Runtime Repair of Software Faults using Event-Driven Monitoring

Chris Lewis, Jim Whitehead
{ cflewis, ejw } @ soe.ucsc.edu

Introduction

Video games have emergent behaviors due to complex subsystems
(physics, Al, graphics)

The complexity of possible states makes games almost untestable

We specify invariants about the game using a rule engine to stop the game
staying in an undesirable state

This makes it easier to verify a game design is correct

What are Rule Engines?

Rule engines are optimized to match facts against conditions
We insert facts about the game events into the rule engine
Designers can specify conditions that indicate game design bugs

Fixes can be applied to the game state

System events

System Message

Rule Engine
Under Test |<---------- Broker |<----------1

Repair events

Why Rule Engines?

Code is declarative and readable by non-programmers
Conditions are optimized

Works with cross-cutting concerns

Complex Event Processing allows simple expression of conditions over time

Example Situation: Buggy Lakitu

No rule engine:

Code allows Mario to
jump too high

With rule engine:
Fix fires to ensure Mario
can't jump too high

Example Rule: Mario can only jump 5 blocks high

rule "marioTooHigh”
when
$jump: Jump(jumpTime > 5)
then
print("Mario jumped too high");
send(new MarioMovement(false, 10f,
$jump.getXAcceleration() * 1.5f));
end

Read as: “When Mario is set to jump higher than 5 blocks, disable his
jump flag and accelerate him towards the ground in an arc.”

Example Rule: Mario can only jump for 3 seconds

rule "marioJumpTooLong"
when
$jump: Jump($mario : mario)
not(Landing(this after[@s,2s] $jump))
then
print("Mario jumped too long");
send(new MarioMovement(false, null, null);
end

Read as: “When there is a jump fact, but no landing fact within 2 seconds
after Mario jumps, turn off his jump flag and let the game design choose his
downward acceleration.”

Broader Relevance

Super Mario World is the simplest non-trivial case, the technique can scale
to current commercial games

Shows rule engines can be used as an enforced specification language
Capable of detecting problems with any software of complex state

Event monitoring could be used to collect important event sequences and
automatically create rules that define the general/non-buggy case

expressiveintelligencestudio UC Santa Cruz

