
When Functions Change Their Names: Automatic Detection of Origin
Relationships

Sunghun Kim, Kai Pan, E. James Whitehead, Jr.
 Dept. of Computer Science

University of California, Santa Cruz
Santa Cruz, CA 95064 USA

{hunkim, pankai, ejw}@cs.ucsc.edu

Abstract

It is a common understanding that identifying the same
entity such as module, file, and function between revisions
is important for software evolution related analysis. Most
software evolution researchers use entity names, such as
file names and function names, as entity identifiers based
on the assumption that each entity is uniquely identifiable
by its name. Unfortunately names change over time. In
this paper we propose an automated algorithm that
identifies entity mapping at the function level across
revisions even when an entity’s name changes in the new
revision. This algorithm is based on computing function
similarities. We introduce eight similarity factors to
determine if a function is renamed from a function. To
find out which similarity factors are dominant, a
significance analysis is performed on each factor. To
validate our algorithm and for factor significance
analysis, ten human judges manually identified renamed
entities across revisions for two open source projects:
Subversion and Apache2. Using the manually identified
result set we trained weights for each similarity factor
and measured the accuracy of our algorithm. We
computed the accuracies among human judges. We found
our algorithm’s accuracy is better than the average
accuracy among human judges. We also show that
trained weights for similarity factors from one period in
one project are reusable for other periods and/or other
projects. Finally we combined all possible factor
combinations and computed the accuracy of each
combination. We found that adding more factors does not
necessarily improve the accuracy of origin detection.

1. Introduction

When we analyze the evolution of procedural
software, we frequently gather metrics about individual
functions. The analysis process must associate each
metric with its function and revision, usually
accomplished by recording the function name and a
revision identifier. Unfortunately, function names change,
leading to breaks in the recorded sequence of metric
values. Ideally we would like to track these function name
changes, a process called entity mapping. If a particular
entity maps across revisions, we say the successive
revisions of the entity have an origin relationship.

We define an origin relationship as follows, based on
[12].

Definition. Origin Relationship
Let r1 and r2 be consecutive revisions of a project history.
A deleted function is one that disappears between r1 and
r2, while a new function is one that appears between r1
and r2. Let D={d1, d2, … dn} be a set of deleted functions,
and A={a1, a2, … an} a set of new functions. The origin
relationship candidate set is the multiplication of the two
sets: D×A. The maximum number of origin relationships
between r1 and r2 is the minimum of |D| and |A|. A
candidate set pair (dx , ay) has an origin relationship iff ay
is renamed and/or moved from dx.

In this paper, we describe a technique for automatic entity
mapping of C language software. The basic process is as
follows:
1. We extract two consecutive software project

revisions, r1 and r2, from the project's software
configuration management repository.

2. We compute all possible mappings of deleted
functions to added functions, yielding our candidate
set of origin relationships.

3. For each function in the candidate set we gather a set
of facts and metrics, including its name,
incoming/outgoing calls, signature, lines of code, and
a composite complexity metric. For each candidate
set pair we also determine the text diff, and their
similarity as computed by CCFinder [14] and MOSS
[1]. This gives us the raw data needed for computing
similarity.

4. We compute an overall similarity between each
candidate set pair, using a weighted sum of the
gathered facts, metrics, and similarities. Each pair
now has a total similarity value that integrates a wide
range of information about each pair.

5. We compare each pair's total similarity to a
threshold value; exceeding the threshold indicates an
origin relationship. We now know which functions
have been renamed between r1 and r2.

Using this approach we are able to compute origin

relationships with 87.8% accuracy for the Apache 2 web
server [2] and 91.1% accuracy for the Subversion

configuration management system [4]. We asked 10
human judges to manually determine origin relationships
for the same systems, resulting in 84.8% agreement
across judges for Apache 2 project, and 89.1% agreement
for Subversion. Hence our approach is capable of
achieving human level accuracy at this task.

Our approach raises many questions:
How do you assess the accuracy of an automatic

entity mapping algorithm? Typically, computed origin
relationships are compared against known good ones;
how do you find a known good set of origin pairs? We
address this by asking human judges to manually
determine origin pairs. This is more complex than it
seems. Wallenstein et al. have shown that human judges
never completely agree in their assessments [23].

How do you determine the weights used to combine
individual facts, metrics, and similarity values?
Intuitively we want to heavily weight individual factors
that by themselves are good predictors of origin
relationships.

Does combining a wide range of factors result in
the most accurate determinination of origin
relationships? If several of the factors are tightly
correlated, it may be that some of the factors can be
tossed out and still yield an accurate origin assessment.
Since there is a computational expense to determining
each factor, eliminating factors is a plus.

Does one set of factor weightings produce accurate
results for multiple projects? Ideally our factor
weightings will result in a similarity model that is
applicable to many projects. Alternately, it might be the
case that factor weightings are inherently project-specific.

We address these questions in the remainder of the
paper: In Section 2, we discuss related work on origin
analysis, renaming detection, and code clone detection
methods. We describe each similarity factor in Section 3
and propose our automated origin relationship detection
algorithm in Section 4. We describe our experimental
process in Section 5 and validate our algorithm in Section
6. We briefly discuss applications for origin relationship
detection in Section 7. We discuss the limitations of our
analysis in Section 8, and conclude in Section 9.

2. Related Work

In this section we discuss previous work on renaming
detection, origin analysis, and code clone detection
algorithms.

2.1. Renaming Detection

Malpohl et al. proposed an algorithm that
automatically detects renamed identifiers between pairs of
program modules [18]. Their rename detection algorithm
focuses on variable names rather than function names.

Similar to our algorithm, they use context information
such as the relation of the renamed variable to other
variables, declaration similarity, implementation
similarity, and reference similarity. However, the
granularity of the renaming detection target is different.
Here we are focusing on function name changes to map
entities over multiple revisions, while Malpohl et al. focus
on variable name changes to help merge and diff tools.

2.2. Origin Analysis

Godfrey et al. proposed an origin analysis algorithm to
find renamed entities over revisions or releases, and our
work is inspired by their origin analysis [12, 22]. They
were the first to identify the importance of this problem
for evolution analysis. Their origin analysis algorithm
uses four matchers: name matcher, declaration matcher,
metrics matcher, and call relation matcher. Based on the
matchers, the algorithm provides a list of the top five
origin candidates and requires a human to pick the best
one of the five. We reused the matchers for our algorithm
with a different similarity measurement.

Godfrey et al. provide expression matchers that enable
users to decide combinations or threshold values for each
matcher. However, they did not perform a significance
analysis on each matcher to figure out which matchers are
more or less important, and determine better
combinations or threshold values. They also did not
provide the accuracy of their algorithm, and their analysis
results rely on only one human judge. Our work extends
their work by focusing on accuracy comparison,
significance analysis on similarity factors, and
comparison of renaming behaviors of different projects
and periods.

2.3. Code Clone Detection

The goal of code clone detection is to find similar or
identical code fragments in program source code. The
clone detection techniques can be used in software
maintenance, software refactoring, and software evolution
analysis. In our research, code clone detection is used to
assist origin relationship detection across revisions, i.e.
identifying a particular function in a prior revision. The
code clone detection problem has been intensively studied
in recent years, and many clone detection techniques have
been introduced.

String matching is the most straightforward way to
compare two text fragments. Linux/UNIX diff [10] is a
tool usually used to compute the text difference of two
files based on line string matching. RCS and CVS use diff
to compute the delta between two revisions of a file. Diff
calculates the longest common subsequence (LCS) of two
text files at the line level. The LCS indicates the similarity
of the two files. Some text transformations can be applied
in diff before text matching is performed, such as removal
of unnecessary white spaces, ignoring of tab expansion,

and ignoring blank lines. Duploc [8] is another clone
detection approach based on string matching, in which
diff’s transformation technique is used, and a hash
technique on text lines is leveraged to improve the
performance of string matching.

While the clone detection techniques based on
straightforward string matching are language independent,
some techniques involve code transformation based on
specific lexical or parsing analysis for a programming
language in detecting code clones [3, 14]. CCFinder [14]
transforms source code using different transformation
rules for different languages (C, C++ and Java) and
performs parameter replacement by replacing all
identifier tokens with ‘$p’ in the program. After that,
CCFinder performs substring matching on the
transformed token sequence for clone detection. The
transformation and parameter replacement in CCFinder
allows it to find code clones with identifier-renaming and
code clones with similar syntax structures. The approach
in CloneDr [3] involves syntactic analysis. For code clone
detection, CloneDr parses program source code and
generates its abstract syntax tree. Then it performs sub-
tree matching in the abstract syntax tree to locate code
clones.

Beagle [22] detects code clones using statistical data
for procedures, including lines of code, code nesting, fan-
out, number of global variables accessed and updated,
number of parameters, number of local variables, and the
number of input/output statements. Based on these
statistics, five metrics of the measurement vector are
computed for each procedure: S-Complexity, D-
Complexity, Cyclomatic complexity, Albrecht, and
Kafura [17]. The similarity of two procedures is indicated
by the distance of the Bertillonage measurement vectors
of these two procedures.

Instead of using software metrics, MOSS (Measure Of
Software Similarity) [19] uses text sampling to
characterize text content. The algorithm in MOSS is
based on selecting fingerprints of k-grams, which are
contiguous substrings of length k. Each k-gram is hashed
and MOSS selects some of these hash values as a
document’s fingerprints. The more fingerprints shared by
detection two documents, the more similar they are.

One of the big differences between code clone
detection techniques and our work is that code clone
detection techniques focus on identifying similar code
areas in one revision without any boundaries of each
entity while we are trying to find origins of functions
based on function similarities across revisions.

3. Selecting Similarity Factors

Our algorithm computes the similarities of two-
function pairs in the origin relationship candidate set to
determine if they have an origin relationship. We
introduce eight similarity factors which can be used to

measure function similarities, shown in Table 1. Each of
the factors will be discussed in the following sections.
The requirements of the ideal factor are low computation
complexity and high accuracy.

Table 1. Similarity Factors

Factor Name Description
Function name (name) Function name
Incoming call set (in) Incoming calls
Outgoing call set (out) Outgoing calls
Signature (sig) Return type and arguments
Function body diff (body) Text difference of function

body
Complexity metrics (com) Distance of complexity

metrics value
MOSS (moss) Similarity from MOSS
CCFinder (ccf) Similarity from CCFinder

3.1. Function Name

When developers change function names, it is often
the case that the new name is similar to the old one. The
similarity of function names can be used to check the
similarity of two functions. This factor’s computation
complexity is relatively low. Function name similarity can
be computed using the intersection set count (ISC) or
longest common sequence [13] count (LCSC) similarity
metrics, described in Section 4.

3.2. Incoming Call Set

It is often the case that even if the function name and
body change across revisions, the incoming call pattern
remains the same. This makes the incoming call set a
good similarity factor for determining the similarity
between two functions. Computing the incoming call set
requires parsing the project source code to statically
determine the call relationships.

3.3. Outgoing call set

Similar to the incoming call set, a function’s outgoing
call set can also be used as a similarity measure.

3.4. Signature

Since most of a function’s signature does not change
frequently, signature patterns can be a similarity factor in
deciding the similarity of two functions [16]. Getting and
comparing signature patterns of functions is relatively
simple, as a complete parser is not necessary to identify
function signatures.

3.5. Text diff

Text diff can be used to check the similarity of two
functions. In our text diff, we ignore white space
differences between two lines. Note that text diff
compares line by line. If there is a single character change
in a line, it assumes the whole line is different.

3.6. Complexity metrics

Rather than comparing function bodies or names,
comparing complexity metrics or the volume of two
functions can indicate similarity of the two functions,
acting somewhat as a “fingerprint” for the function [22].

We used five complexity metrics from ‘Understand for
C++’ [20]: LOC, cyclomatic complexity, count of
incoming calls, count of outgoing calls, and maximum
nesting. Following [22], we compute distance of the two
functions’ five metrics values. The distance computation
is simple, but computing the actual metrics is expensive.

3.7. CCFinder

CCFinder is a language-dependent code clone
detection tool for C, C++, COBOL, Java and Lisp [14].
CCFinder detects code clones within a file and across
files. In Burd’s evaluation [6], CCFinder had the best
recall rate of five code clone detection tools and fine
clone detection precision. To compare the similarity of
two functions, we store each function as a file and
CCFinder reads two files to compute the similarity of the
files. CCFinder has an option for the minimum token
length. If the token length of a clone candidate is smaller
than the minimum token length, CCFinder ignores this
candidate. The default minimum token length is 30. Since
there are many functions whose token length is less then
30, we compute the token length of two functions in
advance and use the minimum of the two function’s token
length as CCFinder’s minimum token length option.

3.8. MOSS

MOSS [1] is a web-based service for plagiarism
detection. Generally, MOSS is language independent, but
some language options can be turned on to increase the
detection accuracy for programs of a specific language.
Burd el al. [6] evaluated MOSS and four other code clone
detection tools. It turned out that MOSS had the lowest
recall rate in finding the code clones, but had a decent
detection precision.

3.9. Other Possible Similarity Factors

There are other possible similarity factors we can use
to determine origin relationships. One is Abstract Syntax
Tree (AST) shape comparison to determine similarity.
While we use a line-based diff in our algorithm, AST diff
provides a software structure comparison, rather than
detecting lexical differences. Another possible similarity
factor is suggested by the observation that when a
function name changes, sometimes the physical location
of the function in the source file remains unchanged or
changes minutely. Based on that assumption, we could
use the physical location of a function such as line
number or block number in a source code file.

4. Proposed Algorithms

First we need to compute all of the similarity factors
for each two function-pair in the origin relationship
candidate set. Our algorithm evaluates the presence of an
origin relationship by combining values of similarity
factors. Some similarity factors, such as MOSS and
CCFinder, provide their own similarity algorithm. For the
complexity metrics factor (Section 3.6), we compute the
distance of the two vectors combining the five metrics
values. We use the longest common sequence [13] count
(LCSC) or the intersection set count (ISC) to compute
similarities for other factors.

After computing similarities of each factor, we
compute the total similarity using a weighted sum of each
factor. The weights of each factor are also automatically
computed.

4.1. ISC Similarity Metric

Factors such as function name, incoming calls,
outgoing calls, and signatures can be expressed as a set.
For example, a function name, ‘hello_hunkim’ can be a
set called an element set:

{h, e, l, l, o, _, h, u, n, k, i, m}.
If we have two element sets for a two-function pair in

the origin relationship candidate set, the similarity of the
two element sets can be computed using the ISC
similarity metric. The basic task is to count of the
intersection of the two sets. The ratio of the intersection
count decides the similarity of the two sets. The ISC
similarity metrics is shown in Equation 1.

Equation 1. ISC similarity measurement of two
factors, A and B

2
||

||
||

||
B

BA
A

BA

SSimilarityISC AB

II
+

=

ISC Similarity ranges from 0 to 1, where 1 indicates two
factors are exactly the same. Note that the ISC similarity
metrics doesn’t consider the order of two sets. Suppose
we have two element sets: A={h, e, l, l, o} and B={l, e, o,
h, l}. The ICS Similarity is 1 while the two function
names, ‘hello’ and ‘leohl’ are different.

4.2. LCSC Similarity Metric
In some cases, we need to consider the order of the

common part of two sets. For example, in the name
element set, the order of each character is important in
determining if two names are similar. The LCSC
Similarity metric checks the order of elements in the sets.
Equation 2 defines the LCSC Similarity metrics. LCSC
Similarity also ranges from 0 to 1, where 1 indicates two
factors are exactly the same.

Equation 2. LCSC Similarity measurement of two
factors, A and B

2
|||| B

LCSC
A

LCSC

SSimilarityLCSC

BABA

AB

−− +
= , while

LCSCA-B is the LCSC of A and B, and |A| is the number
of elements in the set A.

4.3. Vector Complexity Similarity Metric
We used the five function complexity metrics values

listed in Section 3.6 as a similarity factor. To measure the
similarity of each function, we used the distance between
vectors of the five values, where each vector is defined as
V={v1, v2, v3, v4, v5}. If we have two vectors, V and U,
we can compute the distance of two vectors. Since other
similarities ranges from 0 to 1, we normalize each
coordinate value to range from 0 to 1. The similarity of
two vectors is defined in Equation 3.

Equation 3. Vector Complexity Similarity of two
vectors, V and U

5/1

),(),(),(),(),(

||/)(
||1

),(

2
55

2
44

2
33

2
22

2
11

DSSimilarityVector

uvNuvNuvNuvNuvND

AveuvifAveuv
Aveuvif

uvNfunctionNormalize

VU

nnnnn

nnn
nn

−=

++++=

⎩
⎨
⎧

≤−−
>−

=

, where Aven is average value of the n the elements in all
vectors, V1, V2, …Vn.

The normalization function normalizes the range of the
difference of two coordinates from 1 to 0 using average
value of the nth elements in the vectors. We assume the
difference of two coordinates is greater than the average
value, the two coordinates are far enough to be 1. D
indicates the distance of normalized coordinates, and
ranges from 0 to 5, where 0 indicates two vectors are
exactly the same and 5 indicates two vectors are
different. Finally we compute vector complexity
similarity which ranges from 0 to 1, where 1 indicates
two vectors are exactly the same.

4.4. Total Similarity Metric

After computing each factor’s similarity, the total
similarity is computed using a weighted sum of each
factor’s similarity. We believe the significance of each
factor is different, hence each factor is weighted
accordingly. Ideally, we would like to select wi that weigh
the fact similarities to produce the best results. However,
to judge what is best, we need a set of known good origin
relationships to act as a correctness oracle, as described in
Section 5. The total similarity equation is defined below.

Equation 4. Total similarity of functions A and B

∑
∑

∈

∈=

Fi
i

Fi
ii

w

Sw
tssimilarityTotal

 F is the set of facts from Table 1, Si is a similarity
measurement (from Equation 1 and Equation 2), and wi is
a weight of each factor’s similarity measurements.

4.5. Threshold Value

We use a threshold value to determine an origin
relationship. If the total similarity of two functions is
greater than the threshold value, we assume there is an
origin relationship. We have not yet presented how to
select a reasonable threshold value, since it requires
judgments against a set of known good origin
relationships. In the following two sections we first
address issues involved in developing a set of human
judged correct origin relationships, and then proceed to
use them to develop our weights and threshold values.

5. Experiment

To determine weights for each factor and threshold
value we need an origin relationship set to compare.
Common SCM systems such as CVS and Subversion do
not record renaming of functions. We rely on human
judges to determine a known good set of origin
relationship pairs. 10 human judges manually examined
origin relation candidates and identified origin
relationships if present. If more than 70% of the judges
agreed on an origin relationship identification, we assume
it is a valid origin relationship. Based on the identified
origin relationship set from human judges, we decide the
weights of similarity factors and the threshold values.

5.1. Making the Oracle Set

In this section we describe the process of making the
known good origin relationship set called OracleSet.

First, we chose sample projects and revision periods to
perform manual identification. We used two open source
projects: the Subversion project from revisions 1–3500,
representing about 20% of the total Subversion project
history, and the Apache2 project from revision 1-2000,
about 20% of the Apache2 project history.

Ten human judges used a graphical user interface that
shows origin relationship candidates (two-function pair)
with function body and the corresponding revision log.
The change log is very useful for human judges. In
previous origin analysis related research, change log data
is not used for the manual decision process [11, 12, 18,
22]. However, change logs are widely used to map bug
numbers to code changes [9, 21]. Change logs sometimes
explicitly describe function renaming. For example, the
log message for Subversion revision 172 explicitly states

that function ‘fulltext_string_key’ is renamed from
‘string_key’.

What kinds of words in the change log indicate origin
relationships between functions? We manually observed
change logs of 3550 revisions of the Subversion project
and 2000 revisions of Apache2 project and found the
following origin-relationship-sensitive words. Those
words are used to identify origin relationships manually.

Table 2. Origin relationship sensitive words. ++
indicates the words have strong indication of origin
relationship. – indicates the words have negative
indication of origin relationship.

Indication Words
++ rename, move, replace, revamp
+ Update, merge, split
- Remove, delete, add, new

We created guidelines for human judges. The

guidelines are based on the understanding of the origin
relation definition. Human judges also use change logs. If
any of the strong positive (++) origin relationship
indication words are used in the change log to describe a
function in origin relationship candidates, the functions
have an origin relationship. If any of the negative (-)
origin relationship indication words are used to describe a
function, the function is likely either a new function or a
deleted function. If there is no description of a function in
the change log, human judges decide the origin
relationship by examining the semantic behaviors of the
two functions. If the two functions are doing exactly the
same thing, we assume the two functions have an origin
relationship. These guidelines are summarized in Figure 1.

1. Understand the origin relationship Definition.
2. Examine the change log

A. A function has an origin relationship if any
of the strong positive (++) words or their
synonyms are used to describe functions.

B. A function has no origin relationship if any
of negative (-) words or their synonyms are
used to describe the change to the function

3. If no decisions in the previous step, examine the
old and new function bodies
A. They have an origin relationship if their

semantic behaviors are the same.
Figure 1. Origin relationship manual identification
guidelines

The third item in the guideline is subjective, but we
trust the experience and capabilities of our judges. Based
on the guidelines, 10 judges carefully reviewed the
revision logs and function pairs, and determined if each
function pair has an origin relationship. The judging
process is similar to that used for finding code clone
detection by human judges in [23]. All human judges

have strong C programming experience, and are graduate
students in the computer science department. Two of
them have experience of extending the Apache2 server,
which is similar to the examined Subversion project.

Even though origin relationships are potentially not
one-to-one, we did not consider function
merging/splitting cases to simplify the algorithm and
validation process. Upon inspection of the Subversion
history log (from revision 1 to 3500), we found only one
function merge and two function split, which we felt
comfortable ignoring. When the judges encountered a
merge/split situation, they chose the most similar function
among the merged or split functions. After gathering
results from the judges we compared each human’s
judgment, as shown in Table 3. As noted in origin
relation Definition, the maximum number of origin
relationship for Subversion is 2144 and 1980 for Apache2.
For example if there are 2 deleted functions and 15 added
functions between revisions, the maximum number of
origin relationship is 2 which is the minimum number of
between numbers of deleted functions and added function.

 On average, judges took 3 hours and 40 minutes to
identify 634 origin relationships for Subversion and 1
hour and 15 minutes to identify 99 origin relationships for
Apache2. We add an origin relationship to the OracleSet
if more than 70% of the human judges agree on origin
relationship.

Table 3. Comparing results from 10 human judges

Apache2 Subversion
Judge
ID # number

of origins Time number
of origins Time

1 92 45m 643 3h 30m
2 86 1h 628 4h
3 109 1h 20m 673 4h 30m
4 104 1h 640 2h 45m
5 88 1h 470 4h 20m
6 114 1h 30m 659 5h
7 104 50m 671 3h 20m
8 99 1h 647 3h
9 98 1h 643 3h 30
10 91 1h 20m 662 3h 40m

Equation 5. Agreement/Accuracy from A and B origin
sets from two judges

100*
2/|)||(|

||)(
BA
BApercentageAgreement

+
=

I

We define the percentage of agreement/accuracy in

Equation 5 to compare accuracy of any two origin
relation sets. Using Equation 5, we computed inter-rater
agreement to determine the quality of the human
judgments, reported in Table 4. For example, in
Subversion project judges #1 and #2 agreed on 579 (91%)

origin relationships. Consistent with the observations of
Wallenstein et al.[23], we found low agreement between
the human judges. The comparatively high agreement of
the Subversion project is due to its change log which
indicates function remaining. Since the Apache2 project
does not provide such change logs, human judges have to
identify origin relationships based on the semantics of
function behavior. On average there is 84.8% inter-rater
agreement for Apache2 and 89.1% for Subversion. To
make the OracleSet we assume there is an origin
relationship if 70% or more judges agreed on the origin
relationship, bringing the total number of origin
relationships in OracleSet to 626 for Subversion and 91
for Apache2.

Table 4. Each judge agreement with judge #1 for SVN
and Apache2 projects.

 #2 #3 #4 #5 #6 #7 #8 #9 #10
A2 82 86 87 86 84 88 86 84 80
SVN 91 92 93 71 91 92 89 93 90

5.2. Deciding Factor Weights

We compare each similarity factor’s output and the
OracleSet to decide weights for each factor. Table 5
shows an illustrative sample of six origin candidates, and
the respective similarity of selected factors, and the
OracleSet (see Table 1 for factor name abbreviations).
Our intuition is that if a similarity factor’s output is close
to the OracleSet, we assume the factor is important. There
are several ways to decide if two sets of values are close.
We could determine the error between the two sets or
compute correlation using Pearson’s correlation equation
[7].

Table 5. Example similarities of factors and OracleSet.
Candidates Name Sig CcF Moss OracleSet

1 0.8 0.7 0.9 0.7 1
2 0.2 0.3 0.0 0.0 0
3 0.3 0.2 0.4 0.3 0
4 0.2 0.5 0.0 0.0 0
5 0.7 0.9 0.8 0.9 1
6 0.4 0.8 1.0 1.0 1

We use accuracy (defined in Equation 5) between a

single similarity factor and the OracleSet to decide
weights of each factor. To obtain the best similarity of a
similarity factor, we vary the threshold value for the
factor from 0.1 to 0.9 by steps of 0.01.

For example, to compute the significance of the name
factor we vary the threshold value from 0.1 to 0.99.
During these processes, suppose the threshold for the
name factor is currently 0.5. If the output value of the
name factor is greater than 0.5, it predicts it has an origin
relationship, so it is set to 1. The prediction set of the
name factor for the six candidates in Table 5 is {1, 0, 0, 0,
1, 0}. By comparing the prediction set and the OracleSet,

we compute the accuracy of name factor which is 0.8
(2/((2+3)/2)*100).

The accuracy of each similarity factor indicates the
significance of each factor. The accuracies of each factor
are shown in Table 6 with corresponding threshold values.
Note that the threshold values yielding the best accuracy
for each factor may vary. The ISC sub text indicates we
used ISC similarity metrics (Equation 1) to compute the
factor similarity. The default is using LCSC similarity
metrics (Equation 2) excluding complexity metrics,
MOSS, and CCFinder. The accuracy of each similarity
factor indicates the significance. The function body diff,
outgoing call set, and function name factors are the most
significant factors for deciding origin relationships. In
contrast, complexity metrics and CCFinder are less
significant factors.

The weights of each similarity factor are decided by
the accuracy of the factor. The basic idea is that if a factor
leads to increased accuracy, the factor contributes more to
the total similarity. Note that all similarity factors using
ISC and LCSC similarity equations in Equation 1 and
Equation 2 are similar. We excluded all ISC similarity in
the rest of experiments.

Table 6. Accuracy and weights of each factor of two
projects, Apache2 and SVN. Values in parenthesis
indicate the threshold value of each similarity factor.

Similarity Factor Apache2
Weight

Subversion
Weight

Function name 78.1 (0.72) 90.6 (0.68)
Function nameISC 77.4 (0.74) 86.0 (0.68)
Incoming call set 71.4 (0.88) 81.9 (0.32)
Incoming call setISC 71.4 (0.88) 81.9 (0.32)
Outgoing call set 86.5 (0.75) 89.5 (0.74)
Outgoing call setISC 85.3 (0.69) 89.5 (0.74)
Signature 76.4 (0.50) 87.4 (0.59)
SignatureISC 76.4 (0.50) 87.2 (0.59)
Function body diff 86.2 (0.65) 95.1 (0.60)
Complexity metrics 46.3 (0.84) 85.7 (0.84)
MOSS 79.5 (0.66) 83.3 (0.63)
CCFinder 61.3 (0.24) 75.1 (0.19)

5.3. Deciding Threshold Value

To find the best threshold value, we varied the
threshold value from 0.1 to 0.99 (steps of 0.01) and
observed agreements between OracleSet and the result
using Equation 5 (the resulting set of predicted origin
relationship pairs is called PredSet). We found the best
threshold value to be 0.6 for Apache2 and 0.52 for
Subversion.

6. Validation
In this section we validate our algorithm using the

OracleSet described in Section 5. First we compute the

weights and threshold values for two projects, Subversion
and Apache2. We then compute our algorithm’s accuracy.
Second, we divide two project revisions into three
periods: train, test A, and test B periods. We train weights
and threshold value in the train period and apply trained
weights and threshold to the test A and test B periods.
Finally, we combine all possible similarity factors and
compute accuracy of combined factors see if adding more
factors leads to improved results.

6.1. Algorithm Accuracy
We showed the process of deciding the weights of

each factors and threshold values using OracleSet. We
computed the total similarity of origin candidates using
weights in Table 6. Using the threshold value from
Section 5.3, we determined if the candidates have an
origin relationship; all candidates with origin
relationships are placed in a set called PredSet. We
compared the PredSet and OracleSet and computed the
accuracy of the origin relationships of the two projects, as
shown in Table 7.

Table 7. PredSet accuracy of the two projects.

Projects Apache2 SVN
Accuracy 87.8 91.1

Note that the accuracy of PredSet is better than the

average accuracy among human judges shown in Table 4
(84.8% for Apache2 and 89.1% for Subversion)

6.2. Applying Trained Weights and Threshold

We wondered if the trained weights and threshold
value from one project and period are reusable for the
other project periods. To determine this we first divided
two project periods into three periods, as shown in Figure
2.

Figure 2. Training, test A, and test B periods

Then we computed weights and threshold using the

data in the training period following the process described
in Section 5, with results in Table 8.

The best threshold value for the trained period is 0.47.
Using the weights and threshold value, we applied the
algorithm to test A and test B periods. The accuracy of
each period is shown in Table 9. The accuracy of the
training period is lower than that of the test A. One of the
reasons is that the first couple of revisions of Subversion

project have renaming changes with lots of function
inside changing.

Table 8. Trained weights using data in the training
period

Factor Accuracy/Weight from
the train period

Function name 86.7
Incoming call set 78.3
Outgoing call set 82.3
Signature 80.5
Function body diff 90.2
Complexity metrics 82.1
MOSS 73.0
CCFinder 67.4

Table 9. Accuracy of each period using the trained
weights and threshold value from the training period.

Period Training Test A Test B
Accuracy 83.7 96.8 86.5

The accuracies using trained weights and threshold

values in the train period is similar to the accuracies using
their own trained weights and threshold value (See Table
7). The results strongly suggest that trained values from
one period are reusable for other periods and projects.
While the weights hold well for these two projects, we
ideally would like to test against other projects to see if
these high accuracies are consistent.

6.3. Using More/Less Factors

In Section 4 we identified many possible factors to
decide origin relationships. We wanted to determine
whether or not adding more factors would lead to
improved accuracy.

Since it is not feasible to get models of each factor, we
tested the combinations of all possible factors using the
brute force method. For example we combine all possible
combinations of factors and computed the accuracy of
each combination using different threshold values (from
0.1 to 0.99). We applied the method for the Apache2
project. The top 10 accuracy combinations and total
similarity are shown in Table 10. Note that using all
factors defined in Equation 4 does not have the best
accuracy (ranked 50).

The top accuracy is much higher than total similarity.
Note that the top accuracy combination includes the ‘com
factor’, one of the insignificance factors. We need further
research to find general factor combination for the best
accuracy, but this result strongly recommends using
carefully selected factor combinations leads to improved
accuracy.

8 / 31 / 2001 – 3 / 13 / 2002 (1500 revisions)
Training Period

3 / 13 / 2002 – 10 / 25 / 2002 (2000 revisions)
Test A Period

6 / 19 / 1999 – 10 / 9 / 2001 (2000 revisions)
Test B Period

SVN

Apache 2

Table 10. Top accuracy combinations of the Apache2
project.

rank Factor combination Accuracy
1 body, name, sig, com 91.0
2 body, ccf, name, sig, com 90.5
3 body, name, out, sig 90.4
4 body, ccf, in, name, sig, com 90.3
5 body, name, out 90.2
6 body, name 90.2
7 body, name, out, sig, com 90.1
8 name, out, sig, com 90.0
9 body, ccf, in, name, out, sig, com 90.0
10 body, ccf, in, name 89.9
50 Total similarity 87.8

7. Applications of Origin Relationship
Detection

Any software evolution analysis at the function level
can apply our algorithm to provide more accurate analysis
results. We highlight some applications including:
instability analysis, signature change analysis, and code
clone detection analysis.

In prior research, we performed evolution analysis of
function signature by observing signature changes of each
function across a project history [16]. To follow the same
function throughout the revision history we used function
names as identifiers. But when a function name changed,
we lost the previous signature change histories of the
function. Origin relationship detection helps to link the
same function even after function names change.

Instability analysis [5] is a technique to identify
dependence-related maintenance intensive code regions
by observing project history. Various metrics can be used
to indicate such regions including number of changes and
number of authors of an entity. If we were to perform
instability analysis at the function level without origin
relationship detection, when unstable functions changed
their name, we would lose the ability to track the
instability across the name change.

For code clone evolution research such as [15],
identifying origin relationships is also important. To see
the evolution of code clone areas, it is necessary map
entities over revisions. The physical location of code
clones is likely to change over revisions. Using function
level code clone areas with origin relationship detection
can be used to observe code clone evolution.

8. Threats to Validity

The results presented in this paper are based on
selected revision periods of two open source projects.
Other open source or commercial software projects may
not have the same properties we presented here. We only
analyzed projects written in the C programming language;

software written in other programming languages may
have different origin relationship patterns. Some open
source projects have revisions that cannot be compiled or
contain syntactically invalid source code. In these cases,
we had to guess the function boundary or skip the invalid
parts of the code. We ignored ‘#ifdef’ statements because
we cannot determine the real definition value. Ignoring
‘#ifdef’ caused us to add some extra signatures, which
will not be compiled in the real program. Our validations
are based on an OracleSet derived from the opinions of
10 human judges. The decisions of human judges are
subjective and our threshold (70%) for inter-rater
agreement many not be causative enough.

9. Conclusions and Future Work

We proposed an automatic algorithm to find origin
relationships between revisions using various similarity
factors including function name, incoming call set,
outgoing call set, signature, body, MOSS, and CCFinder.
10 human judges manually identified origin relationships.
If more than 70% of the judges agree on an origin
relationship, we assume it is a valid origin relationship.
Based on human judgments, we made an OracleSet to
validate our algorithm. We performed significance
analysis of each factor and used the significance
indication as weights for each factor. Based on the
significance of factors we identified dominant similarity
factors such as text diff, outgoing call set, and function
name. In contrast, the complexity metrics and CCFinder
similarity factors are insignificant.

We validated the accuracy of the algorithm using two
projects: Subversion and Apache2. We found our
algorithm has 87.8% and 91.1% accuracy for Apache2
and Subversion respectively. Compared to the average
accuracy among human judges (89.1% for Subversion
and 84.8% for Apache2), our algorithm accuracy is better
than the average accuracy among human judges. Second
we validate how the trained weights of similarity factors
and the threshold value can be reused for other periods
and projects. We conclude that the trained weights and
threshold value from one period are reusable in others.
Finally, we validate whether adding more factors leads to
improved accuracy using brute force combinations of
similarity factors. We found that using more factors does
not improve the accuracy. Careful selection of factor
combinations can improve accuracy. It is also possible to
reduce the computational cost of determining origin pairs
without appreciable loss of accuracy. Finding general
factor combinations remains as future work.

For future work we need to investigate some machine
learning techniques such as regression training to find
models and weights of factors.

We applied our algorithm to projects written in C.
Some programming languages such as Java, and C++
support function name overriding. One revision of source

code can have the same function (method) names. If some
of the same function names evolve by changing names or
signatures, it is challenging to identify the same entities
between revisions. Similarity factors we listed here may
not work very well in programming languages which
support function name overriding. Applying our
algorithm and finding suitable factors for such languages
remains future work.

10. Acknowledgements

Thanks go to our ten human judges. We thank Mark
Slater and the anonymous reviewers for their valuable
feedback on this paper. We especially thank the Storage
Systems Research Center at UCSC for allowing the use of
their cluster for our research. Work on this project is
supported by NSF Grant CCR-01234603, and a
Cooperative Agreement with NASA Ames Research
Center.

11. References
[1] A. Aiken, "A System for Detecting Software

Plagiarism," 2005
http://www.cs.berkeley.edu/~aiken/moss.html

[2] Apache Foundation, "The Apache HTTPD Server
Project," 2003 http://httpd.apache.org/

[3] I. D. Baxter, A. Yahin, L. Moura, M. Sant'Anna, and L.
Bier, "Clone Detection Using Abstract Syntax Trees,"
Proc. the International Conference on Software
Maintenance, Bethesda, Maryland, 1998, pp. 368.

[4] B. Behlendorf, C. M. Pilato, G. Stein, K. Fogel, K.
Hancock, and B. Collins-Sussman, "Subversion Project
Homepage," 2005 http://subversion.tigris.org/

[5] J. Bevan and J. E. James Whitehead, "Identification of
Software Instabilities," Proc. 2003 Working Conference
on Reverse Engineering (WCRE 2003), Victoria,
Canada., Nov. 13-16, 2003, pp. 134-145.

[6] E. Burd and J. Bailey, "Evaluating Clone Detection
Tools for Use during Preventative Maintenance," Proc.
the Second IEEE Intl. Workshop on Source Code
Analysis and Manipulation (SCAM'02), 2002, pp. 36-43.

[7] R. E. Courtney and D. A. Gustafson, "Shotgun
Correlations in Software Measures," Software
Engineering Journal, vol. 8, no. 1, pp. 5-13, 1992.

[8] S. h. Ducasse, M. Rieger, and S. Demeyer, "A
Language Independent Approach for Detecting
Duplicated Code," Proc. the IEEE International
Conference on Software Maintenance, 1999, pp. 109.

[9] M. Fischer, M. Pinzger, and H. Gall, "Populating a
Release History Database from Version Control and
Bug Tracking Systems," Proc. 2003 Int'l Conference on
Software Maintenance (ICSM'03), September, 2003, pp.
23-32.

[10] GNU, "Diffutils Project Home Page," 2003
http://www.gnu.org/software/diffutils/diffutils.html

[11] M. Godfrey and Q. Tu, "Tracking Structural Evolution
using Origin Analysis," Proc. the International

Workshop on Principles of Software Evolution, Orlando,
Florida, 2002, pp. 117 - 119.

[12] M. W. Godfrey and L. Zou, "Using Origin Analysis to
Detect Merging and Splitting of Source Code Entities,"
IEEE Trans. on Software Engineering, vol. 31, no. 2,
pp. 166- 181, 2005.

[13] D. S. Hirschberg, "Algorithms for the Longest
Common Subsequence Problem," Journal of the ACM
(JACM), vol. 24, no. 4, pp. 664 - 675, 1977.

[14] T. Kamiya, S. Kusumoto, and K. Inoue, "CCFinder: a
Multilinguistic Token-based Code Clone Detection
System for Large Scale Source Code," IEEE
Transactions on Software Engineering, vol. 28, no. 7,
pp. 654 - 670, 2002.

[15] M. Kim and D. Notkin, "Using a Clone Genealogy
Extractor for Understanding and Supporting Evolution
of Code Clones," Proc. Int'l Workshop on Mining
Software Repositories (MSR 2005), Saint Louis,
Missouri, USA, May 17, 2005, pp. 17-21.

[16] S. Kim, E. J. Whitehead, Jr., and J. Bevan, "Analysis of
Signature Change Patterns," Proc. Int'l Workshop on
Mining Software Repositories (MSR 2005), Saint Louis,
Missouri, USA, May 17, 2005, pp. 64-68.

[17] K. Kontogiannis, "Evaluation Experiments on the
Detection of Programming Patterns Using Software
Metrics," Proc. the Fourth Working Conference on
Reverse Engineering (WCRE '97), 1997, pp. 44.

[18] G. Malpohl, J. J. Hunt, and W. F. Tichy, "Renaming
Detection," Proc. The Fifteenth IEEE International
Conference on Automated Software Engineering
(ASE'00), Grenoble, France, September 11 - 15, 2000,
pp. 73.

[19] S. Schleimer, D. Wilderson, and A. Aiken,
"Winnowing: Local algorithms for document
fingerprinting," Proc. the ACM SIGMOD International
Conference on Management of Data, San Diego,
California, 2003, pp. 76 - 85.

[20] Scientific Toolworks, "Maintenance, Understanding,
Metrics and Documentation Tools for Ada, C, C++,
Java, and FORTRAN," 2005 http://www.scitools.com/

[21] J. Sliwerski, T. Zimmermann, and A. Zeller, "When do
changes induce fixes?" Proc. Int'l Workshop on Mining
Software Repositories (MSR 2005), Saint Louis,
Missouri, USA, May 17, 2005, pp. 24-28.

[22] Q. Tu and M. W. Godfrey, "An Integrated Approach
for Studying Architectural Evolution," Proc. Intl.
Workshop on Program Comprehension (IWPC 2002),
Paris, June, 2002, pp. 127.

[23] A. Wallenstein, N. Jyoti, J. Li, Y. Yang, and A.
Lakhotia, "Problems Creating Task-relevant Clone
Detection Reference Data," Proc. 2003 Working
Conference on Reverse Engineering (WCRE 2003),
Victoria, Canada., Nov. 13-16, 2003, pp. 285.

