then the loop-carried

flow dependence edges.

(5) For the loop-carried flow dependence edges that have the

same operand number and ordering number, sort them by the

loop nesting level of the loop predicate they carry from the most-

deeply nested to the least-deeply nested.

During the depth-first walk in the PDG, the PSE algorithm

processes every vertex by normalizing the variables in the

statement. The PSE algorithm processes the vertex in this way:

(1) Make a preorder tree walk on the abstract syntax tree (AST)

for the statement corresponding to the vertex.

(2) For every variable occurring in the AST walk whose name has

not been processed, changed its name to a normalized name,

@<i>, where <i> denotes that this is the ith variable of all the

variables renamed during the entire graph walk.

1,1

2,0

Loop-carried

flow dependence

1,1

1,0

1,1

2,0

1,0
1,0

1,0

2) Entry

3)@1=0 6)@2=1 5) while

 @2<5

4) @1=

@1+@2
7) @2=

@2+1

1) return

 @1

Legends

Figure 3. The program dependence graph after variable

normalization.

Loop-independent

flow dependence

Def-order dependence Control Dependence

int main() {

 int k =0;

 int i = 1;

 while(i<5) {

 k=k+i;

 i=i+1; }

 return k;

}

1,1

1,0

1,1

2,0

1,0

1,0
2,0

1,0

Entry

k=0 i=1 while i<5

k=k+i i=i+1 return k

Legends

Figure 2. The program dependence graph with operand

numbers and ordering numbers on flow dependence edges.

Loop-independent

flow dependence

Loop-carried

flow dependence

Def-order dependence Control Dependence

int main() {

 int k =0;

 int i = 1;

 while(i<5) {

 k=k+i;

 i=i+1; }

 return k;

}

1,1

1,1 1,1

Entry

k=0 i=1 while i<5

k=k+i i=i+1 return k

Legends

Figure 1. An example program and the program

dependence graph for the slice with respect to return k.

Loop-independent

flow dependence

Loop-carried

flow dependence

Def-order dependence Control Dependence

int main() {

 int k =0;

 int i = 1;

 while(i<5) {

 k=k+i;

 i=i+1; }

 return k;

}

Figure 3 shows the PDG after a depth-first walk and variable

normalization on the example PDG shown in Figure 2. The

number added in every vertex indicates the order it was visited.

Step 3 of the PSE Algorithm – Encode the PDG

This step encodes the normalized PDG from Step 2 into a string

value. This string value consists of two parts, the statement

encoding string (encoding of statements) and the edge encoding

string (encoding of dependence edges). The encoding process is

as follows.

(1) Make a depth-first graph walk in this PDG in the same way as

Step 2 of the PSE algorithm.

(2) For every vertex visited during the depth-first PDG walk,

append the preorder format of the AST for the statement

corresponding to the vertex to the statement encoding string.

(3) For every edge traversed, encode this edge to a string and

append this string to the edge encoding string. The format of the

encoded string for an edge is [a-b-c-d-e-f-g], where the fields a to

g are values that represent the order number on the vertex at the

source endpoint of this edge, the order number on the target

vertex, the edge type, the operand number, the ordering number,

the label value for the control dependence edge, and the loop

nesting level of the loop predicate a loop-carried flow dependence

edge carries.

After the encoding process in this step, the concatenation of the

statement encoding string and the edge encoding string is the

resulting encoding string for this PDG. For the example program

in Figure 1, the statement encoding string is:
return (@1);{entry};=(@1 0);=(@1 +(@1 @2));while(<(@2

5));=(@2 1);=(@2 +(@2 1));

The edge encoding string is [2-1-1-0-0-T-0][3-1-2-1-0-0-0][2-3-1-0-

0-T-0][4-1-2-1-1-0-0][5-4-1-0-0-T-0][2-5-1-0-0-T-0][6-5-2-1-0-0-0][2-

6-1-0-0-T-0][7-5-3-1-1-0-1][5-7-1-0-0-T-0][6-7-2-1-0-0-0][7-7-3-1-1-0-

1][3-4-2-1-0-0-0][4-4-3-1-1-0-1][6-4-2-2-0-0][7-4-3-2-0-0-1].

Step 4 of the PSE Algorithm – Hash the string value

This step maps the encoding string from Step 3 to a hash value

using the MD5 hash algorithm [8]. The MD5 hash for the

resulting encoding string from Step 3 is

6931bc735157676d42d1dc761c0fb357.

The PSE algorithm has a linear runtime complexity of O(m+n),

where m represents the number of vertices in the PDG and n

represents the number of dependence edges in the PDG.

4. IMPLEMENTATION

4.1 Project Architecture
To validate our ideas, we implemented a tool that computes the

function textual changes and function behavioral changes of C

programs across revisions. Our implementation uses the function

line range information and procedure dependence graphs for

function slices computed by CodeSurfer [9], a program analysis

tool produced by GrammaTech, Inc.

To compute function textual change information across the entire

revision history of a project, we check out every pair of

consecutive revisions of the project from its Subversion repository,

use CodeSurfer to identify all the functions in each revision, and

compute their line ranges in the source code files. Based on the

line range of the functions, we retrieve from each revision the

function text and compare them using the diff tool. We also

compute added functions and deleted functions in the later

revision.

At the same time, we compute the function slice hashes for the

functions in each revision. We use CodeSurfer to obtain the

procedure dependence graph for intra-procedural program slices

with respect to the sensitive components in each function, and

apply the PSE algorithm on them. We compare the slice hashes of

each function in the later revision with the corresponding hashes

in the prior revision to find the function behavioral changes.

Finally, we save the function textual change information and

function behavioral change information for each revision in a

MySQL database. Figure 4 shows the project architecture and the

flow of data among components.

4.2 Data Schema and Component

Identification for Traceability
We represent the function textual change information and

behavioral change information in XML format and store them in a

MySQL database. The data in the database together with the

change logs in the SCM repository will help maintainers

understand the changes between revisions.

There is a ProjectFunctionChange table in the database. The table

has three fields, which are projectName, revisionNumber, and

functionChangeInfo. Each revision of the project has one record

in the database. The projectName and revisionNumber fields

record the name of the project and the revision number of the

project respectively. The functionChangeInfo field contains the

function textual change information and the function behavioral

change information of this revision compared to its prior revision,

represented in XML.

The XML DTD for the functionChangeInfo data is described as

follows:

<!ELEMENT changeInfo (sourceFileChange*)>

<!ATTLIST changeInfo

 projectName CDATA #REQUIRED

 revisionNumber CDATA #REQUIRED>

<!ELEMENT sourceFileChange (functionChange*)>

<!ATTLIST sourceFileChange

 sourceFilePath CDATA #REQUIRED

 changeKind (Added | Deleted | Changed) #REQUIRED>

SCM repository

Function behavioral

change info
Function textual

change info

Procedure dependence

graphs for function slices Functions’ line

range info

Source code files

of two consecutive

revisions

Project

source code

Checked-out

project

CodeSurfer

Function Textual

Change Computation

Figure 4. The project architecture and data flow.

Function Behavioral

Change Computation

Database

File system

<!ELEMENT functionChange (sliceChange*)>

<!ATTLIST functionChange

 functionName CDATA #REQUIRED

 changeKind (Added | Deleted | Changed) #REQUIRED

 numberOfLineChanged CDATA #REQUIRED

 lineChangeRatio CDATA #IMPLIED>

<!ELEMENT sliceChange (sliceLabel, sliceHash)>

<!ATTLIST sliceChange

 sliceKind (Return | Parameter | Global) #REQUIRED

 changeKind (Added | Deleted | Changed) #REQUIRED>

<!ELEMENT sliceLabel (#PCDATA)>

<!ELEMENT sliceHash (#PCDATA)>

In the XML DTD, the element changeInfo represents all the

changes to the project at this revision. The changeInfo element

contains multiple sourceFileChange elements, which represent all

of the deleted, added, and changed source code files. A

functionChange element records the file name, change kind,

number of line changes, the ratio of the line changes, and the

change information for the function slices.

The sliceChange element records change in a behavioral aspect of

the function. The slice can be one of the three types, Return,

Parameter, and Global. A Return slice represents the behavior of

computing the return value of the function. A Parameter slice

represents the behavior of changing the value referenced by a

pointer parameter of this function. A Global slice represents the

behavior of changing the values of non-local variables. The

sliceLabel element stores a label that indicates the detailed

behavioral aspect the function slice represents. For example, if the

function slice is for a global variable foo, its sliceLabel will be foo.

Finally, the sliceHash element contains the 32-character hash

value for the function slice computed by the PSE algorithm.

Due to the XML representation of the function change

information, we open the door to locating components in the

function change information and associating them with other

artifacts such as test cases, bug reports, requirements, designs,

requirement changes and design changes. We can use the

following URI-style resource identifier syntax to locate

components in the function change information:

functionChange://Project-name/version-number-or-range/

XPointer-in-functionChangeInfo

Below are two examples for the resource identifier expressions

and their explanations.

Expression 1:

functionChange://Sed/6#xpointer(//functionChange[sliceChange[

 sliceLabel=”prog.cur”]])

Explanation: This expression selects all the functions in Sed

revision 6 that have a changed behavior with respect to the global

variable prog.cur.

Expression 2:

functionChange://Sed/versionRange(2,8)#xpointer(

 //functionChange[@functionName=”compile_address”

 and @changeKind =”changed”])

Explanation: This expression locates all the changes to the

compile_address function in the Sed project from revision 2 to

revision 8.

The expressions that locate components in the function change

information make it possible to create traceability links between

the change information and other artifacts. Assume that we have

the design document for the Sed project and it is represented in

XML format, sed-design.xml (a UML document represented in

XML). We locate the Sed design on the part that compiles an

address for a Sed command using the expression:

sed-design.xml#xpointer(/compile/compile_sed_address)

After that, an XLink can be used to record the traceability

between the design component for compile_sed_address and the

function change information for the compile_address function,

which is an implementation of the design component:
<cinfo_link xlink:type=”extented”>

 <loc xlink:type=”locator” xlink:href='sed-design.xml#

 xpointer(/compile/compile_sed_address)”

xlink:label=”design_anchor_1”/>

 <loc xlink:type=”locator”

xlink:href=” functionChange://Sed/versionRange(all)#

xpointer(//functionChange[@functionName=

 ‘compile_address’])”

xlink:label=”changeInfo_anchor_1/>

 <link xlink:type=”arc” xlink:from=” design_anchor_1”

xlink:to=”changeInfo_anchor_1”/>

</cinfo_link>

To support the traceability, we still need to provide a

implementation to parse and retrieve change information from the

special URL, functionChange://Project-name/version-number-or-

range/, in XLinks.

If the design document changes can be represented in XML too,

XML links can also be created between the design changes and

the function change information for source code, so we can trace

from the source code changes to the design component changes to

find out the reason of source code changes.

5. CASE STUDY
We tested our implementation on revision 3.01 and revision 3.02

of the Sed project [10]. Sed revision 3.01 has 12223 lines of code,

12 C files and 100 functions and Sed revision 3.02 has 12368

lines of code, 12 C files and 100 functions.

We made a function text comparison for Sed source code between

revision 3.01 and revision 3.02. The results show that only the

snarf_char_class function in compile.c has textual change: 2 lines

in revision 3.01 are replaced by 5 lines in revision 3.02. The

snarf_char_class function in revision 3.01 has 42 lines and it has

45 lines in revision 3.02. So, the number of line changes for

snarf_char_class between 3.01 and 3.02 is 5, and the ratio of line

changes is 11%.

We also made a function behavior comparison for Sed between

revision 3.01 and revision 3.02, the results show that the function

snarf_char_class in revision 3.01 has four slices: one Return kind,

one Parameter kind, whose sliceLabel is #param1, one Global

kind whose sliceLabel is prog.cur, and the other Global kind

whose sliceLabel is input.line. Function snarf_char_class in

revision 3.02 has four function slices with the same labels too, but

all of their slice hashes are different from those in revision 3.01,

which means the textual changes in the snarf_char_class function

affect all the four behavior aspects of this function.

In summary, the functionChangeInfo data for Sed revision 3.02 is

as follows.
<changeInfo projectName=”sed” revisionNumber=”3.02”>

 <sourceFileChange sourceFilePath=”sed/compile.c”

 changeKind=”changed”>

 <functionChange functionName=”snarf_char_class”

 changeKind=“changed” numberOfLineChanged = “5”

 lineChangeRatio=”0.11”>

 <sliceChange sliceKind=“Return” changeKind=”changed”>

 <sliceLabel>#return</sliceLabel>

 <sliceHash>ce2d52d65f33eb611a6030735ebe9262</sliceHash>

 </sliceChange>

 <sliceChange sliceKind = “Parameter” changeKind=”changed”>

 <sliceLabel>#param1</sliceLabel>

 <sliceHash> 3a2289b2f656d5569ea0110d07f8a1c5</sliceHash>

 </sliceChange>

 <sliceChange sliceKind = “Global” changeKind=”changed”>

 <sliceLabel>prog.cur</sliceLabel>

 <sliceHash>f6efe3e368291a4f5dcb6b21502219c8</sliceHash>

 </sliceChange>

 <sliceChange sliceKind = “Global” changeKind=”changed”>

 <sliceLabel>input.line</sliceLabel>

 <sliceHash>f6efe3e368291a4f5dcb6b21502219c8</sliceHash>

 </sliceChange>

 </functionChange>

 </sourceFileChange>

</changeInfo>

6. RELATED WORK
Computing document difference based on document syntax or

structure has been explored by many research efforts. Yang [11]

developed a syntactic comparison and merge tool based on parse

trees for the C programming language. Different files are parsed

to generate corresponding parse trees. Then, a tree matching

algorithm runs to match nodes and locate differences. Finally, a

pretty-printer traverses the trees and highlights the different code

sections in the files. Cdiff [12] takes a similar approach for C++.

Due to the limitation of the C++ Information Abstractor cdiff

uses, it only handles comparison at the procedure level. There are

also syntactic comparison approaches that use graph structure to

represent the code. For example, [13] uses labeled typed nested

graphs and graph rewriting techniques to provide a formal

foundation for software diff and merge. Our approach that

computes the function textual changes combines the use of syntax

analyzer and text diff. Our approach relies much less on the

understanding of the full program syntax, since only the syntax

units at the function level are retrieved, the text diff is still heavily

used in our approach.

The program behavior comparison problem has been explored

somewhat. Horwitz and Reps [7] introduced an algorithm to

compare two program slices. Their algorithm is based on the

dependence graph representation of program slices. The labels on

the dependence edges in the graph and the dependence type

between graph vertices guide the comparison of two slices.

Though our PSE algorithm is based on Horwitz’s algorithm in [7],

our algorithm requires only one entity, a program slice, and maps

it to a hash value, which is reusable for comparing behaviors

across revisions. In [14], Apiwattanapong et al. introduced the

CalcDiff algorithm that compares the behaviors of object-oriented

programs. To compare program behaviors, their approach

employs enhanced control flow graphs, which neither address

variable renaming and statement permutation, nor extract finer-

grained behavior aspects from a method.

7. CONCLUSION AND FUTURE WORK
In this paper, we describe an approach that computes function

change information for C projects across revisions. Two levels of

abstraction, function textual change and function behavioral

change, are included in the function change information. We

compute function textual changes between two revisions by

retrieving function text from these revisions and comparing their

difference using the diff tool. We capture function behavior

aspects using program slicing techniques. We introduce the PSE

algorithm that encodes a program slice to a hash value. We apply

the PSE algorithm on C functions by computing the hash values

for program slices with respect to sensitive components of a

function. The slice hashes for a function can be used to identify

function behavioral changes across revisions. The function textual

change information and the function behavioral change

information serve as complement to the change log to help

maintainers understand program changes across revisions.

We represent the function change information with the XML

format and define the syntax to locate components in the XML.

This representation of change information opens the door for

creating traceability links between the function change

information and other software artifacts.

For the future work, we will integrate our approach with an SCM

system, Subversion, so function-level change information can be

stored in SCM change logs and, at the same time, it can guide the

change submitter to write change logs in structured way.

8. REFERENCES
[1] S. Dreilinger, "CVS Version Control for Web Site Projects,"

1998, http://interactive.com/cvswebsites/.

[2] Subversion, "Subversion Project Home Page," 2005,

http://subversion.tigris.org/.

[3] IBM, "Rational ClearCase Home Page," 2004, http://www-

306.ibm.com/software/awdtools/clearcase/.

[4] GNU, "GNU Diffutils," 2003,

http://www.gnu.org/software/diffutils/.

[5] M. Weiser, "Program Slicing," IEEE Transactions on

Software Engineering, vol. 10, no. 4, pp. 352-357, 1984.

[6] S. Horwitz, T. Reps, and D. Binkley, "Interprocedural Slicing

Using Dependence Graphs," ACM Transactions on

Programming Languages and Systems, vol. 12, no. 1, pp. 26-

60, 1990.

[7] S. Horwitz and T. Reps, "Efficient Comparison of Program

Slices," Acta Informatica, vol. 28, no. 9, pp. 713 - 732, 1991.

[8] R. Rivest, "The MD5 Message-Digest Algorithm," 1992,

http://www.ietf.org/rfc/rfc1321.txt.

[9] GrammaTech, "GrammaTech CodeSurfer Home Page," 2004,

http://www.grammatech.com/products/codesurfer/index.html.

[10] GNU, "GNU Sed (streams editor)," 2003,

http://www.gnu.org/software/sed/.

[11] W. Yang, "How to Merge Program Texts," Journal of

Systems and Software, vol. 27, no. 2, 1994.

[12] J. E. Grass, "Cdiff: A Syntax Directed Diff for C++

Programs," In Proceedings of USENIX C++ Conference,

Portland, OR, 1992, pp. 181-193.

[13] T. Mens, "Conditional Graph Rewriting as a Domain-

Independent Formalism for Software Evolution," in LNCS,

vol. 1779: Springer-Verlag, 1999, pp. 127-143.

[14] T. Apiwattanapong, A. Orso, and M. J. Harrold, "A

Differencing Algorithm for Object-Oriented Programs," In

Proceedings of the 19th IEEE International Conference on

Automated Software Engineering (ASE'04), 2004, pp. 2-13.

