
ABSTRACT
Software architectures are multi-dimensional entities that
can be fully understood only when viewed and analyzed at
four different levels of abstraction: (1) internal functionality
of a component, (2) the interface(s) exported by the
component to the rest of the system, (3) interconnection of
architectural elements in an architecture, and (4) rules of the
architectural style. This paper presents the characteristics of
each of the four levels of architectural abstraction, outlines
the kinds of analyses that need to be performed at each
level, and discusses the kinds of formal notations that are
suitable at each level. We use the pipe-and-filter and Chiron-
2 (C2) architectural styles as illustrations. In particular, we
present formal models of C2 at the last three levels of
abstraction as a first step in enabling a C2 design
environment to perform the necessary analyses of
architectures. We discuss the benefits of the formal
definitions and our experience to date.1
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INTRODUCTION
Software architectural styles, such as Unix’s pipe-and-filter
style or AI’s blackboard architectures, are key design
idioms [9][23]. Software development based on common
architectural idioms has its focus shifted from lines-of-code
to coarser-grained architectural elements (software
components, connectors, etc.) and their overall
interconnection structure. Development tools that operate
on architectural specifications are as important as tools that
work on individual components. In particular, architectural
design environments [5][7] can provide a platform on which
designers can construct an architectural model of a software
system, have that model checked for syntactic and semantic
correctness, receive domain-specific feedback about various
design qualities, keep track of unfinished steps in the design
process, and generate running programs for that system,
while preserving the properties of the model [20].

1. This material is based upon work sponsored by the Air Force Materiel
Command, Rome Laboratory, and the Advanced Research Projects Agency
under contract number F30602-94-C-0218. The content of the information
does not necessarily reflect the position or policy of the Government and no
official endorsement should be inferred.

Software architectures are multi-dimensional entities that
can be fully understood only when viewed at four levels of
abstraction: internal functionality of a component, the
interface(s) exported by the component to the rest of the
system, interconnection of architectural elements in an
architecture, and rules of the architectural style.

The work done by a design environment must span all four
levels of abstraction. Analysis of architectures may include,
but is not restricted to, checking for adherence to the style,
correctness of components and architectures, interface
matching among interacting components, generation of
component domain translators in the cases of interface
mismatches, concurrency issues, such as deadlock and
starvation, and implementation issues, such as operating
system process splits and host loads. In order to perform
such analyses, a formal model is needed for each level of
abstraction. Different formal notations [30] may be best
suited for various levels’ models.

In this paper, we:

• present arguments for modeling software architectures at
the four distinct levels of abstraction and assess the ben-
efits of doing so,

• argue for the potential utility of formalization at each of
the four levels,

• discuss the maturity of existing formal modeling tech-
niques at each level, and

• discuss ways in which a specific architectural style, Chi-
ron-2 (C2) [27], can be formally modeled at the different
levels of abstraction, model representative features of
C2 at each level, and discuss the lessons learned from
doing so.

The paper is organized as follows: An overview of the C2
style is given in the next section. The section subsequent to
that gives a detailed exposition on the multi-level
perspective of software architectures. It demonstrates the
utility and applicability of the technique both by discussing
ways in which an existing architectural style (pipe-and-
filter) can be modeled and by modeling C2 at each level.
“Value of the C2 Modeling Formalisms” discusses the
benefits and drawbacks of formally modeling C2 at the
different levels of abstraction. Finally, the conclusion
rounds out the paper.
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OVERVIEW OF C2
C2 is a component- and message-based architectural style
designed to support the particular needs of applications that
have a graphical user interface aspect, with potential for
supporting other types of applications. The style supports a
paradigm in which UI components, such as dialogs,
structured graphics models (of various levels of
abstraction), and constraint managers, can more readily be
reused. A variety of other goals are potentially supported as
well. These goals include the ability to compose systems in
which: components may be written in different
programming languages; components may be running in a
distributed, heterogeneous environment without shared
address spaces; architectures may be changed dynamically;
multiple users may be interacting with the system; multiple
toolkits may be employed; multiple dialogs may be active
(and described in different formalisms); and multiple media
types may be involved.

The C2 style can be informally summarized as a network of
concurrent components hooked together by connectors, i.e.,
message routing devices. Components and connectors both
have a defined top and bottom. The top of a component may
be attached to the bottom of a single connector and the
bottom of a component may be attached to the top of a
single connector. There is no bound on the number of
components or connectors that may be attached to a single
connector. Note that when two connectors are attached to
each other, it must be from the bottom of one to the top of
the other (see Fig. 1).

Fig. 1. A sample C2 architecture. Jagged lines represent the parts of the ar-
chitecture not shown.

Each component has a top and bottom domain. The top
domain specifies the set of notifications to which a
component responds, and the set of requests that the
component emits up an architecture. The bottom domain
specifies the set of notifications that this component emits
down an architecture and the set of requests to which it
responds. All communication between components is solely
achieved by exchanging messages. This requirement is
suggested by the asynchronous nature of component-based
architectures, and, in particular, of applications that have a
GUI aspect, where both users and the application perform
actions concurrently and at arbitrary times and where
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various components in the architecture must be notified of
those actions. Message-based communication is extensively
used in distributed environments for which this architectural
style is well suited.

Central to the architectural style is a principle of limited
visibility or substrate independence: a component within
the hierarchy can only be aware of components “above” it
and is completely unaware of components which reside
“beneath” it. Notions of above and below are used in this
paper to support an intuitive understanding of the
architectural style. As is typical with virtual machine
diagrams found in operating systems textbooks, in this
discussion the application code is (arbitrarily) regarded as
being at the top while user interface toolkits, windowing
systems, and physical devices are at the bottom. The human
user is thus at the very bottom, interacting with the physical
devices of keyboard, mouse, microphone, and so forth.

Substrate independence has a clear potential for fostering
substitutability and reusability of components across
architectures. One issue that must be addressed, however, is
the apparent dependence of a given component on its
“superstrate,” i.e., the components above it. If each
component is built so that its top domain closely
corresponds to the bottom domains of those components
with which it is specifically intended to interact in the given
architecture, its reusability value is greatly diminished and it
can only be substituted by components with similarly
constrained top domains. For that reason, the C2 style
introduces the notion of event translation. Domain
translation is a transformation of the requests issued by a
component into the specific form understood by the
recipient of the request, as well as the transformation of
notifications received by a component into a form it
understands. One goal of the C2 design environment [25] is
to provide support for accomplishing this task.

Fig. 2. The Internal Architecture of a C2 Component. A domain translator
subcomponent may be present to assist in mapping between the compo-
nent’s internal semantic domain and that of the connector above it.

The internal architecture of a C2 component shown in Fig. 2
is targeted to the user interface domain. While issues
concerning composition of components to form an
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architecture are independent of a component’s internal
structure, for purposes of exposition below, this internal
architecture is assumed.

Each component may have its own thread(s) of control, a
property also suggested by the asynchronous nature of tasks
in the GUI domain. It simplifies modeling and programming
of multi-component, multi-user, and concurrent applications
and enables exploitation of distributed platforms. Note that
separating components into different threads of control is
not a requirement of the style. Moreover, a proposed
conceptual architecture is distinct from an implementation
architecture, so that it is indeed possible for components to
share threads of control.

Finally, there is no assumption of a shared address space
among components. Any premise of a shared address space
would be unreasonable in an architectural style that allows
composition of heterogeneous, highly distributed
components, developed in different languages, with their
own threads of control, internal structures, and domains of
discourse.

An example C2 application
An example of an application built in the C2 style is a
version of the video game KLAX.2 A description of the
game is given in Fig. 3. This particular application was
chosen as a useful test of the C2 style concepts in that the
game is based on common computer science data structures
and the game layout maps naturally to modular artists.

Fig. 3. A screenshot and description of our implementation of the KLAXTM

video game.

The design of the system is given in Fig. 4. The components
that make up the KLAX game can be divided into three

2. KLAX is trademarked 1991 by Atari Games.

KLAX Chute
Tiles of random colors

KLAX Palette
Palette catches tiles coming
down the Chute and drops
them into the Well.

KLAX Well
Horizontal, vertical, and

drop at random times

diagonal sets of three or
more consecutive tiles of
the same color are removed
and any tiles above them
collapse down to fill in the
newly-created empty spaces.

and locations.

KLAX Status

logical groups. At the top of the architecture are the
components which encapsulate the game’s state. These data
structure components are placed at the top since they
receive no notifications, but respond to requests and emit
notifications of internal state changes. ADT notifications are
directed to the next level where they are received by both
the game logic components and the artist components.

The game logic components request changes of ADT state
in accordance with game rules and interpret ADT state
change notifications to determine the state of the game in
progress. For example, if a tile is dropped from the well, the
relative positioning logicdetermines if thepalette is in a
position to catch the tile. If so, a request is sent to the palette
to catch the tile. Otherwise, a notification is sent that a tile
has been dropped. This notification is detected by thestatus
logic causing the number of lives to be decremented.

The artist components also receive notifications of ADT
state changes, causing them to update their depictions. Each
artist maintains the state of a set of abstract graphical
objects which, when modified, send state change
notifications in hope that a lower-level graphics component
will render them. Thetile artist provides a flexible
presentation level for tiles. Artists maintain information
about the placement of abstract tile objects. Thetile artist
intercepts any notifications about tile objects and recasts
them to notifications about more concrete drawable objects.
For example, a “tile-created” notification might be
translated into a “rectangle-created” notification. Thelayout
manager component receives all notifications from the
artists and offsets any coordinates to ensure that the game
elements are drawn in their correct positions.

Fig. 4. Conceptual architecture for KLAX in the C2 style. Note that the Log-
ic and Artist layers do not communicate directly and are in fact siblings. The
Artist layer is shown below the Logic layer since the components in the Art-
ist layer perform functions closer to the user.
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The graphics bindingcomponent receives all notifications
about the state of the artists’ graphical objects and translates
them into calls to a window system. User events, such as a
key press, are translated into requests to the artist
components.

The KLAX architecture is intended to support a family of
“falling-tile” games. The components were designed as
reusable building blocks to support different game
variations. One such variation on KLAX is shown in Fig. 5.
This variation involved replacing the original tile matching,
tile placing, and tile artist components with components
which instead matched, placed, and displayed letters. The
objective was thus transformed from matching the colors of
tiles to spelling words. Each time a word was spelled
correctly, it would be removed from the well. Thespelling
logic component wrapped an existing spell-checker.

Fig. 5. A variation on KLAX. By replacing three components from the orig-
inal architecture, the game turns into one whose object is to spell words hor-
izontally, vertically, or diagonally.

MULTI-LEVEL PERSPECTIVE OF SOFTWARE
ARCHITECTURES
Software systems built with a focus on architectures are
complex, multi-dimensional entities that span four distinct
levels of abstraction:

• specification of architectural elements,
• interfaces exported by the architectural elements,
• architectures (particular configurations of architectural

elements), and
•  architectural style rules (meta-architectures).

In order to develop a system using an architecture-based
approach and fully realize the potential of a component-
based development environment, a software architect needs
to understand system characteristics at all four levels. Due
to their common purpose, some overlap in motivating and
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describing the different levels is unavoidable.

Our discussion proceeds from the most familiar (component
specification) to the newest (styles). To demonstrate the
utility and applicability of this taxonomy, we discuss the
ways in which an existing architectural style, pipe-and-
filter, can be modeled at each level. With the exception of
the component specification level, we also provide a model
of C2 at each level.3

Several aspects of the C2 style, most notably its
practicability, have been explored through the construction
of several diverse experimental systems. We believe that our
preliminary findings are encouraging. At the same time, we
recognize that much additional work is needed on the style
and supporting tools.

One of the facets that must be studied further is a formal
representation of architectures built according to the style.
The primary notation used to model individual C2
architectures thus far has been graphical (“boxes and
arrows”). While its expressive power appears to be
sufficient for this purpose, this notation has introduced
ambiguities in interpreting architectures. Furthermore, its
inherent imprecision makes the kinds of formal analyses of
architectures that we would want to perform in the C2
design environment [25] unachievable. By producing a
formal model at the four levels, while retaining the existing
graphical notation, we intend to preserve the
representational simplicity of architectures and the potential
for their direct manipulation in the design environment, but
also add the ability to formally reason about them.

Component Specification
A formal specification of a component’s internal
functionality is sought for three reasons. The first is the need
to have rigorously verified components as reusable building
blocks. In [3], Boehm and Scherlis state that the greatest
disincentive against reuse is the perceived risk of using code
developed by others. A small error in any one component
can have disastrous effects in an architecture. In order to
minimize this risk, components must be formally specified
and verified.

The second reason for a formal specification of components
is expressed in two of Krueger’s truisms of software reuse
[13]: to reuse an artifact effectively, one must know what it
does and it must be easier to find it than to build it. A formal
specification of a component can remedy both problems.
While it requires a higher degree of rigor from a software
practitioner than would a natural language description,
modeling a component formally is a more precise, and often
more concise, way of specifying its functionality.
Furthermore, such specifications could assist in automating
the task of locating components in a software component
marketplace [31]. A developer would provide a
specification of desired component properties to a locator
application, which would, in turn, search both local and

3. We do not intend to conduct new research or propose new solutions in
the area of component specification, since this is a well understood area of
formal methods research. Instead, we intend to utilize existing formal tech-
niques.



remote software component catalogs for components whose
formal specifications most closely match the target
specification. An approach for doing so with a local
component repository is discussed in [18].

Finally, a formal specification of a component can be input
to a code generation tool. Such a tool may be able to only
partially generate component code. Furthermore, that code
may need to be manually optimized to satisfy performance
requirements. However, such a code generation process
would be valuable regardless, as it would relieve human
software developers of at least some programming
responsibilities.

Examples of formal notations in which components can be
specified are axiomatic notations, such as Anna [15],
algebraic notations, such as Obj [11], or abstract model
based notations, such as Z [26]. As a collection, component
modeling techniques are the best understood and most
mature of the formal modeling techniques available at the
four levels of architectural abstraction. The reason for this is
partly that these modeling formalisms predate the research
in software architectures, and were developed with the
intent of modeling procedures and source code modules.

Modeling Pipe-and-Filter Components
The Pipe-and-Filter architectural style, best known for its
ability to create chains of input filters in the Unix shell,
highlights the necessity of formal modeling of components.
Central to the success of the Unix pipe-and-filter style are
the robustness and correctness of commonly used filters,
which results in a high level of user confidence in the filters
and widespread filter reuse. Unix filters have typically not
been formally specified, yet are quite robust, the result of
thousands of hours of use over several decades. While long-
term use is an effective way to yield robust components, this
solution is not practical for new architectural styles; the use
of formal modeling provides equivalent benefits over a far
more compact time scale.

Interface Definition
Just as important as a component’s abstract properties is the
concrete interface a component makes available for
accessing its functionality and data. Therefore, a formal
specification of a component’s interface is needed in
addition to the specification of its internal functionality.
Such a specification enables the component locator
application, discussed above, to select the best possible
match to the needs of a given architecture among
components with similar or identical functionalities [30].
Candidate components whose interfaces are deemed too
different from the desired one would hence be discarded.
Furthermore, a formal interface definition affords automated
translation of the selected component’s domain in cases
where a perfect match is not found. Finally, interface
definition can help establish a component’s adherence to the
architectural style. For example, a candidate component for
an architecture in the C2 style may not make direct
procedure calls from its bottom side, as this would violate
the principle of substrate independence.

Examples of interface definition languages (IDLs) are those

used in CORBA [21] and Polylith [22]. Rapide [14] also
provides a means for modeling component interfaces. Some
common programming language constructs, such as Ada’s
package specifications, can also be viewed as IDLs. This is,
therefore, a relatively well explored and understood area of
research. Much of this work has been conducted
independently of its application in software architectures
and, as in the case of component specifications, it often
predates research on architectures. For example, the
architecture description language (ADL) LILEANNA [28]
extends existing Ada constructs to enable architecture-based
development in the language.

Both Rapide and LILEANNA are considered ADLs, yet
they either provide new or incorporate existing facilities for
component interface specification.4 This combination of
architecture and interface definition in a single language is
relatively common. However, we believe that separating
them provides a better conceptual understanding of the
architectural level currently being modeled and affords the
designer more power, as the most suitable IDL may be
chosen independently of the ADL.

Modeling Pipe-and-Filter Component Interfaces
Due to the characteristics of the pipe-and-filter style,
modeling the interfaces of filters is inappropriate. Since
each filter is considered a single transform between its input
and output data streams, there is only one entry point for
each component. Similarly, there are always two
parameters, the input and output data streams. However, just
because formal interface modeling is unnecessary for the
pipe-and-filter style, it should not be misinterpreted as an
indictment of formality at this level of abstraction. Rather, it
is the simplicity of the pipe-and-filter style itself and its use
of untyped data streams to foster interoperability that makes
filter interface modeling unnecessary.

Modeling C2 Component Interfaces
In this section, we provide a partial syntax of the prototype
C2 IDL, pertinent to our discussion of modeling C2
component interfaces. The syntax is specified in BNF.5

Furthermore, we give an example of how a KLAX
component from Fig. 4  is modeled in the IDL.

A C2 component is modeled in the IDL as follows:

component ::=
component  component_name is

interface  component_message_interface
parameters  component_parameters
methods  component_methods
[behavior  component_behavior]
[context  component_context]

end  component_name;

A component’s interface is specified as follows:

4. LILEANNA also provides facilities for specification of component
semantics. It combines ANNA with the library-interconnection-language
(LIL) [10], which uses Obj to specify component semantics.
5. In BNF, “::=” means “is defined as”, “|” means “or”, “[...]” denotes an
optional item and “{...}” a repetitive item. For simplicity, single character
terminals, such as a semicolon, are not surrounded by quotes. Spacing and
indentation are used solely for readability.



component_message_interface ::=
top_domain_interface
bottom_domain_interface

top_domain_interface ::=
top_domain is

out  interface_requests
in  interface_notifications

bottom_domain_interface ::=
bottom_domain is

out  interface_notifications
in  interface_requests

interface_requests ::=
{request;} | null ;

interface_notifications ::=
{notification;} | null ;

request ::=
message_name (request_parameters)

request_parameters ::=
[to  component_name] [parameter_list]

notification ::=
message_name [parameter_list]

Component semantics may be specified by the interface to a
limited degree. The manner in which the C2 IDL does so is
shown below.

component_behavior ::=
startup
cleanup
{internal_state_change | message_transition}

The most interesting aspect of component behavior as spec-
ified in the interface ismessage_transition:

message_transition ::=
received_messages

[invoked_methods] generated_messages

received_messages ::=
received_messages

[notification_sequence] [request_sequence]

invoked_methods ::=
invoke_methods  method_name {, method_name};

generated_messages ::=
[message_generation_frequency request_sequence]
[message_generation_frequency notification_sequence]

message_generation_frequency ::=
always_generate  | may_generate

request_sequence ::=
request_name {logical_operator request_name};

notification_sequence ::=
notification_name {logic_operator notification_name};

Given the above syntax, we can model components in a C2
architecture, such as KLAX. ComponentWellArtist from
Fig. 4 is specified as follows:

component  WellArtist is
interface

top_domain is
out

SendWellState (to  WellADT);
in

TileAdded (l : location; t : tile_type);
TilesAdvanced ();
TilesRemoved (well : well_type);
WellState (well : well_type);
WellFull (l : location; t : tile_type);

bottom_domain is
out

ViewportCreated (vport : vport_obj);
ViewportDestroyed (vport : vport_obj);
ObjCreated (object : draw_obj);
ObjDestroyed (object : draw_obj);

in

null ;
parameters

null ;
methods

procedure Create_Viewport ();
procedure Destroy_Viewport ();
procedure Draw_Tile (row , col , tag: integer);
procedure Erase_Tile (row , col : integer);
procedure Redisplay_Well (wstate : well_type);

behavior
startup

invoke_methods  Create_Viewport;
always_generate  ViewportCreated, SendWellState;

cleanup
invoke_methods  Destroy_Viewport;
always_generate  ViewportDestroyed;

received_messages TileAdded;
invoke_methods  Draw_Tile;
always_generate  ObjCreated;

received_messages TilesAdvanced;
invoke_methods  Draw_Tile, Erase_Tile;
always_generate ObjCreated and  ObjDestroyed;

received_messages TilesRemoved;
invoke_methods  Erase_Tile;
always_generate  ObjDestroyed;

received_messages  WellState;
invoke_methods  Redisplay_Well;
may_generate  ObjCreated or  ObjDestroyed;

received_messages WellFull
always_generate null ;

context
internal artist ;

end  WellArtist;

TheWellArtist is internal to the KLAX architecture, i.e., it is
neither a top-most nor a bottom-most component in the
architecture. The artist can issue only one request,
SendWellState. This request is sent toWellADT at startup
time, but may also be issued during the game to update the
depiction of the KLAX well in the case of lost messages due
to, e.g., network failure. The artist responds to multiple
notifications in order to properly update the depiction of the
well. The notifications it receives on its top side result in
invocations of internal object’s methods and, subsequently,
generation of notifications on the artist’s bottom side.
Finally, the WellArtist does not respond to any requests
issued by components below it.

The notation used in the example may appear long and
complex at first. However, it is easy to recognize a number
of patterns in the component’s interface model. For
example, “received_messages” is always followed by
“invoke_methods” and either “always_generates” or
“may_generate.” Therefore, the designer’s task can easily
be simplified by providing component templates and
appropriate editor support.

Note that the C2 IDL supports communication scenarios in
which a sequence of received notifications and/or requests
may result in a sequence of outgoing notifications and/or
requests. The above example presents a special case where
the lengths of all incoming and outgoing message sequences
are one.

Architectural Description
The next level at which software architectures are described
is that of actual architectural configurations, that is,
architectural elements and connections among them. This
information is needed to determine whether meaningful
work will be performed by an architecture, i.e., whether the
appropriate components are connected and whether their



interfaces match. In concert with the previous two levels,
architectural descriptions enable assessment of concurrent
and distributed aspects of an architecture, such as the
potential for deadlocks and starvation. An ADL must be
able to express dynamic (run-time) changes to architectures
as well. Furthermore, architectural description is necessary
to establish adherence to architectural style rules, such as
C2’s rule that there are no direct communication paths
between components. Finally, architectural descriptions
enable analyses of architectures to determine whether an
architecture is “too deep,” which may affect performance
due to message traffic across many levels and/or process
splits, or “too broad,” which may result in too many
dependencies among components (a “component soup”
architecture).

Much research has recently been done on ADLs in the
software architectures community. There are a number of
existing ADLs. Examples are Rapide [14], MetaH [29] and
Wright [2]. However, there is still no consensus on what an
ADL is and is not and what aspects of an architecture
should be modeled by an ADL. For example, Rapide is a
general-purpose system description language that allows
modeling of component interfaces and their externally
visible behavior in addition to modeling the architecture,
while Wright formalizes the semantics of architectural
connections with a communicating-sequential-processes-
like notation [12]. Furthermore, no distinction is made
between ADLs on one hand and formal specification
languages, simulation languages, and programming
languages on the other. Instead, for example, Rapide can be
viewed as both an ADL and a simulation language. Such
ambiguity indicates that ADLs are not as well understood as
formalisms at either of the preceding two levels (component
semantics and interfaces).

Modeling Pipe-and-Filter Architectures
The Unix shell employs a simple, effective ADL for
describing filter interconnections. The ADL consists of a
variable set of filter names (the set of all filters in the user’s
path), an interconnection operator (a bar “|”, pictorially
representing a pipe), and a small set of redirection operators
(the greater than and less than signs, “>”, “<“, redirecting
output and input respectively). Along with a small number
of syntax rules, the combination of filters and operators
allows the specification of all Unix pipe-and-filter
architectures. These architectures are easy to understand
due to the simplicity of the formalism, and they are easy to
analyze since component interconnections are so visible.

While the Unix shell ADL for pipe-and-filter cannot be used
to model other architectural styles, it does highlight the
benefit of small, simple, formalisms highly tailored to a
specific architectural style. This is in contrast to more
powerful, and also more complex ADLs such as Rapide.

Modeling C2 Architectures
C2’s ADL is a means by which C2 architectures are
“programmed.” The ADL is a programming-language
independent modeling technique that specifies the
instantiation of required architectural elements and their
interconnections. In this section, we provide a partial syntax

of the prototype C2 ADL, pertinent to our discussion of
modeling C2 architectures, specified in BNF (see
Footnote 5). Furthermore, as an example, we model the
KLAX architecture from Fig. 4 in the ADL.

A C2 architecture is modeled in the ADL as follows:

architecture ::=
architecture  architecture_name is

components  component_list
component_instances  component_instance_list
[connectors  connector_list]
[architectural_topology  topology]

end  architecture_name;

component_list ::=
top_most  {component_name;}
internal  {component_name;}
bottom_most  {component_name;}

component_instance_list ::=
instance_name instantiates  component_name

[with  (parameter_instantiation)];
{instance_name instantiates  component_name

[with  (parameter_instantiation)];}

connector_list ::=
{connector;}

connector ::=
connector  connector_name is

message_filter message_filter_type;
end  connector_name;

message_filter_type ::=
no_filtering  | notification_filtering  | prioritized  | msg_sink

A connector with theno_filtering policy becomes a simple
message router.Notification_filtering is a means of message
registration in C2.Prioritized message broadcast allows a
connector to define a priority ranking over its connected
components whereby a notification is sent to each
component in order of priority until a termination condition
has been met. Finally, themsg_sink filtering policy allows a
connector to ignore each message sent to it.6

The topology of a C2 architecture is specified as follows:

topology ::=
{connector  connector_name connections

top_ports  connection_sequence
bottom_ports  connection_sequence}

connection_sequence ::=
connection; {connection;} | null ;

connection ::=
connection_block_name

[where  [not ] connection_constraint]
[message_filter  port_message_filter_type]

connection_block_name ::=
component_instance_name | connector_name

connection_constraint ::=
boolean_expr | msg_sequence | environment_command

Connection constraints provide a means for dynamically
changing architectures, as will be demonstrated in the
KLAX example below. However, these dynamic changes
must be planned for ahead of time and specified at
architecture definition time. An open research issue is what
facilities are needed to handle unplanned dynamic changes
to architectures and whether there are ways of enabling such
changes by the ADL.

6. [27] provides a detailed explanation of filtering policies in C2.



For purposes of brevity and clarity, only a partial model of
the KLAX architecture is given below:

architecture  KLAX is
components

top_most
ClockLogic;
StatusADT;
...

internal
NextTilePlacingLogic;
LayoutManager;
...

bottom_most
GraphicsBinding;

component_instances
ClockLogic_1 instantiates  ClockLogic;
StatusADT_1 instantiates  StatusADT;
...

connectors
connector Conn1 is

message_filter no_filtering ;
end Conn1;
...

architectural_topology
connector Conn1 connections

top_ports
ClockLogic_1;
StatusADT_1;
ChuteADT_1;
WellADT_1;
PaletteADT_1;

bottom_ports
NextTilePlacingLogic_1

where not Ctrl-S;
NextLetterPlacingLogic_1

where Ctrl-S;
TileMatchLogic_1

where not Ctrl-S;
SpellingLogic_1

where Ctrl-S;
RelativePositionLogic_1;
Conn2;
Conn3
...

end  KLAX;

Note that “Ctrl-S ” represents an example of the
environment_command connection constraint. This example
depicts the dynamic substitution of two of three components
used in building “spelling KLAX” from the original
application, as shown in Fig. 5.

Architectural Style Rules
It is not necessary for software architectures to adhere to the
rules of a particular style in order to perform meaningful
work. However, adhering to a style carries certain benefits
with it. Architectural styles are formulated and evolved to
consistently repeat successes and avoid failures from
previous projects. A style also enables software architects to
reuse successful design patterns [6]. A formal definition of
the style enables a design environment to check an
architecture for conformity to style rules. A formal
definition of the style may also enable automatic generation
of templates for components, connectors, domain
translators, main procedures, etc. Finally, a formal definition
may highlight those characteristics of the style that can be
modified to create a family of architectural styles suited for
different application domains.

The goal of the C2 style in particular is to enable
development of GUI architectures with interchangeable and
reusable software components. The components are
heterogeneous and must not depend on their underlying

technologies (other components or the operating system).
Software systems for which the style is intended are real-
time, distributed, and concurrent. C2 style’s requirements
and intended application domain are nontrivial. Therefore,
we must enable automated analysis of architectures built in
the style to ensure their conformance to the style, as well as
to the application-specific requirements. The formal
definition of the style is necessitated by the fact that a solid
formal foundation is the basis of analysis.

As a research area, architectural styles are more recent than
the three preceding areas. Analogously, the techniques
available for formal modeling of architectural styles are less
mature than those at the other levels of architectural
abstraction. [1] and [8] present rare attempts at formally
modeling styles. The formal definition of the C2 style, given
below, is based [1]’s approach.

Modeling the Pipe-and-Filter Style
A formal model of the pipe-and-filter style is presented in
[1], using the Z notation to describe the style in terms of
three basic syntactic classes for architectural modeling:
components, connectors, and their configurations. In
addition to demonstrating that formal modeling of
architectural style is possible, [1] also shows its benefits:
precise description of the architectural style in unambiguous
language, development of specialized analysis techniques,
and the ability to make comparisons between architectural
styles. Similar to this specification is the formal
specification of the style provided in [7], which, when input
to the Aesop system, yields an automatically generated
environment for the development of architectures in the
style. This demonstrates the utility of formal specification of
architectural style for the construction of architectural
design environments.

Modeling the C2 Style
This section presents a formal definition of major features of
the C2 architectural style, the fourth level of architectural
abstraction. The complete formal model of the style is given
in [16].7 Coupled with the formal models at the preceding
three abstraction levels, this work represents the important
first step in providing a comprehensive formal basis for the
style and enabling the design environment to perform the
necessary analyses of architectures.

A canonical C2 component is defined below. This definition
corresponds to the internal architecture of a component
shown in Fig. 2. Since a component’s dialog can decide
when and whether to handle a particular message (or
sequence of messages) that it receives at its top and bottom
ports [27], themsg_to_handle function is defined to select
one or more messages at a port. Astate_transition in a
component, whose properties are specified in the last
formula in the schema, is defined as processing messages
received at either the top or the bottom port and possibly
generating outgoing messages. For each incoming message
it processes, a component may generate multiple outgoing
messages at each port.

7. The formal definition of C2 is given in Z [26]. See the Appendix for a
summary of Z concepts and terminology.



Note that all definitions involving components assume that
they are internal components, i.e., they are neither top- nor
bottom-most in an architecture. However, the top- and
bottom-most components are easily described as special
cases of the given definitions by omitting from the schemas
references to their sides, top or bottom, that are outermost in
an architecture.

The following schema expresses substrate independence. A
component must utilize the domain translator for the
messages it both receives and sends on its top side. At the
same time, it has no knowledge and makes no assumptions
about its substrate, so that the wrapper around the internal
object emits messages in the component’s domain of
discourse on its bottom side, unbeknownst to the dialog.

C2Component
name : COMP NAME

top port ; bot port : PORT
top in; top out ; bot in; bot out : PORT � �MSG

top domain; bot domain : �MSG

dialog in : �MSG � OBJ STATE

wrapper ; dialog top out : OBJ STATE � �MSG

msg to handle : NEXT MSG;
domain trans : �MSG � �MSG

internal states : �OBJ STATE

start state : OBJ STATE

state transitions : (OBJ STATE � (PORT � �MSG))!
(OBJ STATE � f (PORT � �MSG); (PORT � �MSG) g)

top port 6= bot port

dom top in = f top port g
dom top out = f top port g
dom bot in = f bot port g
dom bot out = f bot port g

top domain = top in(top port) [ top out(top port)
bot domain = bot in(bot port) [ bot out(bot port)

8 state1; state2 : OBJ STATE ; ps1; ps2; ps3 : PORT � �MSG

� ((state1; ps1); (state2; f ps2; ps3 g)) 2 state transitions )
state1 2 internal states

^ state2 2 internal states

^ (domps1 = f top port g _
dom ps1 = f bot port g)

^ (domps2 = f top port g)
^ (domps3 = f bot port g)
^ (ps1(top port) � top in(top port) _

ps1(bot port) � bot in(bot port))
^ ps2(top port) � top out(top port)
^ ps3(bot port) � bot out(bot port)

For clarity, the expressions defining the new values for
top_out_data and bot_out_data above (denoted with “’ ”)
have been broken across several lines. Going from the
bottom of each expression upward, every line represents a
step in processing messages from selecting a sequence of
incoming messages to producing outgoing messages. For
example,top_out_data’  is obtained by the following five
steps:

1. select a set of incoming messages from the top_port:
comp.msg_to_handle(top_in_data(...)),

2. perform domain translation on those messages:
comp.domain_trans (1),

3. interpret the translated messages in the dialog and
invoke the appropriate internal object methods:
comp.dialog_in(2),

4. interpret the values returned by the internal object’s
methods and generate a set of outgoing messages:
comp.dialog_top_out(3), and

5. perform domain translation on the outgoing messages:
comp.domain_trans(4).

A C2 connector has multiple ports on its top and bottom
sides, one for each component attached to it. It is defined as
follows:

HandleMessageFromAbove

�C2ComponentState

comp0 = comp

((current state; top in data);
(current state 0

; f top out data 0
; bot out data 0 g)) 2

comp:state transitions

top out data 0(comp:top port) =
top out data(comp:top port) [
comp:domain trans(
comp:dialog top out(
comp:dialog in(
comp:domain trans(
comp:msg to handle(
top in data(comp:top port))))))

bot out data 0(comp:bot port) =
bot out data(comp:bot port) [
comp:wrapper(
comp:dialog in(
comp:domain trans(
comp:msg to handle(
top in data(comp:top port)))))

top in data(comp:top port) =
top in data 0(comp:top port) [
comp:msg to handle(top in data(comp:top port))

bot in data 0(comp:bot port) = bot in data(comp:bot port)



A connector may have the ability to filter messages, so that
the messages it emits on its bottom side are a subset of those
that come in from above and the messages it emits on its top
side are a subset of those that come in from below (See
“Architectural Description”). It is thus possible to define
filtering functionsFilter_TB andFilter_BT that determine
for each port whether a particular message will be filtered
out or propagated. The below schema shows how the
Filter_TB function is used to decide whether a given
messagemsg is filtered out or propagated to a bottom port
port2. For simplicity, the two functions are assumed to filter
out a message by propagating a null message.

 The property that a component may only be attached to
single connectors on its top and bottom sides is expressed as
follows:

C2Connector
top ports; bot ports : �PORT
top in; top out ; bot in; bot out : PORT � �MSG

Filter TB : FILTER
Filter BT : FILTER

top ports \ bot ports = �

dom top in = top ports

dom top out = top ports

dom bot in = bot ports

dom bot out = bot ports

S
(ran bot out) �

S
(ran top in)

S
(ran top out) �

S
(ran bot in)

RoutMessageFromAbove

�C2ConnectorState

conn 0 = conn

8msg : MSG; port1 : conn:top ports j msg 2 top in 
ow(port1)
� 8port2 : conn:bot ports

� top in 
ow(port1) = top in 
ow 0(port1) [ f msg g
^ top out 
ow 0(port1) = top out 
ow(port1)
^ bot in 
ow 0(port2) = bot in 
ow(port2)
^ bot out 
ow 0(port2) =

bot out 
ow(port2) [ f conn:Filter TB(port2; msg) g

ComponentToConnectorLinks

C2Link
components : �C2Component
connectors : �C2Connector

8 comp : components
� 9

1
conn1; conn2 : connectors; tport ; bport : PORT j
tport 2 conn2:top ports

^ bport 2 conn1:bot ports

^ conn1 6= conn2
� (comp:top port ; bport) 2 Link ^

(comp:bot port ; tport) 2 Link

 Finally, in any given architecture, there is no guarantee that
all of a component’s services will be utilized by components
above and below it or that the component will understand all
the requests sent to it. This property is a byproduct of
component reusability. A component may be used in
multiple architectures, and different aspects of it may be
needed in each. Since components communicate via
connectors, it is possible to specify pairwise relationships
between the domains of any connector and each component
attached to it, and express the utilization of a component’s
services in terms of that relationship. For example, partial
utilization of a component’s services by a connector, where
the component will receive some, but not all, of the
messages it is capable of handling, is defined as follows:

VALUE OF THE C2 MODELING FORMALISMS
There are a number of benefits incurred from the interface,
architecture, and style modeling formalisms for C2,
discussed in the previous section. At the same time, the
formalisms fall short in certain respects and a number of
issues remain unresolved.

The C2 IDL and ADL were used successfully as the design
notation in the KLAX project, described in  “An example
C2 application”. In projects preceding KLAX, a crossection
of which is discussed in [27], no particular design notation
was used. This usually resulted in a mixture of annotated
boxes-and-arrows diagrams and prose. The designs were
difficult to understand or update in this form and both
evolvability and scalability of these systems suffered.

The IDL and ADL were, therefore, a needed complement to
these descriptions. The two languages provide structure to
the design process and are simple and easy to understand.
They are also easily extensible to accommodate new
understanding of C2 concepts. Finally, a notation equivalent
to a subset of the ADL was used in Argo, the C2 design
environment [25], to automatically generate main
procedures for the different variations of KLAX.

The current shortcomings of the IDL and ADL are largely
an indicator of future work. We currently do not support
syntactic or semantic checking of the two languages in
Argo. These facilities are precursors to further architectural
analysis and code generation tools. We also recognize the
potential benefits of treating collections of C2 components
as object-oriented (OO) type frameworks. We have
completed some preliminary work on identifying the issues

PartialServiceUtilization

vc : ValidC2Connections
components : �C2Component

connectors : �C2Connector

8 c : components; b : connectors; bport : PORT
� (bport 2 b:top ports ^ (c:bot port ; bport) 2 vc:Link )

b:top out(bport) \ c:bot in(c:bot port) 6= � ^

c:bot in(c:bot port) \ b:top out(bport) � c:bot in(c:bot port))
^ (bport 2 b:bot ports ^ (c:top port ; bport) 2 vc:Link )

b:bot out(bport) \ c:top in(c:top port) 6= � ^

c:top in(c:top port) \ b:bot out(bport) � c:top in(c:top port))



and extending the ADL syntax to accommodate the view of
C2 architectures as a network of OO types [17]. However,
we still need to develop a deeper understanding of the
ramifications of doing so and provide a complete language
and toolset to support subtyping and type checking in C2.

The formal definition of the C2 style also has several
benefits. The definition fulfills its primary role: it enables
enforcement of style rules, such as substrate independence,
single top and bottom component ports, multiple connector
ports, and connection of the bottom of a component to the
top of a connector, and vice versa. Furthermore, the
template for components in the C2 style, shown in Fig. 2
and defined in the schemaC2Component, may be generated
from the model. The model also formalizes the notions of
full, partial, and no service utilization between components
in an architecture, enabling the design environment to
pinpoint components that require domain translation. The
definition is flexible; it can be easily modified to reflect any
new knowledge we acquire about the style by adding or
modifying the necessary Z schemas. For example, the
definition can be easily extended to include implementation
characteristics of architectures, such as operating system,
host, process, task, and address space.

The formal model also enabled our better understanding of
the style. Merely going through the process of adding rigor
to the definition of a style is a verification process. It
crystallized our understanding of what the C2 style is and
exposed several inconsistencies and inaccuracies that
existed in its less formal definition. In particular,
formalizing C2 corrected a mistake in the prior definition of
service utilization axioms. It, furthermore, affirmed the
suspected need for the explicit representation of
communication links, or paths, between individual
component and connector ports. Finally, it clarified the
definition of communication between a component and a
connector as being on individual port-to-port basis, as
opposed to component-to-entire-connector communication,
as was previously expressed incorrectly.

On the other hand, the style definition has several
shortcomings. Many of them may be attributed to the formal
notation we chose.

The style definition may be viewed as cumbersome and
difficult to read. Z’s rigor and insistence on completeness,
which are the strengths of any formal notation, hamper
understandability in this case. For example, the formula in
theC2Component schema that describes the properties of a
state_transition is very long and may require careful
examination. Yet, it was informally described simply as
“processing messages received at either the top or the
bottom port and possibly generating outgoing messages.”
Furthermore, the property that a component may only be
attached to single connectors above and below it, specified
in the ComponentToConnectorLinks schema, is currently
expressed in Argo with a singleif statement. Several other
style rules are also expressed more simply algorithmically
in Argo than they are in Z. Therefore, an operational
notation seems preferable to a model-based one for at least
some aspects of C2.

Another shortcoming of Z is that some C2 style rules cannot
be defined in it. For example, Z is inadequate for C2’s real-
time, concurrent, and distributed aspects. These must be
specified using a different formal method, such as temporal
logic, in a notation such as graphical interval logic (GIL)
[4].

[1] demonstrated Z’s utility in modeling two architectural
styles, pipe-and-filter and the event system (ES). However,
these two styles are substantially simpler than C2. It can
even be argued that ES is subsumed by C2. This does not
contradict our claim that C2 is a simple style. On the
contrary, we believe that C2 is easy to understand
conceptually and any attempts to simplify the Z definition of
the style would ultimately decrease its understandability.
For example, it is possible to eliminate the topology
imposed by C2 and reduce C2 to a centralized-bus style,
such as Field [24]. The topology would then become
implicit in the single connector’s message routing and
filtering logic. This would substantially simplify the
corresponding Z schemas, but the conceptual understanding
of the style would be greatly diminished. These
shortcomings of Z imply that, just as there are multiple
formalisms for modeling components, interfaces, and
architectures, a single formal notation is insufficient for
modeling all styles.

CONCLUSION
Constructing systems on the basis of a software architecture
approach offers many benefits. Since many of these benefits
rely on the ability to analyze a system and its constituents,
there are clear and important roles for formal models to
play. We have discussed four levels of abstraction,
meaningful in our development strategy, at which formal
specifications are necessary. All four levels are not equally
well understood and our discussion of modeling techniques
establishes a spectrum of consensus in the research
community, going from best understood (component
semantics) to least understood (architectural styles).

We have been pleased to be able to successfully model C2’s
component interfaces, architectures, and style rules, and
have obtained benefits in so doing. At the same time, our
formal models of component interfaces and architectures
are currently only prototypes, while the formal definition of
the style, expressed in Z, has proven both unnecessarily
complex and inadequate in formalizing certain aspects of
architectures developed according to the style. Additional
formal specification techniques are required to model C2’s
real-time, distributed, and concurrent characteristics.
Furthermore, complete tool support for the four levels of
abstraction is needed as part of Argo to facilitate
architecture-based development in C2.

We are dismayed by the prospects of having to use several
different formal specification techniques, sometimes even at
a single level of architectural abstraction, to address all our
formalization needs. While we are not so naive as to think
that there is soon going to be one technique which is “good
for everything,” we certainly hope to direct the attention of
formal methods researchers to the problems of utilizing
heterogeneous specification mechanisms, particularly in the
area of software architectures.
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APPENDIX: Summary of the Z Notation
The Z notation is a language for modeling mathematical
objects developed at the Programming Research Group at
the University of Oxford. Z is based on first order logic and
set theory. It uses standard logical connectives ( , , ,
etc.) and set-theoretic operations ( , , , etc.) with their
standard semantics. In this appendix, we outline the aspects
of the Z notation used in this paper. A more extensive
summary of Z can be found in [1]. For a complete reference,
see [26].

A Z specification is a collection of types and predicates that
must hold on the types’ values. Z provides basic types, such
as for natural numbers and for integers. Other basic
types can be introduced by enclosing them in square
brackets. For example, the types for person names and
addresses are specified as follows:

[NAME, ADDRESS]

To declare that a particularperson is of typeNAME, we
write person : NAME. If person has already been declared,
the above predicate is expressed asperson NAME.

Composite types in Z are constructed from basic types using
the following type constructors:

• X is the powerset ofX, i.e., the set of all subsets ofX.

• X Y is the cross-product ofX and Y, i.e., a set of all
ordered pairs(x,y)such thatx X andy Y.

• Functions used in this paper are:

• X Y, the set of all partial functions betweenX andY.
A partial function need not be defined over the entire
domain, and

• X Y, the set of all total functions. Total functions are
defined on all elements of the domain type.

An abbreviation or type synonym in Z allows introduction
of new global constants. For example, a function that
returns the names of all people residing at a given address is
defined as:

INHABITANTS == ADDRESS NAME

Other Z operations and notational conventions used in this
paper are:

• If f is a function, then domf is the domain off and ranf

∨ ∧ ⇒
∈ ∪ ∩

∈

×
∈ ∈

→

→

→

is the range off.

• decl | pred1 pred2 is read “for all variables indecl sat-
isfying pred1, we have thatpred2 holds.”

• decl | pred1 pred2 is read “there exist variables indecl
satisfyingpred1, such thatpred2 holds.”

Z has a special type constructor, called theschema. A
schema is a collection of variables with a set of constraints
over that collection. For example,Town is a schema for a
town with the set of residences and people residing in them:

To select the residents oft : Town, we writet.residents.

A schema can also specify invariants, written under the
dividing line, that must hold between the values of
variables. To model the invariant that the set ofresidents in
type Town includes only those whose residence is in the
given Town, we state thatresidences is the domain of the
residents function.

Z allows for schema inclusion to facilitate a more modular
approach to specification. The invariant above can also be
specified as

Finally, f Schema is a schema type, then Schema
represents twoSchema states, one before and the other after
an operation. The state after the operation is denoted with
“ ’ ”. Hence,

is equivalent to

∀

∃

Town

residences : �ADDRESS

residents : INHABITANTS

SingleTown

residences : �ADDRESS

residents : INHABITANTS

residences = dom residents

SingleTown

Town

residences = dom residents

∆

TownGrowth

�Town

TownGrowth

Town

Town
0


