
Does Bug Prediction Support Human Developers?
Findings from a Google Case Study

Chris Lewis1, Zhongpeng Lin1, Caitlin Sadowski2, Xiaoyan Zhu3, Rong Ou2, E. James Whitehead Jr.1
1University of California, Santa Cruz, USA 2Google Inc., USA 3Xi’an Jiaotong University, China

{cflewis,linzhp,ejw}@soe.ucsc.edu, {supertri,rongou}@google.com, xyxyzh@gmail.com

Abstract—While many bug prediction algorithms have been
developed by academia, they’re often only tested and verified
in the lab using automated means. We do not have a strong
idea about whether such algorithms are useful to guide human
developers. We deployed a bug prediction algorithm across
Google, and found no identifiable change in developer behavior.
Using our experience, we provide several characteristics that bug
prediction algorithms need to meet in order to be accepted by
human developers and truly change how developers evaluate their
code.

I. INTRODUCTION

The growth of empirical software engineering techniques
has led to increased interest in bug prediction algorithms.
These algorithms predict areas of software projects that are
likely to be bug-prone: areas where there tend to be a high
incidence of bugs appearing (these are also sometimes called
fault-prone areas [1]). The overall approach is statistical: bug
prediction algorithms are based on aspects of how the code
was developed and various metrics that the code exhibits,
rather than traditional static or dynamic analysis approaches.
One common strategy is to use code metrics [2], [3], while
another has focused on extracting features from a source file’s
change history, relying on the intuition that bugs tend to cluster
around difficult pieces of code [4], [5].

Evaluations of these algorithms have confirmed that they
can successfully predict bug-prone code areas. Such eval-
uations have typically involved the use of the information
retrieval and machine learning metrics of accuracy, precision,
recall, F-measure, and ROC AUC; the underlying rationale
has been that high values for these metrics indicate a well-
performing algorithm. The follow-on assumption is that a well-
performing bug prediction algorithm provides useful informa-
tion to developers. Since this is a foundational assumption for
bug prediction, one would expect that it has been well tested
by multiple empirical studies of the use of bug prediction in
software development settings. It has not.

There is very little empirical data validating that areas
predicted to be bug-prone match the expectations of expert
developers, nor is there data showing whether the information
provided by bug prediction algorithms leads to modification of
developer behavior. In this paper, we focus on predictions at
the granularity of files. The goal of this paper is to investigate
how developers respond to bug prediction algorithms via the
following research questions:

RQ 1 According to expert opinion, given a collection of
bug prediction algorithms, how many bug-prone files
do they find and which algorithm is preferred?

RQ 2 What are the desirable characteristics a bug predic-
tion algorithm should have?

RQ 3 Using the knowledge gained from the other two
questions to design a likely algorithm, do develop-
ers modify their behavior when presented with bug
prediction results?

To answer these questions, we partnered with Google’s En-
gineering Tools department to evaluate various bug prediction
algorithms and develop one for use at Google. We address RQ
1 using formal user studies, RQ 2 through informal discussion
with developers, and RQ 3 through quantitative data collected
from Google’s code review system. We find that developers
prefer bug prediction algorithms that expose files with large
numbers of closed bugs and present a number of desirable
characteristics that a bug prediction algorithm should have.
We also find that there was no significant change in developer
behavior after our deployment of a bug prediction algorithm.

II. BUG PREDICTION

A. Algorithm Choice

One of the most popular academic bug prediction algorithms
at the time of writing is FixCache [1], which won an ACM
SIGSOFT Distinguished Paper Award at the International
Conference of Software Engineering 2007. FixCache is an
algorithm which uses the idea of bug “locality”: when a bug
is found, it is likely there will be more in that area of the code
base. Using various localities, FixCache creates a “cache” of
files that are predicted to be bug-prone at a particular commit.
When a file meets one of these locality criterions, it enters
the cache, and an old file is replaced via a selectable policy
(commonly Least Recently Used (LRU)). FixCache uses three
localities: if a file is recently changed/added it is likely to
contain faults (churn locality); if a file contains a fault, it is
likely to contain more faults (temporal locality); and files that
change alongside faulty files are more likely to contain faults
(spatial locality).

FixCache’s characteristics were extensively surveyed by
Rahman et al. [6], investigating how it can aid human in-
spection. They concluded that the bug density of files in the
cache is generally higher than outside the cache, and that
the temporal locality feature is what mostly contributes to

978-1-4673-3076-3/13/$31.00 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA372

FixCache’s effectiveness. They present findings that, when bug
prediction is used to support human inspection (such as code
review), using the number of closed bugs to rank files from
most bug-prone to least bug-prone works almost as well as
FixCache. We call this the Rahman algorithm.

We decided that the FixCache and Rahman algorithms were
ideal for our study. FixCache, as well as performing well in
the lab, has been used with success in industry at Ericsson
[7], [8]. The simplicity of the Rahman algorithm provides an
excellent counterpoint to the more-complex FixCache, and so
these two algorithms complement each other well. FixCache
can be run with various parameters, which were evaluated in
the original paper [1] to find optimal settings, but we found
that the cache size metric would not be usable in its current
form.

B. FixCache Cache Size

FixCache is found to work best when the cache size is set to
store about 10% of the files in the code base. However, after
consultation with Google engineers, this number was deemed
too large for most Google projects. Mid-size projects can run
into order thousands of source files, meaning hundreds of files
will be flagged by FixCache as bug-prone. This load is too
high for developers to properly process, and would lead to
the majority of files being worked on at any given time being
flagged. Such exposure to the flag will lessen its impact, and
we believed developers would quickly learn to ignore it. To
combat this, we settled on showing just the top 20 files.

Showing the top 20 files is less trivial than it sounds.
FixCache has a binary understanding of bug-propensity: either
files are bug-prone or they are not. There is no weighting of
severity; once files are in the cache, they are not easily re-
ordered to rank the most bug-prone. We identified two possible
solutions:

1) Reduce the cache size: The first option is to reduce the
cache size to only store 20 files. With such a small cache
size, it is conceivable that the number of files created in
a day could fill it entirely with new files. Another issue
with making the cache so small is that the cache hit
rate decreases dramatically, as it is highly likely that a
file will not be in the cache. This is not in and of itself
negative, as hit rate, as a metric, is not perfect, but this
has been the primary method of evaluation of FixCache
in previous literature and could indicate that this solution
is destined to perform poorly.
Reducing the cache size biases the results towards newer
files, as older files are pushed out of the cache.

2) Order the cache by some metric: The second option
is to keep the cache size at 10%, and then order the
cache by a reasonable metric to ascertain bug-propensity
severity. The chosen metric for this task was the dura-
tion, which is the measure of how many total commits
the file has been in the cache for. Files that leave the
cache and then re-enter it do not have their durations
reset, but continue where they left off.

TABLE I: Characteristics of the investigated projects. The Source Lines of Code (SLOC)
were counted using the sloccount tool, which ignores comments and blank lines. Both
SLOC and Files have been rounded to one significant figure.

Project Language Source Lines of Code Files Interviewees
A Java 600 000 7000 10
B C++ 1 000 000 4000 9

Ordering the cache biases the results towards older files,
as they have more time to increase their duration.

Both options match two possible intuitions for which areas
of a code base are more bug-prone: reducing the cache size
highlights areas of immaturity, whereas ordering the cache
highlights areas which have dogged the project for a long
period of time. As neither presented a strong case over the
other, we chose to use both in our studies.

III. USER STUDIES

A. Overview

To evaluate RQ 1, we decided to perform user studies, in
order to utilize developer knowledge in finding out whether
files flagged as bug-prone by an algorithm match developer
intuition. Developers, those who work on a project daily, are
the authoritative source on a code base. While it is possible to
produce and use metrics such as bug density, we felt that going
directly to developers would help us gain a holistic view of the
code base that can sometimes be missing from data mining.

To do this, we pitted the three algorithms – FixCache with
a cache set to 20 (which we will refer to as Cache-20),
FixCache with its output ranked by duration (Duration Cache)
and Rahman – against each other. We performed developer
studies with two anonymous Google projects, which we’ll
refer to as Project A and Project B. The characteristics of
the projects can be seen in Table I. Each project has run for
a number of years, and these two were chosen based on their
differing sizes and language.

In order to track which files are involved in bug fixes, each
algorithm requires knowledge of closed bugs to be extracted
from bug tracking software. To do this, we extracted data
from Google’s internal bug tracker. However, Google does not
mandate use of its internal tracker, and teams may use any
means of bug tracking that they wish. This means projects
that were not using the tracker would not be visible to these
algorithms. Further, there is evidence that bug trackers are
biased, and Google’s is likely no different [9]. There was no
other discoverable means of finding this data, so we had to
rely on this source.

The bug tracker allows developers to classify tickets as bugs,
feature requests, or a number of other classifications. We only
used tickets which were classified as a bug.

B. Methodology

1) Interviews: We selected two projects, A and B, and set
out about recruiting interviewees from each of these projects.
Projects A and B were chosen to provide a spread of variables:
A is in Java, B is in C++. A has fewer source lines than B, but
more files overall. Both projects are relatively mature. Maturity

373

meant that we had a greater amount of source history to feed
each algorithm.

Interviewees were recruited by emailing project leads or
those interested in code health, who were then responsible for
disseminating news of the study to the other developers on
their project. Volunteers would contact us to say they were
willing to perform in the study. We recruited 19 interviewees
with varied experience levels, ranging from between one to
six years of experience on the projects studied.

Each interviewee was met in private, and then shown three
lists of twenty files from the project that he or she worked on,
each list generated by one of the different algorithms. Each
interviewee for a particular project saw the same lists, but the
lists were shuffled and handed out during the interview, and the
study was performed double-blind: neither the interviewee nor
the interviewer knew which list was which. Interviewees were
told that the lists were generated by bug prediction algorithms
with varying parameters, but were given no further details.
Each interview took around 30 minutes, and interviewees were
instructed to not discuss the experiment with others.

During the interviews, interviewees were asked to mark each
file as either a file that they did consider to be bug-prone,
that they didn’t consider to be bug-prone, that they had no
strong feeling either way about (which we will refer to as
ambivalence), or that they didn’t have enough experience with
to make a choice (which we will refer to as unknown).

Interviewees were told that “bug-prone” means that the file
may or may not have bugs now, but that it has a certain set
of characteristics or history that indicates that the file has
a tendency to contain faults. We very specifically avoided
using a term that indicated the file had bugs currently, like
“buggy,” as we felt many developers may feel unable to
answer this question if they do not have a very strong current
understanding of the file.

As the lists were not exclusive (a file could appear in
different lists), interviewees were instructed to ensure they
gave consistent answers across lists, although interviewees
were allowed to pick whichever method of ensuring this they
felt most comfortable with. Most chose to do this by filling out
the first list, and then checking the other lists for duplicates.
Others would mark a file and then immediately look to see if
it appeared elsewhere.

Finally, each interviewee was asked to rank the entire lists
themselves, from the list they think most accurately reports the
bug-prone areas of the code, to the list that is the least accurate.
As there were three lists, this created three classifications that
a list could have: most bug-prone, middle bug-prone, and
least bug-prone. Interviewees were instructed that they did not
have to take into account how they had marked the files on
each list, and were informed that they should look at the list
holistically. For example, a file that a developer strongly feels
should be included may be more important than three or four
files that were marked bug-prone, but were less problematic
in practice. An example result would be that the developer
marked Duration Cache as the file list that is most bug-prone,
Cache-20 in the middle, and Rahman as the least bug-prone

list.
2) Common Questions: Interviewees raised two common

questions:

1) “What is a bug?”: The most common question asked
by interviewees was what “bug” actually meant, with
a significant minority requesting guidance on this issue.
The interviewer responded “I want you to define the term
for yourself.” Self-definition more specifically reflects
the operation of the bug prediction algorithms we chose:
they do not give reasoning behind what a bug is or isn’t,
instead using closed bug tickets as a way of inducing
that a bug was present in the code beforehand. Some
felt that certain classes of files, such as templates or
configuration files, could not even contain bugs by their
own definition (although [10], a well-regarded taxonomy
of bugs, does include a classification for “configuration
faults”).

2) “Can I mark files I don’t work on?”: The second most
common question asked by interviewees was whether
they could mark files based on feelings alone, even
if they had not worked on (or even seen) the given
file. Many of these interviewees indicated that they
had gathered from colleagues that a certain set of files
was particularly difficult to work with. As previously
mentioned, some classes of files were deemed unable
to contain bugs at all, and some interviewees felt they
were able to confidently mark not bug-prone on these
files. When asked if a file can be marked without direct
interaction, the interviewer responded that the intervie-
wee should mark a file however he/she felt comfortable
to do so. For the most part, the interviewee would then
continue to mark the file as bug-prone or not bug-
prone, rather than leave it as an unknown. This led us
to theorize that many developers on a large code base
gain opinions of it via developer folklore and gut instinct
rather than direct interaction, and that they feel confident
that these opinions are valid.

3) Classification of Responses: We aimed to specifically
analyze the bug-prone and not bug-prone responses. Ambiva-
lence is treated as a non-answer: the interviewee could have
marked bug-prone or not bug-prone, so it is essentially a split
decision between both. We chose not to factor this answer into
our results. We use the unknown classification to differentiate
between knowledge of the file but no answer (ambivalence),
and having no knowledge of the file at all (unknown). File
classification was performed as follows:

1) For a bug-prone classification, at least 3 respondents
must have indicated the file is bug-prone, and the bug-
prone responses must be at least double that of the not
bug-prone responses (e.g. if 4 respondents mark a file as
bug-prone, at most 2 respondents can answer not bug-
prone).

2) For a not bug-prone classification, the same method as
bug-prone is used in reverse.

3) If the file is neither classified bug-prone nor not bug-

374

prone, and if at least 5 respondents indicated they did
not know the file, the file is classified as unknown.

4) Otherwise, the file is marked as being disagreed upon.
While this represents only one of a multitude of classifi-

cation possibilities, we found this most accurately represented
our instinctual interpretation of the raw survey data. A simpler
classifier, such as majority wins, will select more files as
unknown as few developers have a strong understanding across
the entire code base. This would nullify signals given by the
developers that are actually experienced enough with the files
to give a bug-prone or not bug-prone answer.

C. Results

1) List Quality: Figure 1 display the results of each file
classified in Projects A and B.

2) Preferred List: The preferred lists in Figure 2 show how
developers ranked each list against each other, from most bug-
prone to least bug-prone.

3) Notes on Project A: Interviewee comments from Project
A indicated that one possible reason for the Duration Cache
list unknown responses is because a number of files in the
list that were old enough that most team members had never
worked on them. However, developers did comment that they
were aware of the files’ existence, they just did not need to
work with them.

Two of the files marked as not bug-prone in the Rahman
list (one of which appeared in the Cache-20 list) were files
containing constants. These files would need to be changed
alongside various feature releases, so would be included in
bug-fixing changes, causing them to be flagged. The devel-
opers we interviewed felt that these files could not be buggy
by definition, and marked them not bug-prone. For example,
one constants file resulted in a report of 1 developer marking
it bug-prone, 7 marking it not bug-prone, and 2 having no
feeling either way.

Four of the files in the Cache-20 list did not garner a single
response about whether the file was or was not bug-prone,
only recording a small number of ambivalent responses (1–2),
with the rest being given an unknown response. This caused
one developer to comment that the Cache-20 list “looked
random.” Two of these files were pinpointed as prototype
code. When developers create small prototypes to perform
experiments, they are encouraged to commit these prototypes
to source control, so that any useful ideas generated are not
lost. However, our algorithms had no means of identifying and
filtering these files, so they were pulled into the cache.

When participants discussed the different Project A lists,
they would mention that the Rahman algorithm seemed to be
pulling out older files, to which developers assigned terms
such as “monolithic,” “has many dependents” and “hard to
maintain.”

Project A had one file that appeared in two lists, and one
file that appeared in all three lists.

4) Notes on Project B: Project B responses were largely
similar to those of Project A, and Project B interviewees
commented on the age of the files in the Rahman list just as

Project A developers did: “these are old files that have gained
a lot of cruft,” “lots of people have changed these over the
years,” “we have to work carefully with these because of their
dependents.”

Again, as with Project A, neither FixCache list seemed to
perform much better than the other, but they both shared a
large number of unknown responses. The unknown files in
the Duration Cache may have been marked as such for the
same reason that Project A identified: the files were so old
that developers simply didn’t work with them anymore: “[The
Duration Cache is] a list of old files that represents [Project
A] five years ago that is not relevant to today” and “it’s like
[the Rahman list], just doing a worse job.”

It is worth noting that we did not identify any prototype
code in any list for Project B.

Project B had more files that appeared in more than one
list than Project A. Eight files appeared in two lists, and three
files appeared in all three lists.

5) Interpretation: The Rahman algorithm performed signif-
icantly better than the FixCache algorithms at identifying bug-
prone files. Both the Duration Cache and Cache-20 lists mostly
contained unknown files. Only the Rahman algorithm resulted
in a list where interviewees both knew the files on the list, and
felt those files to be bug-prone. This result does not necessarily
mean that the files identified in the Duration Cache and Cache-
20 lists are not bug-prone, but that developers did not have
enough experience with those files to make any comment.

The overall rankings show that most interviewees preferred
the Rahman algorithm. This is unsurprising given the quality
of the results we saw in its ability to match developer intuition
at predicting bug-prone files. Comments from interviewees did
not provide any clear insight into why the Duration Cache list
was the middle preference in Project A, and why the Cache-20
list was the middle preference in Project B.

IV. DESIRABLE ALGORITHM CHARACTERISTICS

A. Overview

In addition to our formal user study, we had informal
discussions with many developers about what they would like
to see from a bug prediction algorithm, to answer RQ 2.
These discussions were typical “watercooler” conversations
that arose naturally in places such as on mailing lists, an
internal Google+ deployment, in corridors, at lunch and on
the bus. While these conversations were not formalized or
coded, they are typical of the Google working environment
and represent a common means of ascertaining developer feed-
back. Using input from these discussions, we identified three
main algorithm characteristics that a bug prediction algorithm
should have in order to be useful when aiding developers
during code review. These three algorithm characteristics were
mentioned in a majority of developer discussions, and are
supported by prior research on static analysis adoption and
error messages.

We also identified two required algorithm scaling charac-
teristics from our experiences deploying bug prediction at
Google. To our knowledge, there have been no articles on bug

375

3	
2	

9	

0	

3	

7	

4	 4	 4	

13	

11	

0	
0	

2	

4	

6	

8	

10	

12	

14	

Dura/on	 Cache	 Cache-‐20	 Rahman	

Bug-‐prone	 Not	 bug-‐prone	 Disagreement	 Unknown	

(a) Project A

4	
5	

11	

4	

1	

3	

1	 1	
2	

11	

13	

4	

0	

2	

4	

6	

8	

10	

12	

14	

Dura.on	 Cache	 Cache-‐20	 Rahman	

Bug-‐prone	 Not	 bug-‐prone	 Disagreement	 Unknown	

(b) Project B

Fig. 1: Charts showing the number of files of a certain classification from Project A and Project B. Files can be classified as bug-prone or not, as a disagreement between whether
the file was or was not bug-prone, or the file was not known to interviewees. A higher bug-prone rating, and lower not bug-prone or disagreement ratings, is better.

1	

2	

6	

2	

4	

3	

6	

3	

0	
0	

1	

2	

3	

4	

5	

6	

7	

Dura.on	 Cache	 Cache-‐20	 Rahman	

Most	 bug-‐prone	 Middle	 bug-‐prone	 Least	 bug-‐prone	

(a) Project A

1	 1	

8	

6	

3	

1	

3	

6	

1	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

Dura0on	 Cache	 Cache-‐20	 Rahman	

Most	 bug-‐prone	 Middle	 bug-‐prone	 Least	 bug-‐prone	

(b) Project B

Fig. 2: Charts showing the rankings of the lists from participants in Project A and Project B. Each bar shows the number of times the list was given a certain rank, so in Project
A, one developer chose the Duration Cache as the most bug-prone, two developers chose it as the middle, and six developers chose it as the least bug-prone list. A higher most
bug-prone rating and a lower least bug-prone rating is better.

prediction enumerating these five characteristics, although they
are essential to ensure developer adoption.

B. Algorithm Characteristics

1) Actionable Messages: Given the information that a code
area is bug-prone, it may not be clear how to improve the
software. In other words, there is a potential gulf of execu-
tion [11], [12] between bug prediction results and improving
software artifacts based on those results. The importance of
suggesting solutions to problems or errors has also long been
emphasized for usability [13]. Prior research has also found
that the description of a fault is important in deciding whether
to fix it [14].

By far the most desired characteristic is that the output
from a bug prediction algorithm is actionable. Once a bug-
prone area has been identified, the development team should
be able to take clear steps that will result in the area no longer
being flagged. This matches developer intuition about how
programming support tools – such as type-checkers or static
analysis tools like FindBugs [15] – should be integrated into a
workflow. For example, FindBugs is already in use at Google,

and most categories of warnings cause over 90% of users to
investigate high priority warnings [16].

Unfortunately, FixCache’s reliance on source history means
there is nothing that can be done by a team to immediately
unflag a file; they must try to improve the health of the file,
then wait weeks or months for it to no longer collect bug
reports. This is particularly frustrating if the warning appears
frequently, which is possible if a bug-prone piece of code is
changed multiple times a week.

Neither Rahman nor FixCache has actionable messages,
but a related problem is that both will always flag a certain
percentage of files, so the code can never be given a clean
bill of health. This means that these algorithms never provide
developers with any reward, just a revolving door of problems,
which is likely very disheartening.

2) Obvious Reasoning: When an area is flagged as bug-
prone, there must be a strong, visible and obvious reason
why the flagging took place, allaying any fear that the flag
is a false positive that will only waste developer time. If a
developer is convinced that a tool outputs false positives, he
or she will ignore it from that point on. The burden of proof

376

is always on the tool to precisely elucidate why it has come
to the conclusion it has. This largely goes hand-in-hand with
actionable messages: a message is only actionable if there is
a clear and obvious reason why the message appeared at all.
Prior research also has emphasized that programmers must
develop trust for analysis tools [14], [17].

Rahman’s reasoning is clear and obvious; any developer
can quickly believe (and verify) the number of closed bugs on
any given file. In contract, FixCache does not easily offer its
reasoning; it is often opaque as to why FixCache has pulled
in a file, even with a strong understanding of the algorithm
and the input it has been given. Inspecting log messages will
eventually allow a human to build a mental model of what
happened, and presumably this indicates that a tool could be
written to explain why a file was in the cache, but such a tool
does not currently exist.

Obvious reasoning does not necessarily require the devel-
oper to completely agree with the assessment, only that he or
she would at least be able to understand the tool’s reasoning.

3) Bias Towards the New: Although in the user test users
noted that they believe older files to be more bug-prone,
a number of developers mentioned that they aren’t actually
worried about the files they know have technical debt. Instead,
developers were more concerned about files that are currently
causing problems (which may or may not include those older
files). If an algorithm doesn’t have actionable messages, it
should probably bias itself towards newer issues, rather than
taking into account older ones (which could be a number
of years old, and not indicative of the current state of the
code). Prior research has identified the importance of this
characteristic when using static analysis to find bugs [18].
FixCache’s Least Recently Used replacement policy creates
a bias towards the new, and it is a helpful coincidence that
this replacement policy was also found to be the most optimal
replacement policy in the original work.

C. Scaling

As a pre-requisite for deploying a bug prediction algorithm
at Google, we had to ensure that the bug prediction algorithm
would scale to Google-level infrastructure. We ran into two
scaling issues which blocked deployment of FixCache.

1) Parallelizable: The modern architectures of large tech-
nology companies like Google, Yahoo or Amazon, now re-
volve around parallelized computations on large computer
clusters. Ideally, we want response from a bug prediction
algorithm to happen as quickly as possible. In order to meet
such a goal with the large source repositories that these large
companies have, the algorithm must also be able to be run in
a parallelized fashion; a single CPU and data store is too slow
to process an entire repository efficiently.

Rahman is easily parallelized and could run on the entire
code base quickly. FixCache is less amenable to parallelization
as it is not clear how one could reconcile each FixCache
worker’s individual cache into a single cache on the reduction
step. If one was interested in just a per-project output, Fix-
Cache does run quite quickly on this smaller set of data, so

multiple FixCache workers could run on separate CPU cores
and complete within a number of hours.

2) Effectiveness Scaling: As mentioned previously, Fix-
Cache’s assumption of 10% of files is not feasible for human
consumption in almost all cases. In a modest 2000 file project,
200 files will be flagged. Worse, it is likely that figure is the
superset of all files being actively worked on in the project, as
they are the ones that are currently being created and changed.
FixCache likely flags too much in this case, and almost every
file a developer submits for review will have the FixCache
warning attached, decreasing its impact dramatically. However,
FixCache doesn’t perform as well (at least, with the currently
agreed upon metrics by peer review) when the cache size is
reduced. Any good bug prediction algorithm for humans must
be effective whether it is to flag one file or one hundred.

In contrast, Rahman can scale to any effectiveness level and
still operate similarly.

V. TIME-WEIGHTED RISK ALGORITHM

A. Description

Given what we learnt from our derived desirable characteris-
tics, we set about modifying the Rahman algorithm to achieve
our goals. Rahman already embodies the obvious reasoning,
parallelizable and effectiveness scaling traits. We modified it to
bias towards the new, resulting in a new algorithm for scoring
the bug-propensity of files, which we call Time-Weighted Risk
(TWR). It is defined as follows:

n∑
i=0

1

1 + e−12ti+ω
(1)

Where i is a bug-fixing commit, n is the number of bug-
fixing commits, and ti is the normalized time of the current
bug-fixing commit. ti runs between 0 and 1, with 0 being the
earliest commit, and 1 being the last submitted commit (in
practice, this value is just the time when the script is run, as
something is committed to the Google code base every day).
ω defines how strong the decay should be (it shifts the scoring
curve along the x-axis).

This equation sums up all the bug-fixing commits of a file,
weighting the commits based on how old they are, with older
commits tending to zero. Note that TWR only iterates through
bug-fixing commits: commits that do not have any bug-fixes
are scored zero, and so are not considered. Mathematically, this
has no distinction, but computationally being able to quickly
filter these inconsequential commits lowers memory usage
and improves runtime. The weighting function is a modified
logistic curve, where the x-axis is the normalized time, and
the y-axis is the score. The score is not normalized as it is
designed to only be used as a comparator between commits.

Of note is that the score for a file changes every day, as the
time normalization will alter the weighting of a commit. This
is by design, as older files that go unchanged should begin to
decay.

We experimented with various x-axis placements of the
curve, but found that a very strong decay seemed to be of

377

most use, based on our domain knowledge of Projects A and B.
Currently, the strength of decay in the algorithm, represented
by ω, is hard-coded to 12. Ideally, this shifting should be
dynamically calculated over time to keep the decay window
about the same; as time goes on, the window expands. At the
time of writing, the window counts commits for about 6 to
8 months before they start to become inconsequential. This
levels the field between old files and new files, which are
scored based on their most recent issues, rather than taking into
account problems in the past that may have been fixed. The
value of ω is deployment-dependent, and will vary depending
on what decay window makes intuitive sense for the given
environment. 12 happened to be the value that worked for our
purposes at Google.

B. Step-by-Step Example

To illustrate how TWR works in practice, consider an
imaginary file. The first commit places the file in a brand-new
repository, so this is the earliest commit for the normalization
calculation. The example will use three differences from a
practical deployment to make things clearer. Each commit
added will move time forward one unit. In reality, commits
are very unlikely to be equally spaced. Also recall that the
algorithm TWR only iterates through bug-fixing commits, as
commits that don’t add any bug-fixes are scored 0 and not
worth considering. Normal commits will be included here to
better illustrate how the TWR calculation changes over time.
Finally, ω will be set to 6, as the 12 used in the Google
deployment decays TWR too rapidly.

Commit 1
Bug-fixing? No
TWR 0.00

The developer finds a mistake, and makes a second commit
that fixes the first one.

Commit 2
Bug-fixing? Yes
TWR 1.00

At this point, Commit 2’s normalized time, ti, is 1.00, and
the initial commit’s ti is 0.00. TWR calculates to 1.00 (at three
significant figures; at a greater level of accuracy we would see
that a positive value of ω causes a slight amount of decay even
to new bug-fixing changes). Everything is now fine with the
file, and the developer makes another change without issue.

Commit 3
Bug-fixing? No
TWR 0.500 (Commit 2 with ti = 1/2)

The value of TWR is now recalculated. The bug-fixing
commit in Commit 2 is weighted to the normalized time.
As there are three commits, Commit 1’s time remains 0.00,
but now Commit 2 normalizes to a ti of 0.50, and Commit
3’s time is 1.00. With this smaller normalized time, the bug-
fixing commit has decayed to be worth much less, and TWR
calculates to 0.50. The developer adds another non-bug-fixing
commit.

Commit 4
Bug-fixing? No
TWR 0.119 (Commit 2 with ti = 1/3)
Commits 4 to 9 are also non-bug-fixing. Commit 10 is the

next bug-fixing change.
Commit 10
Bug-fixing? Yes
TWR 1.00 (Commit 10 with ti = 1) + 0.00932

(Commit 2 with ti = 1/9) = 1.00932
Note how the decay function causes Commit 2 to be almost

inconsequential in the calculation of TWR at Commit 10. This
is intentional. New commits are given much stronger favor
over old commits. In this example, even with the reduced
value for ω, the decay appears to be very fast. As mentioned
previously, in our deployment, the decay window was about 6
to 8 months, so commits don’t tail off as quickly as one might
infer here.

VI. BUG PREDICTION DEPLOYMENT

A. Overview

Having settled on TWR, we set out to find a suitable place in
the developer workflow for the results to be displayed, where
we could reasonably expect to adjust developer behavior and
encourage developers to show more attention to files which
are flagged as bug-prone. Embedding the results in an IDE
proved impractical, as Google does not centrally mandate any
particular development environment, so a number of plugins
would need to be developed. However, all developers that
commit to Google’s main source repository must have their
code peer-reviewed, and the majority of reviews are performed
through Google’s code review software, Mondrian.

When a developer wishes to commit code, she must first
submit that code for review, and nominate reviewers to per-
form the review. Those reviewers should be knowledgeable
about the code that is being changed, and will be able to
spot any bugs that may have evaded the original developer.
Comments can be added at each line by reviewers and the
submitter, leading to brief conversations about bugs, possible
refactorings or missing unit tests. The submitter can then
submit new code with the requested changes. This cycle
can happen any number of times. Once the review team is
happy, the submission is marked “Looks Good To Me” and is
committed to the source repository.

To help aid reviewers, Mondrian offers a report of which
unit tests passed and failed, and runs a lint checker to help
ensure that code meets the company standard. The lint checker
runs as a process which attaches comments line by line, using
the same mechanism that human reviewers do. The various lint
warning levels are attached to the comments, and reviewers
can change the warning levels to show or hide the comments.

As most developers use Mondrian, and are already used to
seeing code health being reported in the interface, we decided
that the best insertion point for bug prediction results would
be to attach a comment to line 1 of any file that was flagged
as bug-prone. The exact message used was “This file has

378

been flagged as bug-prone by [TWR], based on the number
of changelists it has been in with a ‘bug’ attached. For this
warning, ‘Please Fix’ means ’Please review carefully.”’ The
substituted word is the project codename that we call TWR
here. Changelists refers to Perforce changelists, which are
commits in other source-code vocabularies. “Please Fix” is a
reference to a shortcut that Mondrian offers on lint warnings
to allow reviewers to indicate to others that the lint warning
should be dealt with. As “Please Fix” was hard-coded into
Mondrian as a possible response to lint warnings, we needed
to show that the link had a different meaning in this case.

TWR was run as a nightly job across the entire code base,
and was set to flag the top 0.5% of the Google code base. Note
that TWR was not run at a project level, but using Google’s
entire source history. This decision was made in order to flag
only what TWR considers the very worst files at the company,
which we hoped would filter false positives from the list. This
meant that some projects had more files flagged than others.
Running the algorithm across the entire code base did not
affect the output at a UI level: a code reviewer would see a
file was flagged in Mondrian, but was not told where it was
ranked. Only those who have experience with the portion of
the code base in question should be used as code reviewers,
so the flag was expected to be meaningful to those who were
presented with it.

B. Methodology

To evaluate RQ 3, we deployed our solution in September
2011. Bug-prone files began to have comments attached in
Mondrian, and all developers could see it during code review.
After four weeks, the comments were given the same priority
as a high-level lint warning: developers could see it if warnings
were enabled, but otherwise the comment was not visible. This
was largely done to bring the project into a consistent state
with other warnings, but reduced visibility of our comments.

Three months later, we investigated whether there was
any quantitative change in developer behavior. Three months
should have been a sufficient time for developers to have either
taken to the tool, or chosen to ignore it. We were looking for
measurable means to identify whether flagging a file resulted
in greater developer engagement with the review; something
that indicates they are thinking about a review more deeply
than they otherwise would have. We identified two metrics for
study:

1) The average time a review containing a bug-prone file
takes from submission to approval.

2) The average number of comments on a review that
contains a bug-prone file.

To measure this, we generated a list of all the files that
had been flagged as bug-prone at any point since launch. We
then took reviews from three months either side of the launch
date that included these files. We analyzed the time a code
review took from submission to approval and the number of
comments that the code review gained.

Fig. 3: A chart showing the ratio of bug tickets classified as bugs vs bug tickets classified
as feature requests submitted on a given day. The project launched on September 16th,
and this shows one month of data either side of that date. There was no significant
change in the ratio.

C. Results

1) Developer Behavior: We first looked at how the overall
mean averages changed before and after launch, as displayed
in Table II. For this test, outliers that were lower than the 5th
percentile and higher than the 95th percentile of each data
set were filtered to prevent extreme outliers from skewing the
results.

We then looked at whether the means for each individual
file increased or decreased, as displayed in Table III.

Student’s t-tests show that neither change was significant,
supporting a null hypothesis that the bug prediction deploy-
ment had no effect on developers.

2) Developer Feedback: Initial developer feedback was
mixed, but leaning towards the negative. We monitored feature
requests sent directly to us as bug tickets, and also internal
mailing lists where the project had been mentioned. Common
complaints included:

• No opt-out function
• Confusion from both submitters and reviewers about how

to “fix” the file before the submission would be approved
(as the algorithm is non-actionable, there was no means
to do this)

• Technical debt files would be flagged again and again,
with developers feeling they were in no position to make
any positive change

• Auto-generated files were not filtered, and would often be
changed, so would end up attached to bug-fixing changes
and get flagged

• Teams that were using Google’s bug tracking software
felt unfairly flagged versus teams that used a different
bug tracking method

There was some indication that developers may have tried
to sanitize their tracked bug tickets by correctly flagging them
with the bug or feature request flag (only bugs, not feature
requests, are tracked by the project) but our investigation of
the data did not find any significant change in the ratio of bugs

379

Metric Before deployment After deployment Change
Mean time to review (days) 2.01 1.94 -0.08
Mean number of comments 5.97 6.38 0.41

TABLE II: A table showing how the mean time to review and mean number of comments changed before and after the deployment of TWR.

Metric Increase Decrease / No Change Increase Improvement
Mean time to review 464 527 -63

Mean number of comments 524 467 57

TABLE III: A table showing the number of files that saw an increase or decrease in their mean time to review and their number of comments since deployment of the TWR.

versus feature requests being reported, as shown in Figure 3.
If there was any change in reporting, so that only bugs are
characterized as so, we would expect the number of bugs
reported to go down, and the number of feature requests to
go up. As the ratio didn’t change, we found no evidence that
there was any significant change in behavior.

Some developers did see value in the project, and requested
means to run the tool only for their own workspaces. However,
by and large, qualitative feedback did not have the positive
responses that we had hoped for.

3) Interpretation: We interpret these results not as a failure
of developer-focused bug prediction as a whole, but largely as
a failure of TWR. The feedback from developers was clear:
unless there was an actionable means of removing the flag
and “fixing” the file, developers did not find value in the bug
prediction, and ignored it. In hindsight, this is not surprising,
given the characteristics that developers requested during our
informal discussions. We do not believe FixCache would have
fared any better.

We were at least expecting to see a small, but statistically
significant increase in the number of comments left on a file,
as we anticipated reviewers asking questions such as “Are we
sure we should be editing this file at all?” While we see a
small increase in the number of comments, the increase is not
significant.

VII. THREATS TO VALIDITY

A. Assumption of Expert Primacy

In our evaluation of FixCache and Rahman, we test how
well the bug prediction matches the intuition of expert de-
velopers. We were interested in whether we could use these
algorithms to help convey implicit knowledge about bug-prone
files to new developers on a project. However, bug prediction
may also help help identify hotspots that may have been
missed by every developer, not just those new to the project.

One possible experiment design to take this into account
would be to deploy each algorithm to two groups, and have
a signal back from developers which indicated both the de-
veloper’s initial assumption about whether the algorithm was
correct or not, and then how the developer felt about the file
after investigating the warning. We could then measure which
algorithm performed the best after developer investigation, and
also see whether the algorithm helped to shift developer views
about certain files.

B. Deployment

By conducting this research exclusively at Google, the
results may not be generalizable to other companies with other
development processes.

Within Google, we identified Mondrian as the best place
for deployment, but there were limitations. Ideally, there would
have been a better injection point for showing flagged files than
an annotation at Line 1 on a file. One quirk of the annotations
is that developers were used to only seeing them when there
was some action that should be taken at that line, which
likely created confusion, as TWR doesn’t provide actionable
messages.

One developer suggested that instead of being used for code
review, bug prediction could have been used as a tool to help
guide iteration planning to select cleanup work. In this way,
the lack of directly actionable messages is lessened.

Other deployment methodologies were discussed after the
initial launch of TWR. One possibility is for results to be part
of the IDE, perhaps as part of a system like the Code Orb [19].
Moving the interaction with TWR to the beginning of the code
change workflow, where a developer may have more leeway
to modify their approach, could yield significantly different
results to those presented here.

C. Interviewee Pool

We surveyed 10 developers from Project A and 9 from
Project B. Although we selected these two projects as exam-
ples of ‘typical’ Google projects, our results could be biased
by any unique characteristics of these specific projects.

Another potential bias is in the interviewee pool. While this
pool had a good mix of experience levels, we would have
preferred to have more interviewees. In particular, we would
have liked to reduce the number of unknown responses for the
Duration Cache and Cache-20. Were it not for the performance
of the Rahman algorithm, it is possible that our request for
developers to comment across the project was unreasonable,
and should have perhaps been focused on smaller subsystems.
However, the strong performance of the Rahman algorithm
shows that developers did seem to have a working knowledge
of at least the portion of the code base Rahman presented.

As our interviewees were volunteers, there is the possibility
of selection bias in our population. Further study with only
developers with exceptionally high experience may yield more
accurate results.

380

D. Metric Choice for Deployment Evaluation
The two chosen metrics, time to review and number of com-

ments, were metrics that were both available and descriptive of
the problem at hand. However, it is possible that more suitable
metrics could exist, such as checking the number of bugs fixed
against a file before and after deployment, or code churn before
or after deployment.

Further research should be performed into methods of
identifying reception to a tool. In particular, we found many
developers talking about the algorithm on mailing lists; a
sentiment analysis approach using such discussions may yield
interesting insights into tool reception. We also considered
modifying the comment in Mondrian to include questions such
as “Was this useful to you?” or “Do you agree with this
assessment?” with Yes/No buttons, so we could more directly
get feedback from developers.

VIII. CONCLUSION

In this paper, we addressed three different research ques-
tions. We found that developers preferred the Rahman algo-
rithm over the FixCache algorithms, although there were still
some files developers thought were not bug-prone. We enu-
merated various characteristics that a bug prediction algorithm
should ideally have. We then used this knowledge to alter
Rahman and create a new algorithm, but did not observe any
change in developer behavior.

We believe our findings do not point to bug prediction
being a failure at helping developers. We found developers
to be excited about adding a new tool to help aid them in the
never-ending code health battle, but these findings provide an
indication that what has currently been developed is not yet
useful to them, and hopefully provide a better insight into what
might be required for bug prediction to be helpful. We hope
that future work will be able to incorporate the missing pieces
– particularly actionable messages – and lead to widespread
developer adoption.

We would like to caution that our work only pertains to
an analysis of human factors when relating to bug prediction,
and our study does not analyze the suitability of any algorithm
for automated uses, such as test-case optimization. It is also
possible that front-line developers are the wrong audience for
bug prediction. Instead, software quality personnel might be
a better target, as they could use the results of bug prediction
to focus quality-improving resources on bug-prone areas.

ACKNOWLEDGMENTS

The authors would like to acknowledge the contribution of
Googlers Vasily Koroslev, Jeanie Light, Jennifer Bevan, Jorg
Brown, Adam Haberlach and John Penix.

REFERENCES

[1] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller, “Predicting
Faults from Cached History,” in 29th International Conference on
Software Engineering (ICSE ’07), pp. 489–498, IEEE, May 2007.

[2] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-
oriented design metrics as quality indicators,” IEEE Transactions on
Software Engineering, vol. 22, no. 10, pp. 751–761, 1996.

[3] N. Nagappan, T. Ball, and A. Zeller, “Mining Metrics to Predict
Component Failures,” Proceeding of the 28th International Conference
on Software Engineering (ICSE ’06), vol. 20, p. 452, 2006.

[4] A. E. Hassan and R. C. Holt, “The Top Ten List: Dynamic Fault Pre-
diction,” 21st IEEE International Conference on Software Maintenance
ICSM05, pp. 263–272, 2005.

[5] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting the location
and number of faults in large software systems,” IEEE Transactions on
Software Engineering, vol. 31, no. 4, pp. 340–355, 2005.

[6] F. Rahman, D. Posnett, A. Hindle, E. Barr, and P. Devanbu, “BugCache
for inspections,” in Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engi-
neering (SIGSOFT/FSE ’11), (New York, New York, USA), p. 322,
ACM Press, Sept. 2011.

[7] E. Engström, P. Runeson, and G. Wikstrand, “An Empirical Evaluation
of Regression Testing Based on Fix-Cache Recommendations,” in 2010
Third International Conference on Software Testing, Verification and
Validation, pp. 75–78, IEEE, Apr. 2010.

[8] G. Wikstrand, R. Feldt, B. Inst, J. K. Gorantla, W. Zhe, and E. Ab,
“Dynamic Regression Test Selection Based on a File Cache - An
Industrial Evaluation,” Technology, pp. 299–302, 2009.

[9] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and
P. Devanbu, “Fair and balanced?: bias in bug-fix datasets,” in Proceed-
ings of Foundations of Software Engineering, vol. 139 of ESEC/FSE
’09, pp. 121–130, ACM, 2009.

[10] A. Avižienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure Computing,” IEEE
Transactions on Dependable and Secure Computing, vol. 1, pp. 11–33,
Jan. 2004.

[11] D. A. Norman, The design of everyday things. Basic Books, 2002.
[12] B. Schneiderman, C. Plaisant, M. Cohen, and S. Jacobs, Designing the

User Interface: Strategies for Effective Human-Computer Interaction.
Pearson Addison-Wesley, 2009.

[13] J. Nielsen, Usability Inspection Methods. Wiley, 1994.
[14] L. Layman, L. Williams, and R. Amant, “Toward reducing fault fix time:

Understanding developer behavior for the design of automated fault
detection tools,” in Empirical Software Engineering and Measurement,
2007 (ESEM ’07). First International Symposium on, pp. 176–185,
IEEE, 2007.

[15] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM SIGPLAN
Notices, vol. 39, p. 92, Dec. 2004.

[16] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh,
“Using Static Analysis to Find Bugs,” IEEE Software, vol. 25, pp. 22–
29, Sept. 2008.

[17] N. Ayewah and W. Pugh, “A report on a survey and study of static
analysis users,” in Proceedings of the 2008 workshop on Defects in
Large Software Systems, pp. 1–5, ACM, 2008.

[18] N. Ayewah, W. Pugh, J. Morgenthaler, J. Penix, and Y. Zhou, “Evaluating
static analysis defect warnings on production software,” in Proceedings
of the 7th ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering (PASTE), pp. 1–8, ACM, 2007.

[19] N. Lopez and A. van der Hoek, “The Code Orb,” in Proceedings of
the 33rd International Conference on Software Engineering (ICSE ’11),
(New York, New York, USA), p. 824, ACM Press, May 2011.

381

