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Abstract 
 

It is a common understanding that identifying the same 
entity such as module, file, and function between revisions 
is important for software evolution related analysis. Most 
software evolution researchers use entity names, such as 
file names and function names, as entity identifiers based 
on the assumption that each entity is uniquely identifiable 
by its name. Unfortunately names change over time. In 
this paper we propose an automated algorithm that 
identifies entity mapping at the function level across 
revisions even when an entity’s name changes in the new 
revision. This algorithm is based on computing function 
similarities. We introduce eight similarity factors to 
determine if a function is renamed from a function. To 
find out which similarity factors are dominant, a 
significance analysis is performed on each factor. To 
validate our algorithm and for factor significance 
analysis, ten human judges manually identified renamed 
entities across revisions for two open source projects: 
Subversion and Apache2. Using the manually identified 
result set we trained weights for each similarity factor 
and measured the accuracy of our algorithm. We 
computed the accuracies among human judges. We found 
our algorithm’s accuracy is better than the average 
accuracy among human judges. We also show that 
trained weights for similarity factors from one period in 
one project are reusable for other periods and/or other 
projects. Finally we combined all possible factor 
combinations and computed the accuracy of each 
combination. We found that adding more factors does not 
necessarily improve the accuracy of origin detection.  
 
1. Introduction 

When we analyze the evolution of procedural 
software, we frequently gather metrics about individual 
functions. The analysis process must associate each 
metric with its function and revision, usually 
accomplished by recording the function name and a 
revision identifier. Unfortunately, function names change, 
leading to breaks in the recorded sequence of metric 
values. Ideally we would like to track these function name 
changes, a process called entity mapping. If a particular 
entity maps across revisions, we say the successive 
revisions of the entity have an origin relationship. 

We define an origin relationship as follows, based on 
[12]. 
 
Definition. Origin Relationship 
Let r1 and r2 be consecutive revisions of a project history. 
A deleted function is one that disappears between r1 and 
r2, while a new function is one that appears between r1 
and r2. Let D={d1, d2, … dn} be a set of deleted functions, 
and A={a1, a2, … an} a set of new functions. The origin 
relationship candidate set is the multiplication of the two 
sets: D×A. The maximum number of origin relationships 
between r1 and r2 is the minimum of |D| and |A|. A 
candidate set pair (dx , ay) has an origin relationship iff ay 
is renamed and/or moved from dx.  

 
In this paper, we describe a technique for automatic entity 
mapping of C language software. The basic process is as 
follows:  
1. We extract two consecutive software project 

revisions, r1 and r2, from the project's software 
configuration management repository. 

2. We compute all possible mappings of deleted 
functions to added functions, yielding our candidate 
set of origin relationships. 

3. For each function in the candidate set we gather a set 
of facts and metrics, including its name, 
incoming/outgoing calls, signature, lines of code, and 
a composite complexity metric. For each candidate 
set pair we also determine the text diff, and their 
similarity as computed by CCFinder [14] and MOSS 
[1]. This gives us the raw data needed for computing 
similarity.  

4. We compute an overall similarity between each 
candidate set pair, using a weighted sum of the 
gathered facts, metrics, and similarities. Each pair 
now has a total similarity value that integrates a wide 
range of information about each pair.  

5. We compare each pair's total similarity to a 
threshold value; exceeding the threshold indicates an 
origin relationship. We now know which functions 
have been renamed between r1 and r2.   

 
Using this approach we are able to compute origin 

relationships with 87.8% accuracy for the Apache 2 web 
server [2] and 91.1% accuracy for the Subversion 



configuration management system [4]. We asked 10 
human judges to manually determine origin relationships 
for the same systems, resulting in 84.8% agreement 
across judges for Apache 2 project, and 89.1% agreement 
for Subversion. Hence our approach is capable of 
achieving human level accuracy at this task.  

 
Our approach raises many questions:  
How do you assess the accuracy of an automatic 

entity mapping algorithm? Typically, computed origin 
relationships are compared against known good ones; 
how do you find a known good set of origin pairs? We 
address this by asking human judges to manually 
determine origin pairs. This is more complex than it 
seems. Wallenstein et al. have shown that human judges 
never completely agree in their assessments [23].  

How do you determine the weights used to combine 
individual facts, metrics, and similarity values? 
Intuitively we want to heavily weight individual factors 
that by themselves are good predictors of origin 
relationships.  

Does combining a wide range of factors result in 
the most accurate determinination of origin 
relationships? If several of the factors are tightly 
correlated, it may be that some of the factors can be 
tossed out and still yield an accurate origin assessment. 
Since there is a computational expense to determining 
each factor, eliminating factors is a plus. 

Does one set of factor weightings produce accurate 
results for multiple projects? Ideally our factor 
weightings will result in a similarity model that is 
applicable to many projects. Alternately, it might be the 
case that factor weightings are inherently project-specific.   

We address these questions in the remainder of the 
paper: In Section 2, we discuss related work on origin 
analysis, renaming detection, and code clone detection 
methods. We describe each similarity factor in Section 3 
and propose our automated origin relationship detection 
algorithm in Section 4. We describe our experimental 
process in Section 5 and validate our algorithm in Section 
6. We briefly discuss applications for origin relationship 
detection in Section 7. We discuss the limitations of our 
analysis in Section 8, and conclude in Section 9.  
 
2. Related Work 

In this section we discuss previous work on renaming 
detection, origin analysis, and code clone detection 
algorithms. 
 
2.1. Renaming Detection 

Malpohl et al. proposed an algorithm that 
automatically detects renamed identifiers between pairs of 
program modules [18]. Their rename detection algorithm 
focuses on variable names rather than function names. 

Similar to our algorithm, they use context information 
such as the relation of the renamed variable to other 
variables, declaration similarity, implementation 
similarity, and reference similarity. However, the 
granularity of the renaming detection target is different. 
Here we are focusing on function name changes to map 
entities over multiple revisions, while Malpohl et al. focus 
on variable name changes to help merge and diff tools. 
 
2.2. Origin Analysis 

Godfrey et al. proposed an origin analysis algorithm to 
find renamed entities over revisions or releases, and our 
work is inspired by their origin analysis [12, 22]. They 
were the first to identify the importance of this problem 
for evolution analysis. Their origin analysis algorithm 
uses four matchers: name matcher, declaration matcher, 
metrics matcher, and call relation matcher. Based on the 
matchers, the algorithm provides a list of the top five 
origin candidates and requires a human to pick the best 
one of the five. We reused the matchers for our algorithm 
with a different similarity measurement. 

Godfrey et al. provide expression matchers that enable 
users to decide combinations or threshold values for each 
matcher. However, they did not perform a significance 
analysis on each matcher to figure out which matchers are 
more or less important, and determine better 
combinations or threshold values. They also did not 
provide the accuracy of their algorithm, and their analysis 
results rely on only one human judge. Our work extends 
their work by focusing on accuracy comparison, 
significance analysis on similarity factors, and 
comparison of renaming behaviors of different projects 
and periods. 
 
2.3. Code Clone Detection 

The goal of code clone detection is to find similar or 
identical code fragments in program source code. The 
clone detection techniques can be used in software 
maintenance, software refactoring, and software evolution 
analysis. In our research, code clone detection is used to 
assist origin relationship detection across revisions, i.e. 
identifying a particular function in a prior revision. The 
code clone detection problem has been intensively studied 
in recent years, and many clone detection techniques have 
been introduced. 

String matching is the most straightforward way to 
compare two text fragments.  Linux/UNIX diff [10] is a 
tool usually used to compute the text difference of two 
files based on line string matching. RCS and CVS use diff 
to compute the delta between two revisions of a file. Diff 
calculates the longest common subsequence (LCS) of two 
text files at the line level. The LCS indicates the similarity 
of the two files. Some text transformations can be applied 
in diff before text matching is performed, such as removal 
of unnecessary white spaces, ignoring of tab expansion, 



and ignoring blank lines. Duploc [8] is another clone 
detection approach based on string matching, in which 
diff’s transformation technique is used, and a hash 
technique on text lines is leveraged to improve the 
performance of string matching. 

While the clone detection techniques based on 
straightforward string matching are language independent, 
some techniques involve code transformation based on 
specific lexical or parsing analysis for a programming 
language in detecting code clones [3, 14]. CCFinder [14] 
transforms source code using different transformation 
rules for different languages (C, C++ and Java) and 
performs parameter replacement by replacing all 
identifier tokens with ‘$p’ in the program. After that, 
CCFinder performs substring matching on the 
transformed token sequence for clone detection. The 
transformation and parameter replacement in CCFinder 
allows it to find code clones with identifier-renaming and 
code clones with similar syntax structures. The approach 
in CloneDr [3] involves syntactic analysis. For code clone 
detection, CloneDr parses program source code and 
generates its abstract syntax tree. Then it performs sub-
tree matching in the abstract syntax tree to locate code 
clones. 

Beagle [22] detects code clones using statistical data 
for procedures, including lines of code, code nesting, fan-
out, number of global variables accessed and updated, 
number of parameters, number of local variables, and the 
number of input/output statements. Based on these 
statistics, five metrics of the measurement vector are 
computed for each procedure: S-Complexity, D-
Complexity, Cyclomatic complexity, Albrecht, and 
Kafura [17]. The similarity of two procedures is indicated 
by the distance of the Bertillonage measurement vectors 
of these two procedures.  

Instead of using software metrics, MOSS (Measure Of 
Software Similarity) [19] uses text sampling to 
characterize text content. The algorithm in MOSS is 
based on selecting fingerprints of k-grams, which are 
contiguous substrings of length k. Each k-gram is hashed 
and MOSS selects some of these hash values as a 
document’s fingerprints. The more fingerprints shared by 
detection two documents, the more similar they are. 

One of the big differences between code clone 
detection techniques and our work is that code clone 
detection techniques focus on identifying similar code 
areas in one revision without any boundaries of each 
entity while we are trying to find origins of functions 
based on function similarities across revisions. 
 
3. Selecting Similarity Factors 

Our algorithm computes the similarities of two-
function pairs in the origin relationship candidate set to 
determine if they have an origin relationship. We 
introduce eight similarity factors which can be used to 

measure function similarities, shown in Table 1. Each of 
the factors will be discussed in the following sections. 
The requirements of the ideal factor are low computation 
complexity and high accuracy.  

 
Table 1. Similarity Factors 

Factor Name Description 
Function name (name) Function name 
Incoming call set (in) Incoming calls 
Outgoing call set (out) Outgoing calls 
Signature (sig) Return type and arguments 
Function body diff (body) Text difference of function 

body  
Complexity metrics (com) Distance of complexity  

metrics value 
MOSS (moss) Similarity from MOSS 
CCFinder (ccf) Similarity from CCFinder 

 
3.1. Function Name 

When developers change function names, it is often 
the case that the new name is similar to the old one. The 
similarity of function names can be used to check the 
similarity of two functions. This factor’s computation 
complexity is relatively low. Function name similarity can 
be computed using the intersection set count (ISC) or 
longest common sequence [13]  count (LCSC) similarity 
metrics, described in Section 4.  
 
3.2. Incoming Call Set 

It is often the case that even if the function name and 
body change across revisions, the incoming call pattern 
remains the same. This makes the incoming call set a 
good similarity factor for determining the similarity 
between two functions. Computing the incoming call set 
requires parsing the project source code to statically 
determine the call relationships.  
 
3.3. Outgoing call set 

Similar to the incoming call set, a function’s outgoing 
call set can also be used as a similarity measure. 
 
3.4. Signature 

Since most of a function’s signature does not change 
frequently, signature patterns can be a similarity factor in 
deciding the similarity of two functions [16]. Getting and 
comparing signature patterns of functions is relatively 
simple, as a complete parser is not necessary to identify 
function signatures.  
 
3.5. Text diff 

Text diff can be used to check the similarity of two 
functions. In our text diff, we ignore white space 
differences between two lines. Note that text diff 
compares line by line. If there is a single character change 
in a line, it assumes the whole line is different.  



 
3.6. Complexity metrics  

Rather than comparing function bodies or names, 
comparing complexity metrics or the volume of two 
functions can indicate similarity of the two functions, 
acting somewhat as a “fingerprint” for the function [22].  

We used five complexity metrics from ‘Understand for 
C++’ [20]: LOC, cyclomatic complexity, count of 
incoming calls, count of outgoing calls, and maximum 
nesting. Following  [22], we compute distance of the two 
functions’ five metrics values. The distance computation 
is simple, but computing the actual metrics is expensive. 
 
3.7. CCFinder  

CCFinder is a language-dependent code clone 
detection tool for C, C++, COBOL, Java and Lisp [14]. 
CCFinder detects code clones within a file and across 
files. In Burd’s evaluation [6], CCFinder had the best 
recall rate of five code clone detection tools and fine 
clone detection precision. To compare the similarity of 
two functions, we store each function as a file and 
CCFinder reads two files to compute the similarity of the 
files. CCFinder has an option for the minimum token 
length. If the token length of a clone candidate is smaller 
than the minimum token length, CCFinder ignores this 
candidate. The default minimum token length is 30. Since 
there are many functions whose token length is less then 
30, we compute the token length of two functions in 
advance and use the minimum of the two function’s token 
length as CCFinder’s minimum token length option.  
 
3.8. MOSS 

MOSS [1] is a web-based service for plagiarism 
detection. Generally, MOSS is language independent, but 
some language options can be turned on to increase the 
detection accuracy for programs of a specific language.  
Burd el al. [6] evaluated MOSS and four other code clone 
detection tools. It turned out that MOSS had the lowest 
recall rate in finding the code clones, but had a decent 
detection precision. 

 
3.9. Other Possible Similarity Factors  

There are other possible similarity factors we can use 
to determine origin relationships. One is Abstract Syntax 
Tree (AST) shape comparison to determine similarity. 
While we use a line-based diff in our algorithm, AST diff 
provides a software structure comparison, rather than 
detecting lexical differences. Another possible similarity 
factor is suggested by the observation that when a 
function name changes, sometimes the physical location 
of the function in the source file remains unchanged or 
changes minutely. Based on that assumption, we could 
use the physical location of a function such as line 
number or block number in a source code file. 

 
4. Proposed Algorithms 

First we need to compute all of the similarity factors 
for each two function-pair in the origin relationship 
candidate set. Our algorithm evaluates the presence of an 
origin relationship by combining values of similarity 
factors. Some similarity factors, such as MOSS and 
CCFinder, provide their own similarity algorithm. For the 
complexity metrics factor (Section 3.6), we compute the 
distance of the two vectors combining the five metrics 
values. We use the longest common sequence [13]  count 
(LCSC) or the intersection set count (ISC) to compute 
similarities for other factors. 

After computing similarities of each factor, we 
compute the total similarity using a weighted sum of each 
factor. The weights of each factor are also automatically 
computed. 

 
4.1. ISC Similarity Metric 

Factors such as function name, incoming calls, 
outgoing calls, and signatures can be expressed as a set. 
For example, a function name, ‘hello_hunkim’ can be a 
set called an element set: 

{h, e, l, l, o, _, h, u, n, k, i, m}. 
If we have two element sets for a two-function pair in 

the origin relationship candidate set, the similarity of the 
two element sets can be computed using the ISC 
similarity metric. The basic task is to count of the 
intersection of the two sets. The ratio of the intersection 
count decides the similarity of the two sets. The ISC 
similarity metrics is shown in Equation 1. 

 
Equation 1. ISC similarity measurement of two 
factors, A and B 
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ISC Similarity ranges from 0 to 1, where 1 indicates two 
factors are exactly the same. Note that the ISC similarity 
metrics doesn’t consider the order of two sets. Suppose 
we have two element sets:  A={h, e, l, l, o} and B={l, e, o, 
h, l}. The ICS Similarity is 1 while the two function 
names, ‘hello’ and ‘leohl’ are different.  

4.2. LCSC Similarity Metric 
In some cases, we need to consider the order of the 

common part of two sets. For example, in the name 
element set, the order of each character is important in 
determining if two names are similar. The LCSC 
Similarity metric checks the order of elements in the sets. 
Equation 2 defines the LCSC Similarity metrics. LCSC 
Similarity also ranges from 0 to 1, where 1 indicates two 
factors are exactly the same. 



Equation 2. LCSC Similarity measurement of two 
factors, A and B 
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LCSCA-B is the LCSC of A and B, and |A| is the number 
of elements in the set A. 

4.3. Vector Complexity Similarity Metric 
We used the five function complexity metrics values 

listed in Section 3.6 as a similarity factor. To measure the 
similarity of each function, we used the distance between 
vectors of the five values, where each vector is defined as 
V={v1, v2, v3, v4, v5}. If we have two vectors, V and U, 
we can compute the distance of two vectors. Since other 
similarities ranges from 0 to 1, we normalize each 
coordinate value to range from 0 to 1. The similarity of 
two vectors is defined in Equation 3. 

 
Equation 3. Vector Complexity Similarity of two 
vectors, V and U 

5/1

),(),(),(),(),(

||/)(
||1

),(

2
55

2
44

2
33

2
22

2
11

DSSimilarityVector

uvNuvNuvNuvNuvND

AveuvifAveuv
Aveuvif

uvNfunctionNormalize

VU

nnnnn

nnn
nn

−=

++++=

⎩
⎨
⎧

≤−−
>−

=

, where Aven is average value of the n the elements in all 
vectors, V1, V2, …Vn.  

The normalization function normalizes the range of the 
difference of two coordinates from 1 to 0 using average 
value of the nth elements in the vectors. We assume the 
difference of two coordinates is greater than the average 
value, the two coordinates are far enough to be 1. D 
indicates the distance of normalized coordinates, and 
ranges from 0 to 5, where 0 indicates two vectors are 
exactly the same and 5  indicates two vectors are 
different. Finally we compute vector complexity 
similarity which ranges from 0 to 1, where 1 indicates 
two vectors are exactly the same. 
 
4.4. Total Similarity Metric 

After computing each factor’s similarity, the total 
similarity is computed using a weighted sum of each 
factor’s similarity. We believe the significance of each 
factor is different, hence each factor is weighted 
accordingly. Ideally, we would like to select wi that weigh 
the fact similarities to produce the best results. However, 
to judge what is best, we need a set of known good origin 
relationships to act as a correctness oracle, as described in 
Section 5. The total similarity equation is defined below. 

 
 
 

Equation 4. Total similarity of functions A and B 
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 F is the set of facts from Table 1, Si is a similarity 
measurement (from Equation 1 and Equation 2), and wi is 
a weight of each factor’s similarity measurements. 
 
4.5. Threshold Value 

We use a threshold value to determine an origin 
relationship. If the total similarity of two functions is 
greater than the threshold value, we assume there is an 
origin relationship. We have not yet presented how to 
select a reasonable threshold value, since it requires 
judgments against a set of known good origin 
relationships. In the following two sections we first 
address issues involved in developing a set of human 
judged correct origin relationships, and then proceed to 
use them to develop our weights and threshold values. 

 
5. Experiment 

To determine weights for each factor and threshold 
value we need an origin relationship set to compare.  
Common SCM systems such as CVS and Subversion do 
not record renaming of functions. We rely on human 
judges to determine a known good set of origin 
relationship pairs. 10 human judges manually examined 
origin relation candidates and identified origin 
relationships if present. If more than 70% of the judges 
agreed on an origin relationship identification, we assume 
it is a valid origin relationship. Based on the identified 
origin relationship set from human judges, we decide the 
weights of similarity factors and the threshold values.  
 
5.1. Making the Oracle Set 

In this section we describe the process of making the 
known good origin relationship set called OracleSet.  

First, we chose sample projects and revision periods to 
perform manual identification. We used two open source 
projects: the Subversion project from revisions 1–3500, 
representing about 20% of the total Subversion project 
history, and the Apache2 project from revision 1-2000, 
about 20% of the Apache2 project history.  

Ten human judges used a graphical user interface that 
shows origin relationship candidates (two-function pair) 
with function body and the corresponding revision log.  
The change log is very useful for human judges. In 
previous origin analysis related research, change log data 
is not used for the manual decision process [11, 12, 18, 
22]. However, change logs are widely used to map bug 
numbers to code changes [9, 21]. Change logs sometimes 
explicitly describe function renaming. For example, the 
log message for Subversion revision 172 explicitly states 



that function ‘fulltext_string_key’ is renamed from 
‘string_key’. 

What kinds of words in the change log indicate origin 
relationships between functions? We manually observed 
change logs of 3550 revisions of the Subversion project 
and 2000 revisions of Apache2 project and found the 
following origin-relationship-sensitive words. Those 
words are used to identify origin relationships manually. 

 
Table 2. Origin relationship sensitive words. ++ 
indicates the words have strong indication of origin 
relationship. – indicates the words have negative 
indication of origin relationship. 

Indication Words 
++ rename, move, replace, revamp 
+ Update, merge, split 
- Remove, delete, add, new 

 
We created guidelines for human judges. The 

guidelines are based on the understanding of the origin 
relation definition. Human judges also use change logs. If 
any of the strong positive (++) origin relationship 
indication words are used in the change log to describe a 
function in origin relationship candidates, the functions 
have an origin relationship. If any of the negative (-) 
origin relationship indication words are used to describe a 
function, the function is likely either a new function or a 
deleted function. If there is no description of a function in 
the change log, human judges decide the origin 
relationship by examining the semantic behaviors of the 
two functions. If the two functions are doing exactly the 
same thing, we assume the two functions have an origin 
relationship. These guidelines are summarized in Figure 1. 

 
1. Understand the origin relationship Definition. 
2. Examine the change log 

A. A function has an origin relationship if any 
of the strong positive (++) words or their 
synonyms are used to describe functions.  

B. A function has no origin relationship if any 
of negative (-) words or their synonyms are 
used to describe the change to the function 

3. If no decisions in the previous step, examine the 
old and new function bodies  
A. They have an origin relationship if their 

semantic behaviors are the same.  
Figure 1. Origin relationship manual identification 
guidelines 

The third item in the guideline is subjective, but we 
trust the experience and capabilities of our judges. Based 
on the guidelines, 10 judges carefully reviewed the 
revision logs and function pairs, and determined if each 
function pair has an origin relationship. The judging 
process is similar to that used for finding code clone 
detection by human judges in [23]. All human judges 

have strong C programming experience, and are graduate 
students in the computer science department. Two of 
them have experience of extending the Apache2 server, 
which is similar to the examined Subversion project. 

Even though origin relationships are potentially not 
one-to-one, we did not consider function 
merging/splitting cases to simplify the algorithm and 
validation process. Upon inspection of the Subversion 
history log (from revision 1 to 3500), we found only one 
function merge and two function split, which we felt 
comfortable ignoring. When the judges encountered a 
merge/split situation, they chose the most similar function 
among the merged or split functions. After gathering 
results from the judges we compared each human’s 
judgment, as shown in Table 3. As noted in origin 
relation Definition, the maximum number of origin 
relationship for Subversion is 2144 and 1980 for Apache2. 
For example if there are 2 deleted functions and 15 added 
functions between revisions, the maximum number of 
origin relationship is 2 which is the minimum number of  
between numbers of deleted functions and added function. 

 On average, judges took 3 hours and 40 minutes to 
identify 634 origin relationships for Subversion and 1 
hour and 15 minutes to identify 99 origin relationships for 
Apache2. We add an origin relationship to the OracleSet 
if more than 70% of the human judges agree on origin 
relationship.   

 
Table 3. Comparing results from 10 human judges 

Apache2 Subversion 
Judge 
ID # number 

of origins Time number 
of origins Time 

1 92 45m 643 3h 30m 
2 86 1h 628 4h 
3 109 1h 20m 673 4h 30m 
4 104 1h 640 2h 45m 
5 88 1h 470 4h 20m 
6 114 1h 30m 659 5h 
7 104 50m 671 3h 20m 
8 99 1h 647 3h 
9 98 1h 643 3h 30 
10 91 1h 20m 662 3h 40m 
 
 

Equation 5. Agreement/Accuracy from A and B origin 
sets from two judges 
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We define the percentage of agreement/accuracy in 

Equation 5 to compare accuracy of any two origin 
relation sets. Using Equation 5, we computed inter-rater 
agreement to determine the quality of the human 
judgments, reported in Table 4. For example, in 
Subversion project judges #1 and #2 agreed on 579 (91%) 



origin relationships. Consistent with the observations of 
Wallenstein et al.[23], we found low agreement between 
the human judges. The comparatively high agreement of 
the Subversion project is due to its change log which 
indicates function remaining. Since the Apache2 project 
does not provide such change logs, human judges have to 
identify origin relationships based on the semantics of 
function behavior. On average there is 84.8% inter-rater 
agreement for Apache2 and 89.1% for Subversion. To 
make the OracleSet we assume there is an origin 
relationship if 70% or more judges agreed on the origin 
relationship, bringing the total number of origin 
relationships in OracleSet to 626 for Subversion and 91 
for Apache2.  
 
Table 4. Each judge agreement with judge #1 for SVN 
and Apache2 projects. 

 #2 #3 #4 #5 #6 #7 #8 #9 #10
A2 82 86 87 86 84 88 86 84 80 
SVN 91 92 93 71 91 92 89 93 90 

 
5.2. Deciding Factor Weights 

We compare each similarity factor’s output and the 
OracleSet to decide weights for each factor. Table 5 
shows an illustrative sample of six origin candidates, and 
the respective similarity of selected factors, and the 
OracleSet (see Table 1 for factor name abbreviations). 
Our intuition is that if a similarity factor’s output is close 
to the OracleSet, we assume the factor is important. There 
are several ways to decide if two sets of values are close. 
We could determine the error between the two sets or 
compute correlation using Pearson’s correlation equation 
[7].   

 
Table 5. Example similarities of factors and OracleSet. 
Candidates Name Sig CcF Moss OracleSet

1 0.8 0.7 0.9 0.7 1
2 0.2 0.3 0.0 0.0 0
3 0.3 0.2 0.4 0.3 0
4 0.2 0.5 0.0 0.0 0
5 0.7 0.9 0.8 0.9 1
6 0.4 0.8 1.0 1.0 1

  
We use accuracy (defined in Equation 5) between a 

single similarity factor and the OracleSet to decide 
weights of each factor. To obtain the best similarity of a 
similarity factor, we vary the threshold value for the 
factor from 0.1 to 0.9 by steps of 0.01.  

For example, to compute the significance of the name 
factor we vary the threshold value from 0.1 to 0.99. 
During these processes, suppose the threshold for the 
name factor is currently 0.5. If the output value of the 
name factor is greater than 0.5, it predicts it has an origin 
relationship, so it is set to 1. The prediction set of the 
name factor for the six candidates in Table 5 is {1, 0, 0, 0, 
1, 0}. By comparing the prediction set and the OracleSet, 

we compute the accuracy of name factor which is 0.8 
(2/((2+3)/2)*100). 

The accuracy of each similarity factor indicates the 
significance of each factor. The accuracies of each factor 
are shown in Table 6 with corresponding threshold values. 
Note that the threshold values yielding the best accuracy 
for each factor may vary. The ISC sub text indicates we 
used ISC similarity metrics (Equation 1) to compute the 
factor similarity. The default is using LCSC similarity 
metrics (Equation 2) excluding complexity metrics, 
MOSS, and CCFinder. The accuracy of each similarity 
factor indicates the significance. The function body diff, 
outgoing call set, and function name factors are the most 
significant factors for deciding origin relationships. In 
contrast, complexity metrics and CCFinder are less 
significant factors.  

The weights of each similarity factor are decided by 
the accuracy of the factor. The basic idea is that if a factor 
leads to increased accuracy, the factor contributes more to 
the total similarity. Note that all similarity factors using 
ISC and LCSC similarity equations in Equation 1 and 
Equation 2 are similar. We excluded all ISC similarity in 
the rest of experiments. 
 
Table 6. Accuracy and weights of each factor of two 
projects, Apache2 and SVN. Values in parenthesis 
indicate the threshold value of each similarity factor. 

Similarity Factor Apache2 
Weight 

Subversion 
Weight 

Function name 78.1 (0.72) 90.6 (0.68)
Function nameISC 77.4 (0.74) 86.0 (0.68)
Incoming call set  71.4 (0.88) 81.9 (0.32)
Incoming call setISC 71.4 (0.88) 81.9 (0.32)
Outgoing call set 86.5 (0.75) 89.5 (0.74)
Outgoing call setISC 85.3 (0.69) 89.5 (0.74)
Signature  76.4 (0.50) 87.4 (0.59)
SignatureISC 76.4 (0.50) 87.2 (0.59)
Function body diff 86.2 (0.65) 95.1 (0.60)
Complexity metrics 46.3 (0.84) 85.7 (0.84)
MOSS 79.5 (0.66) 83.3 (0.63)
CCFinder 61.3 (0.24) 75.1 (0.19)

 
5.3. Deciding Threshold Value 

To find the best threshold value, we varied the 
threshold value from 0.1 to 0.99 (steps of 0.01) and 
observed agreements between OracleSet and the result 
using Equation 5 (the resulting set of predicted origin 
relationship pairs is called PredSet). We found the best 
threshold value to be 0.6 for Apache2 and 0.52 for 
Subversion.  

6. Validation 
In this section we validate our algorithm using the 

OracleSet described in Section 5. First we compute the 



weights and threshold values for two projects, Subversion 
and Apache2. We then compute our algorithm’s accuracy. 
Second, we divide two project revisions into three 
periods: train, test A, and test B periods. We train weights 
and threshold value in the train period and apply trained 
weights and threshold to the test A and test B periods. 
Finally, we combine all possible similarity factors and 
compute accuracy of combined factors see if adding more 
factors leads to improved results. 

6.1. Algorithm Accuracy 
We showed the process of deciding the weights of 

each factors and threshold values using OracleSet. We 
computed the total similarity of origin candidates using 
weights in Table 6. Using the threshold value from 
Section 5.3, we determined if the candidates have an 
origin relationship; all candidates with origin 
relationships are placed in a set called PredSet. We 
compared the PredSet and OracleSet and computed the 
accuracy of the origin relationships of the two projects, as 
shown in Table 7. 
 
Table 7. PredSet accuracy of the two projects. 

Projects Apache2 SVN 
Accuracy 87.8 91.1 

 
Note that the accuracy of PredSet is better than the 

average accuracy among human judges shown in Table 4 
(84.8% for Apache2 and 89.1% for Subversion) 

 
6.2. Applying Trained Weights and Threshold  

We wondered if the trained weights and threshold 
value from one project and period are reusable for the 
other project periods. To determine this we first divided 
two project periods into three periods, as shown in Figure 
2. 

 

 
Figure 2. Training, test A, and test B periods 

 
Then we computed weights and threshold using the 

data in the training period following the process described 
in Section 5, with results in Table 8.  

The best threshold value for the trained period is 0.47. 
Using the weights and threshold value, we applied the 
algorithm to test A and test B periods. The accuracy of 
each period is shown in Table 9. The accuracy of the 
training period is lower than that of the test A. One of the 
reasons is that the first couple of revisions of Subversion 

project have renaming changes with lots of function 
inside changing.  

 
Table 8. Trained weights using data in the training 
period  

Factor Accuracy/Weight from 
the train period 

Function name 86.7
Incoming call set  78.3
Outgoing call set 82.3
Signature  80.5
Function body diff 90.2
Complexity metrics 82.1
MOSS 73.0
CCFinder 67.4

 
Table 9. Accuracy of each period using the trained 
weights and threshold value from the training period. 

Period Training Test A Test B 
Accuracy 83.7 96.8 86.5 

 
The accuracies using trained weights and threshold 

values in the train period is similar to the accuracies using 
their own trained weights and threshold value (See Table 
7). The results strongly suggest that trained values from 
one period are reusable for other periods and projects. 
While the weights hold well for these two projects, we 
ideally would like to test against other projects to see if 
these high accuracies are consistent.  

 
6.3. Using More/Less Factors 

In Section 4 we identified many possible factors to 
decide origin relationships. We wanted to determine 
whether or not adding more factors would lead to 
improved accuracy.  

Since it is not feasible to get models of each factor, we 
tested the combinations of all possible factors using the 
brute force method. For example we combine all possible 
combinations of factors and computed the accuracy of 
each combination using different threshold values (from 
0.1 to 0.99). We applied the method for the Apache2 
project. The top 10 accuracy combinations and total 
similarity are shown in Table 10. Note that using all 
factors defined in Equation 4 does not have the best 
accuracy (ranked 50).  

The top accuracy is much higher than total similarity. 
Note that the top accuracy combination includes the ‘com 
factor’, one of the insignificance factors. We need further 
research to find general factor combination for the best 
accuracy, but this result strongly recommends using 
carefully selected factor combinations leads to improved 
accuracy. 

 

8 / 31 / 2001 – 3 / 13 / 2002  ( 1500  revisions ) 
Training Period 

3 / 13 / 2002 – 10 / 25 / 2002  ( 2000 revisions)
Test A Period 

6 / 19 / 1999 – 10 / 9 / 2001  ( 2000  revisions ) 
Test B Period 

SVN 

Apache 2 



Table 10. Top accuracy combinations of the Apache2 
project. 

rank Factor combination Accuracy
1 body, name, sig, com 91.0 
2 body, ccf, name, sig, com 90.5 
3 body, name, out, sig 90.4 
4 body, ccf, in, name, sig, com  90.3 
5 body, name, out 90.2 
6 body, name 90.2 
7 body, name, out, sig, com 90.1 
8 name, out, sig, com 90.0 
9 body, ccf, in, name, out, sig, com 90.0 
10 body, ccf, in, name 89.9 
50 Total similarity 87.8 

 
7. Applications of Origin Relationship 
Detection 

Any software evolution analysis at the function level 
can apply our algorithm to provide more accurate analysis 
results. We highlight some applications including: 
instability analysis, signature change analysis, and code 
clone detection analysis.  

In prior research, we performed evolution analysis of 
function signature by observing signature changes of each 
function across a project history [16]. To follow the same 
function throughout the revision history we used function 
names as identifiers. But when a function name changed, 
we lost the previous signature change histories of the 
function. Origin relationship detection helps to link the 
same function even after function names change. 

Instability analysis [5] is a technique to identify 
dependence-related maintenance intensive code regions 
by observing project history. Various metrics can be used 
to indicate such regions including number of changes and 
number of authors of an entity. If we were to perform 
instability analysis at the function level without origin 
relationship detection, when unstable functions changed 
their name, we would lose the ability to track the 
instability across the name change. 

For code clone evolution research such as [15], 
identifying origin relationships is also important. To see 
the evolution of code clone areas, it is necessary map 
entities over revisions. The physical location of code 
clones is likely to change over revisions.  Using function 
level code clone areas with origin relationship detection 
can be used to observe code clone evolution. 

 
8. Threats to Validity 

The results presented in this paper are based on 
selected revision periods of two open source projects. 
Other open source or commercial software projects may 
not have the same properties we presented here. We only 
analyzed projects written in the C programming language; 

software written in other programming languages may 
have different origin relationship patterns. Some open 
source projects have revisions that cannot be compiled or 
contain syntactically invalid source code. In these cases, 
we had to guess the function boundary or skip the invalid 
parts of the code. We ignored ‘#ifdef’ statements because 
we cannot determine the real definition value. Ignoring 
‘#ifdef’ caused us to add some extra signatures, which 
will not be compiled in the real program. Our validations 
are based on an OracleSet derived from the opinions of 
10 human judges. The decisions of human judges are 
subjective and our threshold (70%) for inter-rater 
agreement many not be causative enough. 
 
9. Conclusions and Future Work 

We proposed an automatic algorithm to find origin 
relationships between revisions using various similarity 
factors including function name, incoming call set, 
outgoing call set, signature, body, MOSS, and CCFinder. 
10 human judges manually identified origin relationships. 
If more than 70% of the judges agree on an origin 
relationship, we assume it is a valid origin relationship. 
Based on human judgments, we made an OracleSet to 
validate our algorithm. We performed significance 
analysis of each factor and used the significance 
indication as weights for each factor. Based on the 
significance of factors we identified dominant similarity 
factors such as text diff, outgoing call set, and function 
name. In contrast, the complexity metrics and CCFinder 
similarity factors are insignificant.    

We validated the accuracy of the algorithm using two 
projects: Subversion and Apache2. We found our 
algorithm has 87.8% and 91.1% accuracy for Apache2 
and Subversion respectively. Compared to the average 
accuracy among human judges (89.1% for Subversion 
and 84.8% for Apache2), our algorithm accuracy is better 
than the average accuracy among human judges. Second 
we validate how the trained weights of similarity factors 
and the threshold value can be reused for other periods 
and projects. We conclude that the trained weights and 
threshold value from one period are reusable in others. 
Finally, we validate whether adding more factors leads to 
improved accuracy using brute force combinations of 
similarity factors. We found that using more factors does 
not improve the accuracy. Careful selection of factor 
combinations can improve accuracy. It is also possible to 
reduce the computational cost of determining origin pairs 
without appreciable loss of accuracy. Finding general 
factor combinations remains as future work.  

For future work we need to investigate some machine 
learning techniques such as regression training to find 
models and weights of factors. 

We applied our algorithm to projects written in C. 
Some programming languages such as Java, and C++ 
support function name overriding. One revision of source 



code can have the same function (method) names. If some 
of the same function names evolve by changing names or 
signatures, it is challenging to identify the same entities 
between revisions. Similarity factors we listed here may 
not work very well in programming languages which 
support function name overriding. Applying our 
algorithm and finding suitable factors for such languages 
remains future work. 
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