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ABSTRACT 

In this paper, we describe an approach that automatically 

computes function change information between consecutive 

revisions along the revision history of C language projects. 

Function changes are computed at two abstract levels. First, we 

compute the textual changes between two function revisions. 

Computed results include function additions and deletions, and 

the quantity and the ratio of textual change in changed functions 

across two revisions. Second, we compute the behavioral changes 

of functions using program slicing techniques. We use an XML-

formatted document to represent computed function change 

information. The function change information, together with the 

SCM change log, helps maintainers understand code changes 

between two revisions. The structured format of the function 

change information also helps create traceability links between the 

changes and other artifacts. We describe our prototype 

implementation for computing function changes, and we evaluate 

our approach through a case study on the Sed project. 

Categories and Subject Descriptors 

D.2.7 [Distribution, Maintenance, and Enhancement]: Version 

control.  

General Terms 

Algorithms, Documentation. 

Keywords 

Version control, program slicing, program slice encoding. 

1. INTRODUCTION 
Software Configuration Management (SCM) tools such as CVS 

[1], Subversion [2], and ClearCase [3] are intensively used to 

perform version control and manage source code changes in 

modern software development projects. When submitting source 

code changes using these tools, best practice is for programmers 

to write a brief explanation of the change into the change log, 

which is saved together with the source code deltas in the SCM 

repository. After the source code of a software project has 

undergone many revisions, the change logs help maintainers to 

understand how the source code evolves, providing details on 

who changed which part of the code, and for what purpose.  

Unfortunately, the quality of change logs varies greatly. Their 

quality depends on the programmers that submit the changes: how 

disciplined they are in making log entries, how well they 

understand the source code, and how well they write the change 

logs. Unclear or empty change logs make it difficult for software 

maintainers to understand the code. Even when they are present, 

the change logs are written in natural language and are mostly 

format-free. These facts make it hard to build traceability links 

based on information found in change logs. 

To address the understandability and traceability issues in change 

logs, we propose an approach that automatically computes 

function-level change information across software revisions. Since 

functions are the basic functional block in C programs, we 

compute source code change information at the function level of 

granularity. Function change information has two abstract levels. 

The first level is the textual changes between two revisions of a 

function, which records the addition or deletion of text content. In 

our implementation, we use a C program analyzer to compute the 

text boundary of each function in the source code file of every 

revision. We retrieve the text body of a function and compare it 

with the text body of the same function in the previous revision 

using diff (GNU Diffutils) [4]. The diff results are used to check 

whether this function has textual changes in the new revision and 

compute the change ratio if new changes exist. 

The second abstract level is behavioral changes of functions. We 

identify fine-grained function behavior aspects by using program 

slice information to compute the behavioral change of functions 

between two revisions. Program slicing techniques [5, 6] study 

the behavior of source code through the flow dependency and 

control dependency relationships among statements. The concept 

of program slicing was introduced by Mark Weiser [5], who 

defined a slice as all the program code that may influence the 

values computed at a criterion, which consists of a (line-number, 

variable) pair [5]. Horwitz et al. [6] introduced a method to 

compute intra-procedural and inter-procedural slices based on 

program dependence graphs. Since program slices capture the 

behavior aspects of a program, we can use them to identify the 

behavioral changes of functions across different revisions. A 

behavior aspect of a function can be represented by a program 

slice with respect to the sensitive components of a function at the 

end of the function. A sensitive component of a function is a 

variable that is or may be modified in this function and may be 

used by the other parts of the program. A function may have 

multiple sensitive components, such as the function return value, 

and the non-local variables directly or transitively modified in the 

function. We developed an algorithm, PSE (program slice 

encoding), that encodes a program slice to a hash value, so the 

change of a slice hash indicates the change of the behavior of this 

 

 



program slice. We store the slice hashes for functions in each 

revision in the function change information to identify function 

behavioral changes across revisions. 

Combining the information for function textual changes and the 

information for function behavioral changes, the function-level 

change information serves as complement to the change logs to 

help maintainers to understand the changes better. 

We represent the function change information in XML format, so 

the change information can be identified at various granularities, 

including file, function, and function behavior aspect. The XML 

format also permits traceability links to be built between the 

change information and other software development artifacts.  

2. FUNCTION TEXTUAL CHANGE 
SCM tools such as CVS, Subversion, and ClearCase provide the 

capability to manage the text differences between two successive 

revisions of a file. diff  [4] is a tool usually used to compute the 

text difference of two files based on line string matching. It 

calculates the longest common subsequence (LCS) of two text 

files at the line level.  

The text differences computed by SCM systems are usually at the 

file level, even for source code files, since the diff tools used by 

SCM systems are general tools that are applicable to a broad 

range of programming languages and other artifacts, and hence 

they are unaware of source code syntax. However, to enhance the 

ability to understand source code changes, it is useful to compute 

change information at finer granularity than the file level, 

leveraging the software’s syntactic structure. 

We propose an approach that computes function textual change 

information between two revisions of C programs. This approach 

takes three steps. 

Step 1: use a C program parser to compute the line range of every 

function in the source code files. 

Step 2: find deleted and added functions by comparing the 

function lists of both revisions. 

Step 3: for the functions existing in both revisions, we retrieve the 

function text from each revision and then compare them using 

GNU diff. This information is used to compute change 

information, including the number of lines changed and the ratio 

of line changes to the maximum number of lines of the function in 

the two revisions. 

We compute the number of line changes and the ratio of line 

changes of two revisions of a function based on the output from 

GNU diff. GNU diff takes two arguments as input, which we term 

revision1 and revision2 according to input order. The output 

consists of a sequence with the following format: 

change-command 

< from-file-line 

< from-file-line... 

--- 

> to-file-line 

> to-file-line... 
The change-command consists of the line range of revision1, the 

change type, and the line range of revision2. The change type can 

be a for add, c for replace, or d for delete. For example, 5a3,5 

means adding the lines 3-5 in revision2 after line 5 of revision1. 

6,7d12 means deleting the lines 6-7 in revision1, and line 6-7 

would have appear after line 12 in revision2 had they not been 

deleted. 10-12c18-21 means replacing line 10-12 of revision1 

with line 18-21 of revision2.  

We compute the number of line changes between two revisions of 

a function by scanning the diff results, and for every change type a, 

accumulating the number of added lines to the number of line 

changes; for every change type d, accumulating the number of 

deleted lines to the number of line changes; for every change type 

c, accumulating the maximum lines between the two line ranges in 

the change-command to the number of line changes. We compute 

the ratio of line changes by dividing the number of line changes 

by the maximum number of lines of the two revisions of the 

function. 

3. FUNCTION BEHAVIORAL CHANGE 
Though the function change information computed in Section 2 

shows us the straightforward facts of the textual changes of a 

function in the new revision, no behavioral change facts are 

revealed. We know that some textual changes, such as changes to 

comments, code beautification, and variable renaming, do not 

affect program behaviors at all, while others may affect some 

aspects of program behaviors.  

A behavioral aspect of a function can be represented by a program 

slice that computes the return value of the function, or a program 

slice that may modify a global variable in the function, etc. A 

function can have multiple behavioral aspects.  

A program slice can be represented by a program dependence 

graph (PDG) [6]. To detect behavioral changes of two program 

slices, we compare their corresponding PDGs. To make the 

comparison process efficient and make the comparison results 

reusable, we developed a program slice encoding (PSE) algorithm 

that encodes a program slice to a hash value, thereby allowing the 

slice hashes of a function to be used to detect function behavior 

changes across revisions. 

3.1 Program Dependence Graph 
Our program slice encoding (PSE) algorithm works on program 

slices represented by the program dependence graph (PDG) 

defined by Horwitz [6]. A PDG is a directed graph, where each 

vertex in the PDG represents a statement or predicate in the 

program, and each edge represents a data dependence or control 

dependence relationship between the two statements 

corresponding to the two vertexes connected by the edge. Figure 1 

shows an example program and its corresponding PDG. 

As defined by Horwitz [6], there are three kinds of dependence 

edges in a PDG, flow dependence, control dependence, and def-

order dependence. The flow dependence edges can be further 

broken down into loop-independent flow dependence and loop-

carried flow dependence. The detailed definitions of these 

dependence edges can be found in [6]. 

3.2 The PSE Algorithm 
Inspired by Horwitz’s isomorphic-testing algorithm in [7], which 

checks the isomorphism of two PDGs, we developed the PSE 

algorithm to encode the PDG for a program slice. The basic 

process of the PSE algorithm starts with a depth-first graph 

traversal in the PDG of a slice, normalizing every node visited. 

Next, it encodes the transformed PDG to a string value, which is 

then fed to a hash algorithm to produce the final result, the hashed 

slice encoding.  



 

Due to space limitations, we only explain the PSE algorithm for a 

simplified language that supports just assignment, if and while 

statements, and scalar variables. In our prototype implementation, 

we developed a full version of the PSE algorithm that works on C 

functions with arbitrary control flows, non-scalar variables, 

function calls and pointer variables. The basic idea is the same, 

though the full version of PSE copes with all advanced features 

present in C. There are four steps in the PSE algorithm. 

Step 1 of the PSE Algorithm – Preprocess 

This step follows the Preprocess step in the isomorphic-testing 

algorithm described in [7]. The purpose of this step is to mark 

every edge to make them distinct from one another in the 

incoming edges to a vertex. This permits a unique graph traversal 

path to be determined for the isomorphic PDGs to ensure the 

isomorphic PDGs are mapped to the same hash value. 

 

In this step, the operand number labels and the ordering number 

labels are added to the flow dependence edges in the PDG. An 

operand number i is added to a flow dependence edge from u to v 

if a variable x is defined by u and x is the ith variable occurring 

from left to right in the expression at the right side of the 

assignment statement of v. The ordering number is defined to sort 

the incoming flow dependence edges that have the same operand 

number. In the example of Figure 2, the edge from k=0 to return k 

has the same operand number, 1, as the edge from k=k+i to 

return k. But, since the statement k=0 appears before the 

statement k=k+i in the program, we assign an ordering number of 

0 to the edge from k=0 and assign an ordering number of 1 to the 

edge from k=k+i. 

Figure 2 shows the preprocessed PDG based on the original PDG 

in Figure 1. The first number on the flow dependence labels 

indicates the operand number, and the second number indicates 

the ordering number.  

Step 2 of the PSE Algorithm – Normalize the graph  

The second step of the PSE algorithm is to make a PDG walk in 

the preprocessed PDG in a certain order and normalize the 

variable names in the vertices. The PDG walk part in PSE follows 

the strategy used in the isomorphic-testing algorithm [7] to select 

the walk path in the PDG. The walk in the preprocessed PDG is a 

depth-first graph search starting from the slicing criterion vertex 

and then proceeding backwards along the flow and control 

dependence edges.  

The order of the vertices visited in this depth-first PDG walk 

depends on the path selection rule that determines the traversal 

order of the incoming edges to a vertex. The detailed path 

selection rule is as follows: 

(1) Take the control dependence edge first. 

(2) Then, take the flow dependence edges by the order of their 

operand number from the smallest to the largest. 

(3) For the flow dependence edges that have the same operand 

number, sort them by their ordering number from the smallest to 

the largest. 

(4) For the flow dependence edges that have both the same 

operand number and the same ordering number, take the loop-

independent flow dependence edge first, then the loop-carried 

flow dependence edges. 

(5) For the loop-carried flow dependence edges that have the 

same operand number and ordering number, sort them by the 

loop nesting level of the loop predicate they carry from the most-

deeply nested to the least-deeply nested. 

 

During the depth-first walk in the PDG, the PSE algorithm 

processes every vertex by normalizing the variables in the 

statement. The PSE algorithm processes the vertex in this way: 

(1) Make a preorder tree walk on the abstract syntax tree (AST) 

for the statement corresponding to the vertex. 

(2) For every variable occurring in the AST walk whose name has 

not been processed, changed its name to a normalized name, 

@<i>, where <i> denotes that this is the ith variable of all the 

variables renamed during the entire graph walk. 

1,1 

2,0 

Loop-carried 

flow dependence 

1,1 

1,0 

1,1 

2,0 

1,0 
1,0 

1,0 

2) Entry 

3)@1=0 6)@2=1 5) while  

   @2<5 

4) @1= 

@1+@2 
7) @2= 

@2+1 

1) return  

       @1 

Legends 

 

Figure 3. The program dependence graph after variable 

normalization. 
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Figure 2. The program dependence graph with operand 

numbers and ordering numbers on flow dependence edges. 
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Figure 1. An example program and the program 

dependence graph for the slice with respect to return k. 
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Figure 3 shows the PDG after a depth-first walk and variable 

normalization on the example PDG shown in Figure 2. The 

number added in every vertex indicates the order it was visited.  

Step 3 of the PSE Algorithm – Encode the PDG 

This step encodes the normalized PDG from Step 2 into a string 

value. This string value consists of two parts, the statement 

encoding string (encoding of statements) and the edge encoding 

string (encoding of dependence edges). The encoding process is 

as follows. 

(1) Make a depth-first graph walk in this PDG in the same way as 

Step 2 of the PSE algorithm. 

(2) For every vertex visited during the depth-first PDG walk, 

append the preorder format of the AST for the statement 

corresponding to the vertex to the statement encoding string.  

(3) For every edge traversed, encode this edge to a string and 

append this string to the edge encoding string. The format of the 

encoded string for an edge is [a-b-c-d-e-f-g], where the fields a to 

g are values that represent the order number on the vertex at the 

source endpoint of this edge, the order number on the target 

vertex, the edge type, the operand number, the ordering number, 

the label value for the control dependence edge, and the loop 

nesting level of the loop predicate a loop-carried flow dependence 

edge carries.  

After the encoding process in this step, the concatenation of the 

statement encoding string and the edge encoding string is the 

resulting encoding string for this PDG. For the example program 

in Figure 1, the statement encoding string is:  
return (@1 );{entry};=(@1 0 );=(@1 +(@1 @2 ));while(<(@2 

5 ));=( @2 1 );=( @2 +(@2 1 )); 

The edge encoding string is [2-1-1-0-0-T-0][3-1-2-1-0-0-0][2-3-1-0-

0-T-0][4-1-2-1-1-0-0][5-4-1-0-0-T-0][2-5-1-0-0-T-0][6-5-2-1-0-0-0][2-

6-1-0-0-T-0][7-5-3-1-1-0-1][5-7-1-0-0-T-0][6-7-2-1-0-0-0][7-7-3-1-1-0-

1][3-4-2-1-0-0-0][4-4-3-1-1-0-1][6-4-2-2-0-0][7-4-3-2-0-0-1]. 

Step 4 of the PSE Algorithm – Hash the string value 

This step maps the encoding string from Step 3 to a hash value 

using the MD5 hash algorithm [8]. The MD5 hash for the 

resulting encoding string from Step 3 is 

6931bc735157676d42d1dc761c0fb357.  

The PSE algorithm has a linear runtime complexity of O(m+n), 

where m represents the number of vertices in the PDG and n 

represents the number of dependence edges in the PDG. 

4. IMPLEMENTATION 

4.1 Project Architecture 
To validate our ideas, we implemented a tool that computes the 

function textual changes and function behavioral changes of C 

programs across revisions. Our implementation uses the function 

line range information and procedure dependence graphs for 

function slices computed by CodeSurfer [9], a program analysis 

tool produced by GrammaTech, Inc. 

To compute function textual change information across the entire 

revision history of a project, we check out every pair of 

consecutive revisions of the project from its Subversion repository,  

use CodeSurfer to identify all the functions in each revision, and 

compute their line ranges in the source code files. Based on the 

line range of the functions, we retrieve from each revision the 

function text and compare them using the diff tool. We also 

compute added functions and deleted functions in the later 

revision. 

At the same time, we compute the function slice hashes for the 

functions in each revision. We use CodeSurfer to obtain the 

procedure dependence graph for intra-procedural program slices 

with respect to the sensitive components in each function, and 

apply the PSE algorithm on them. We compare the slice hashes of 

each function in the later revision with the corresponding hashes 

in the prior revision to find the function behavioral changes. 

Finally, we save the function textual change information and 

function behavioral change information for each revision in a 

MySQL database. Figure 4 shows the project architecture and the 

flow of data among components. 

 

4.2 Data Schema and Component 

Identification for Traceability  
We represent the function textual change information and 

behavioral change information in XML format and store them in a 

MySQL database. The data in the database together with the 

change logs in the SCM repository will help maintainers 

understand the changes between revisions. 

There is a ProjectFunctionChange table in the database. The table 

has three fields, which are projectName, revisionNumber, and 

functionChangeInfo. Each revision of the project has one record 

in the database. The projectName and revisionNumber fields 

record the name of the project and the revision number of the 

project respectively. The functionChangeInfo field contains the 

function textual change information and the function behavioral 

change information of this revision compared to its prior revision, 

represented in XML. 

The XML DTD for the functionChangeInfo data is described as 

follows: 

<!ELEMENT changeInfo (sourceFileChange*)> 

<!ATTLIST changeInfo 

             projectName CDATA #REQUIRED 

             revisionNumber CDATA #REQUIRED> 

<!ELEMENT sourceFileChange (functionChange*)> 

<!ATTLIST sourceFileChange  

             sourceFilePath CDATA #REQUIRED 

             changeKind (Added | Deleted | Changed) #REQUIRED> 
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Figure 4. The project architecture and data flow.  
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<!ELEMENT functionChange (sliceChange*)> 

<!ATTLIST functionChange  

             functionName CDATA #REQUIRED 

             changeKind (Added | Deleted | Changed) #REQUIRED 

             numberOfLineChanged CDATA #REQUIRED 

             lineChangeRatio CDATA #IMPLIED> 

<!ELEMENT sliceChange (sliceLabel, sliceHash)> 

<!ATTLIST sliceChange 

              sliceKind (Return | Parameter | Global) #REQUIRED 

              changeKind (Added | Deleted | Changed) #REQUIRED> 

<!ELEMENT sliceLabel (#PCDATA)> 

<!ELEMENT sliceHash (#PCDATA)> 

In the XML DTD, the element changeInfo represents all the 

changes to the project at this revision. The changeInfo element 

contains multiple sourceFileChange elements, which represent all 

of the deleted, added, and changed source code files. A 

functionChange element records the file name, change kind, 

number of line changes, the ratio of the line changes, and the 

change information for the function slices.  

The sliceChange element records change in a behavioral aspect of 

the function. The slice can be one of the three types, Return, 

Parameter, and Global. A Return slice represents the behavior of 

computing the return value of the function. A Parameter slice 

represents the behavior of changing the value referenced by a 

pointer parameter of this function. A Global slice represents the 

behavior of changing the values of non-local variables. The 

sliceLabel element stores a label that indicates the detailed 

behavioral aspect the function slice represents. For example, if the 

function slice is for a global variable foo, its sliceLabel will be foo. 

Finally, the sliceHash element contains the 32-character hash 

value for the function slice computed by the PSE algorithm. 

Due to the XML representation of the function change 

information, we open the door to locating components in the 

function change information and associating them with other 

artifacts such as test cases, bug reports, requirements, designs, 

requirement changes and design changes. We can use the 

following URI-style resource identifier syntax to locate 

components in the function change information: 

functionChange://Project-name/version-number-or-range/ 

XPointer-in-functionChangeInfo  

Below are two examples for the resource identifier expressions 

and their explanations. 

Expression 1: 

functionChange://Sed/6#xpointer(//functionChange[sliceChange[ 

                                                sliceLabel=”prog.cur”]]) 

Explanation: This expression selects all the functions in Sed 

revision 6 that have a changed behavior with respect to the global 

variable prog.cur. 

Expression 2: 

functionChange://Sed/versionRange(2,8)#xpointer( 

                //functionChange[@functionName=”compile_address” 

                 and @changeKind =”changed”]) 

Explanation: This expression locates all the changes to the 

compile_address function in the Sed project from revision 2 to 

revision 8. 

The expressions that locate components in the function change 

information make it possible to create traceability links between 

the change information and other artifacts. Assume that we have 

the design document for the Sed project and it is represented in 

XML format, sed-design.xml (a UML document represented in 

XML). We locate the Sed design on the part that compiles an 

address for a Sed command using the expression: 

sed-design.xml#xpointer(/compile/compile_sed_address) 

After that, an XLink can be used to record the traceability 

between the design component for compile_sed_address and the 

function change information for the compile_address function, 

which is an implementation of the design component: 
<cinfo_link xlink:type=”extented”> 

      <loc xlink:type=”locator”  xlink:href='sed-design.xml#  

                                 xpointer(/compile/compile_sed_address)” 

xlink:label=”design_anchor_1”/> 

      <loc xlink:type=”locator”  

xlink:href=” functionChange://Sed/versionRange(all)#  

xpointer(//functionChange[@functionName=  

        ‘compile_address’])” 

xlink:label=”changeInfo_anchor_1/> 

      <link xlink:type=”arc” xlink:from=” design_anchor_1”  

xlink:to=”changeInfo_anchor_1”/> 

</cinfo_link> 

To support the traceability, we still need to provide a 

implementation to parse and retrieve change information from the 

special URL, functionChange://Project-name/version-number-or-

range/, in XLinks. 

If the design document changes can be represented in XML too, 

XML links can also be created between the design changes and 

the function change information for source code, so we can trace 

from the source code changes to the design component changes to 

find out the reason of source code changes. 

5. CASE STUDY 
We tested our implementation on revision 3.01 and revision 3.02 

of the Sed project [10]. Sed revision 3.01 has 12223 lines of code, 

12 C files and 100 functions and Sed revision 3.02 has 12368 

lines of code, 12 C files and 100 functions. 

We made a function text comparison for Sed source code between 

revision 3.01 and revision 3.02. The results show that only the 

snarf_char_class function in compile.c has textual change: 2 lines 

in revision 3.01 are replaced by 5 lines in revision 3.02. The 

snarf_char_class function in revision 3.01 has 42 lines and it has 

45 lines in revision 3.02. So, the number of line changes for 

snarf_char_class between 3.01 and 3.02 is 5, and the ratio of line 

changes is 11%.  

We also made a function behavior comparison for Sed between 

revision 3.01 and revision 3.02, the results show that the function 

snarf_char_class in revision 3.01 has four slices: one Return kind, 

one Parameter kind, whose sliceLabel is #param1, one Global 

kind whose sliceLabel is prog.cur, and the other Global kind 

whose sliceLabel is input.line. Function snarf_char_class in 

revision 3.02 has four function slices with the same labels too, but 

all of their slice hashes are different from those in revision 3.01, 

which means the textual changes in the snarf_char_class function 

affect all the four behavior aspects of this function. 

In summary, the functionChangeInfo data for Sed revision 3.02 is 

as follows. 
<changeInfo projectName=”sed” revisionNumber=”3.02”> 

  <sourceFileChange sourceFilePath=”sed/compile.c” 

                                   changeKind=”changed”> 

    <functionChange functionName=”snarf_char_class” 

                 changeKind=“changed”  numberOfLineChanged = “5” 

                 lineChangeRatio=”0.11”> 



        <sliceChange sliceKind=“Return” changeKind=”changed”> 

           <sliceLabel>#return</sliceLabel> 

           <sliceHash>ce2d52d65f33eb611a6030735ebe9262</sliceHash> 

        </sliceChange>  

        <sliceChange sliceKind = “Parameter”  changeKind=”changed”> 

           <sliceLabel>#param1</sliceLabel> 

           <sliceHash> 3a2289b2f656d5569ea0110d07f8a1c5</sliceHash> 

        </sliceChange>  

        <sliceChange sliceKind = “Global”  changeKind=”changed”> 

           <sliceLabel>prog.cur</sliceLabel> 

           <sliceHash>f6efe3e368291a4f5dcb6b21502219c8</sliceHash> 

        </sliceChange>  

        <sliceChange sliceKind = “Global” changeKind=”changed”> 

           <sliceLabel>input.line</sliceLabel> 

           <sliceHash>f6efe3e368291a4f5dcb6b21502219c8</sliceHash> 

        </sliceChange>  

    </functionChange> 

  </sourceFileChange> 

</changeInfo> 

6. RELATED WORK 
Computing document difference based on document syntax or 

structure has been explored by many research efforts. Yang [11] 

developed a syntactic comparison and merge tool based on parse 

trees for the C programming language. Different files are parsed 

to generate corresponding parse trees. Then, a tree matching 

algorithm runs to match nodes and locate differences. Finally, a 

pretty-printer traverses the trees and highlights the different code 

sections in the files. Cdiff [12] takes a similar approach for C++. 

Due to the limitation of the C++ Information Abstractor cdiff 

uses, it only handles comparison at the procedure level. There are 

also syntactic comparison approaches that use graph structure to 

represent the code. For example, [13] uses labeled typed nested 

graphs and graph rewriting techniques to provide a formal 

foundation for software diff and merge. Our approach that 

computes the function textual changes combines the use of syntax 

analyzer and text diff. Our approach relies much less on the 

understanding of the full program syntax, since only the syntax 

units at the function level are retrieved, the text diff is still heavily 

used in our approach. 

The program behavior comparison problem has been explored 

somewhat. Horwitz and Reps [7] introduced an algorithm to 

compare two program slices. Their algorithm is based on the 

dependence graph representation of program slices. The labels on 

the dependence edges in the graph and the dependence type 

between graph vertices guide the comparison of two slices. 

Though our PSE algorithm is based on Horwitz’s algorithm in [7], 

our algorithm requires only one entity, a program slice, and maps 

it to a hash value, which is reusable for comparing behaviors 

across revisions. In [14], Apiwattanapong  et al. introduced the 

CalcDiff algorithm that compares the behaviors of object-oriented 

programs. To compare program behaviors, their approach 

employs enhanced control flow graphs, which neither address 

variable renaming and statement permutation, nor extract finer-

grained behavior aspects from a method. 

7. CONCLUSION AND FUTURE WORK 
In this paper, we describe an approach that computes function 

change information for C projects across revisions. Two levels of 

abstraction, function textual change and function behavioral 

change, are included in the function change information. We 

compute function textual changes between two revisions by 

retrieving function text from these revisions and comparing their 

difference using the diff tool. We capture function behavior 

aspects using program slicing techniques. We introduce the PSE 

algorithm that encodes a program slice to a hash value. We apply 

the PSE algorithm on C functions by computing the hash values 

for program slices with respect to sensitive components of a 

function. The slice hashes for a function can be used to identify 

function behavioral changes across revisions. The function textual 

change information and the function behavioral change 

information serve as complement to the change log to help 

maintainers understand program changes across revisions. 

We represent the function change information with the XML 

format and define the syntax to locate components in the XML. 

This representation of change information opens the door for 

creating traceability links between the function change 

information and other software artifacts. 

For the future work, we will integrate our approach with an SCM 

system, Subversion, so function-level change information can be 

stored in SCM change logs and, at the same time, it can guide the 

change submitter to write change logs in structured way. 
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