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ABSTRACT 
Software continually changes due to performance improvements, 
new requirements, bug fixes, and adaptation to a changing 
operational environment. Common changes include modifications 
to data definitions, control flow, method/function signatures, and 
class/file relationships. Signature changes are notable because 
they require changes at all sites calling the modified function, and 
hence as a class they have more impact than other change kinds. 

We performed signature change analysis over software project 
histories to reveal multiple properties of signature changes, 
including their kind, frequency, and evolution patterns. These 
signature properties can be used to alleviate the impact of 
signature changes. In this paper we introduce a taxonomy of 
signature change kinds to categorize observed changes. We report 
multiple properties of signature changes based on an analysis of 
eight prominent open source projects including the Apache HTTP 
server, GCC, and Linux 2.5 kernel. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – Product metrics, K.6.3 
[Management of Computing and Information Systems]: 
Software Management – Software maintenance 

General Terms 
Measurement, Experimentation 

Keywords 
Software Evolution, Signature Change Patterns, Software 
Evolution Path 

1. INTRODUCTION 
Software continually changes due to performance improvements, 
new requirements, bug fixes, and adaptation to a changing 
operational environment [1]. Software changes include function 
body modification, local variable renaming, moving functions 
from one file to another, and function signature changes [2]. 
Among these changes, function signature changes have a 
significant impact on parts of the source code that use the changed 
functions. Most signature changes cause a signature mismatch 
problem. Understanding the character and evolution patterns of 
function signature changes is important to researchers concerned 
with alleviating the impact of signature changes. 

Others have observed code changes, though none have examined 
signature changes at the same level of detail. Kung et al. identified 
kinds of code changes [2] and  Counsell et al. discussed the trends 
of changes in Java code [3]. Both of them identified large 
granularity change kinds, such as method body changes, method 
addition, method deletion and whether the signature changed. 
Their categorization of changes is useful for understanding 
software changes in overview. Our analysis of signature changes 

is motivated by the goal of eventually providing automated 
support for fixing signature mismatches, and for this we need a 
very fine-grain understanding and characterization of signature 
changes. Previous work did not examine signature changes at this 
level of detail, being concerned only with whether the signature 
did, or did not, change, but not what kind of change. 

We focus on fine-grain changes in function signatures, 
categorizing them based on whether they increase, decrease, or do 
not modify the data flow between caller and callee. Within these 
broad categories, change kinds are further refined. We show the 
properties of function signature change patterns by answering the 
following research questions: How often do signatures change? 
What are the common signature change kinds? How often does 
each kind appear? Do they have a common evolution pattern? 

The answers, along with analysis of the results, can be used to 
predict future signature changes, provide automatic change 
accommodation algorithms, develop glue code generators, or 
develop refactoring algorithms.  

We analyzed eight prominent open source projects listed in Table 
1. These eight open source projects are written in the C 
programming language. For our analysis, we used Kenyon, a data 
extraction, preprocessing, and storage backend designed to 
facilitate software evolution research [4]. Using Kenyon, we 
checked out all revisions or copied all releases of source code 
from each project, and extracted function signatures. We grouped 
signatures by function name, and observed the changes over 
revisions or releases to find properties of signature changes. We 
implemented an automatic signature change kind identification 
tool, but some change patterns are not automatically identifiable, 
such as concept splitting and merging. We also compared the 
number of signature changes over all functions to find the 
frequency of each signature change kind. Finally we looked for 
sequence patterns in the common evolution paths of function 
signature changes.  

The remaining sections of the paper are as follows: In Section 2, 
we describe our analysis process with detailed information from 
the open source projects we analyzed. Sections 3, 4, 5, and 6 
provide answers to our research questions. We discuss the 
limitations of our analysis in Section 7, and conclude in Section 8.  

2. ANALYSIS PROCESSES 
We analyzed eight open source projects, listed in Table 1, using 
the Kenyon system. Kenyon checks out all revisions from a SCM 
repository and invokes a fact extractor we implemented to extract 
function signatures. The extracted signatures are grouped by 
function names. The grouped signatures are ordered by revisions 
and stored in a signature change history file.  



Table 1. Open source projects we analyzed. LOC indicates number of lines in .h and .c source files, including comments. The 
period shows the project history period for projects for which we directly accessed the SCM repository, otherwise we list release 

numbers. The number of revisions indicates the number of revisions we extracted or the number of releases we analyzed. 

Project Software type LOC SCM Period/Releases # of revisions/releases 
Apache Portable Runtime (APR) Portable C library 72,630 Subversion Jan 1999 ~ Jan 2005 5832 revisions 
Apache HTTP 1.3 (Apache 1.3) HTTP server 116,393 Subversion Jan 1996 ~ Jan 2005 7508 revisions 
Apache HTTP 2.0 (Apache 2) HTTP server modules 104,417 CVS Jul 1999 ~ Aug 2003 3877 revisions 
Subversion SCM software 183,740 Subversion Aug 2001 ~ Feb 2005 5886 revisions 
CVS SCM software 62,415 CVS Dec 1994 ~ Sep 2003 2873 revisions 
Linux Kernel 2.5 (Linux) Linux OS 5,140,625 N/A 2.5.1 ~ 2.5.75 75 releases 
GCC C/C++ compiler 506,931 N/A 1.35, 1.36, …, 2.7.2 15 releases 
Sendmail SMTP server 127,733 N/A 8.7.6, 8.8.3,  …, 8.13.3 37 releases 

 
For the projects we analyzed, the revision history was stored using 
either the CVS or Subversion SCM system. An important issue in 
software evolution research is the extraction of logical 
transactions from the SCM repository. Since Subversion assigns a 
revision number per commit, there is no need to recover 
transactions for Subversion-managed projects [5]. CVS does not 
keep the original transaction information, usually requiring a 
process of transaction recovery [6]. Kenyon provides CVS 
transaction recovery using the Sliding Time Windows algorithm 
[4, 6]. Recently, the Apache Software Foundation (ASF) changed 
its SCM repository to Subversion from CVS using the cvs2svn 
converting tool. We analyzed some ASF projects, including 
Apache 1.3 and APR, whose repositories were converted. Since 
the cvs2svn tool uses the fixed time window algorithm [6] to 
convert CVS data for Subversion, using the converted data won’t 
affect our analysis results.  

We manually observed the signature change history file to identify 
common signature change kinds. After analyzing the signature 
change history files from various open source projects, we found 
the common change kinds shown in Table 3. While most of the 
change patterns can be automatically identified by a static 
software analysis, some change kinds, such as concept 
merging/splitting changes are not automatically identifiable, 
requiring project knowledge concerning the project and parameter 
concepts.  

We implemented an automatic signature change kind identifier 
that reads a signature change history file, and annotates the file 
based on the identified kinds. After the signature change history 
file annotation, we calculate the frequency of each change kind. 
We also examine the sequence of signature change kinds of a 
given function to see if there was a common pattern in the 
signature evolution. The results of our analysis are presented in 
following sections. 

3. SIGNATURE CHANGE KINDS 
Before presenting our results, we describe our fine-grain 
taxonomy of signature change kinds. First we define the basic 
elements of a function signature: parameter, argument, return 
parameter, and the signature.  

Definition 1 (Parameter, Argument, Return parameter, Signature) 
    Parameter Param ≡ {modifier, type, name, array/pointer, order} 
    Argument Arg ≡ a set of zero or more Param 
    Return parameter R ≡ {modifier, type, array/pointer} 
    Signature S ≡ {R, function name, Arg} 
 

The modifier indicates a data type modifier such as const, register, 
and static. A type is the data type of a parameter, and name 
indicates the parameter name. The array/pointer is the count of 
* or [] when a parameter is an array or pointer type. This 
represents both the array/pointer type and its dimension. Using 
these basic definitions, we now identify and define signature 
change kinds. In the remainder of the definitions, we use the 
subscript new to indicate a later revision and old a previous revision. 
If we omit the equality of elements, assume the other elements are 
the same. For example, in Definition 2 we define N if the nameold 
and namenew are different. We assume all other elements such as 
type and modifier are the same.  

Definition 2 (Name change) 
Function name change FN ≡  function namenew ≠  function nameold 
Parameter name change N ≡  namenew ≠  nameold  
 
The name change category has two kinds: function name change 
and parameter name change. Table 2 shows an example of 
parameter name changes. A parameter name change does not 
introduce a signature mismatch problem since the parameter name 
is used internal to the function. However, parameter name changes 
may cause semantic errors. For example, as shown in Table 2, if 
the change of parameter from ‘service_name’ to ‘display_name’ 
indicates a change in parameter meaning, call sites will compile 
without error, but the software may not work as expected due to 
the change in meaning.  

Table 2. A parameter name change in Apache 1.3, 
os/win32/service.c  file, ValidService function. The old version 
is on top, the new version is on bottom. Changes between 
versions are shown in bold. 

BOOL ← char *service_name 
BOOL ← char *display_name 

 
Definition 3 (Ordering change) 
    Order ≡  the position of an argument 

Ordering change O ≡  ordernew ≠  orderold 
    Only ordering change o ≡  O and |Argnew| = |Argold| 
    Ordering change by addition OA≡  O and |Argnew| > |Argold| 
    Ordering change by deletion OD ≡  O and |Argnew| < |Argold| 
 
The parameter ordering changes occur when the order of two or 
more parameters has been changed. The typical motivation behind 
these changes is parameter order consistency with other function 
signatures. Sometimes adding or deleting parameters causes 
signature ordering changes. 



Definition 4 (Parameter modifier change) 
    Parameter modifier change M ≡  modifiernew ≠  modifierold  
 
Modifier changes happen when developers alter a modifier 
without changing the data type. We mostly observed the addition 
or removal of the ‘const’ modifier in the C programs of our data 
set.  
 
Table 3. A taxonomy of signature change kinds. The * item 
indicates that the item is manually identifiable, and hence the 
frequency is not reported in this paper. 

Data flow 
invariant 

*Function name change (MN) 
Parameter only ordering change (o) 
Parameter name change (N) 
Parameter modifier change (M) 
*Concept merge/splitting change (CM/CS) 
Array/Pointer operation change (P) 
*Return type change (R) 
Primitive type change (T) 
Complex type name change (CN)     

Data flow 
increasing 

Parameter addition (A) 
Ordering change by addition (OA) 
*Return type addition (RA) 
*Complex type inner variable addition (CA) 

Data flow 
decreasing 

Parameter deletion (D) 
Ordering change by deletion (OD) 
*Return type deletion (RD) 
*Complex type inner variable deletion (CD) 

 
Definition 5 (Parameter array/pointer change) 
    Parameter array/pointer change P ≡  array/pointernew ≠  array/pointerold 
 

Array/pointer dimension changes occur when developers add or 
delete dimensions of pointer or array parameters. An example of 
this change is shown in Table 4. 

Table 4. A pointer change example in APR, 
threadproc/unix/procsup.c file, ap_detach function. 

ap_status_t ← ap_proc_t **new, ap_pool_t *cont 
ap_status_t ← ap_proc_t *new, ap_pool_t *cont 

 
Definition 6 (Parameter addition/deletion) 
   Parameter addition A ≡  p ∈  Argnew and p ∉  Argold 
    Parameter deletion D ≡  p ∉ Argnew and p ∈  Argold 

The parameter addition and deletion changes are common change 
kinds; an example is shown in Table 5.  

Table 5. Parameter addition changes in the Linux kernel, 
kernel/sched.c file, try_to_wake_up function. First sync was 
added, then later the variable state was added. 

static int ← task_t *  p 
static int ← task_t *  p,  int sync 
static int ← task_t *  p, unsigned int state,  int sync 

 
One of the most interesting change kinds is the concept 
splitting/merging change defined in Definition 7. Usually concept 
splitting/merging changes look like parameter addition or deletion 
changes. But if we observe the changes carefully, the new 
parameters can be derived from existing or deleted parameters. 
For example, suppose a function takes ‘first name’ and ‘last name’ 

as its arguments. In the next version, the function takes only 
‘name’. It seems the ‘first name’ and the ‘last name’ parameters 
are deleted while the new ‘name’ parameter is added.  In fact, the 
new parameter, ‘name’, is a combination of the deleted parameters, 
‘first name’ and ‘last name’. In this case, a derivation function F 
exists. 

Definition 7 (Concept merging/splitting change) 
    Asub ⊆  Argold 
    Concept merging CM ≡  A and ∃  a derivation function F,  

such that padded = F(Asub) and |Asub|>1 
    Concept splitting CS ≡  A and ∃  a derivation function  F, 

such that padded = F(Asub) and |Asub|=1 
 

The ‘name’ parameter can be derived using a derivation function 
F: ‘name’ = F (‘first name’, ‘last name’). We define this kind of 
changes as a concept merging change. If the evolution goes in the 
opposite direction, we define it as a concept splitting change.  

Definition 8 (Primitive types and Complex types) 
Primitive type set PTS ≡  {char, int, long, float, double} 

    Is primitive type PT(t) ≡  true iff t ∈  PTS, else false 
    Is complex type CT(t) ≡  true iff t ∉  PTS, else false 
 
Definition 9 (Primitive type change) 

Primitive type change ≡  typenew ≠  typeold and  
                                            PT(typenew) and PT(typeold) 
Definition 10 (Complex type change) 

Type variable set TVS ≡  a set of variables used in a complex type 
    Complex type name change CN ≡   typenew ≠  typeold  

and (CT(typenew) or CT(typeold)) 
Complex type inner variable addition  
                            CA ≡  CT(typenew) and CT(typeold)   

and typenew = typeold and |TVSnew| >|TVSold|  
Complex type inner variable deletion  
                            CD ≡  CT(typenew) and CT(typeold) 

and  typenew = typeold and |TVSnew|<|TVSold|  
Definition 11 (Return parameter change) 

Return type change R ≡  modifiernew ≠  modifierold or  
typenew ≠  typeold or array/pointernew ≠  array/rpointerold  

                  and typenew ≠  void and typeold ≠  void 
    Return type addition RA ≡   typenew ≠  typeold and typeold = void 
    Return type deletion RD ≡   typenew ≠  typeold and typenew = void 
  
We define primitive type and complex types in Definition 8, and 
based on this definition we define primitive type and complex 
type changes. 
The primitive type change indicates one of the parameter types 
has been changed while the parameter name remains unchanged. 
For example, if a parameter, ‘int age’ is changed to ‘long age’, it 
is a primitive type change. If the primitive type and the parameter 
name of an argument change together, it is a parameter 
addition/deletion change.  
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Figure 1. The percentage of the primitive data types used in 

function signatures of each project. 



0

10

20

30

40

50

60

70

80

90

Name change Ordering
change

Additon Deletion Modifier
change

Array/Pointer Complex type
change

Primitive type
change

APR

Apache 1.3

Apache 2

Subversion

CVS

Linux

GCC

Sendmail

Average

 
Figure 2. The percentages of each change kind frequency of the eight open source projects and average.  
In the open source projects we observed, on average 55% of data 
types in signatures are complex data types (class, typedef, struct 
or union); see Figure 1. If one of the complex data types is 
changed, we define this change as a complex type change. These 
changes are different from parameter addition or deletion changes 
in that the old and new data types are related. Usually, when there 
are major changes in a class or structure, developers change the 
class/structure name. If there are only minor changes to the 
structure or class, such as adding a member variable, the 
structure/class name will not be changed. Since we are analyzing 
only signatures, we cannot automatically identify changes inside 
of structures or classes. To identify these changes, we need to 
monitor the structure/class body for changes in each revision. We 
may observe this in future work. 

To define the major categories of our taxonomy, we use a data 
flow model between a function and a client. A client calls a 
function by passing arguments (Arg) and expecting returns (R) as 
shown in Figure 3. The total data flow is the union of Arg and R, 
defined in Definition 12. Broadly, when parameters or return 
values are added, there is an increase in the amount of data 
flowing between caller and callee, while parameter deletion or 
removal of return values results in reduction of data flow. 
Modifier changes or parameter name changes have no impact on 
the data flow. 
  
 

Figure 3. Data flow model. 
Definition 12 (Data Flow) 
    DF≡  Arg ∪ R 

Data flow invariant ≡  |DFold| = |DFnew| 
    Data flow increasing ≡ |DFold| < |DFnew| 
   Data flow decreasing ≡ |DFold| > |DFnew| 

4. FREQUENCY OF CHANGE KINDS 
After identifying signature change kinds, we computed the 
frequencies of each kind. Figure 2 shows the signature change 
kind frequency percentages of each project. To simplify the graph 
we aggregated ordering changes (Ordering change = o+OA+OD). 
Figure 2 shows percentages for each change kind; the percentage 
is calculated by taking the number of observations of a particular 
change kind, and dividing it by the total number of signature 
changes observed for that system. For example, in Apache 1.3, we 
observed 202 parameter additions, and 327 total signature 
changes, resulting in a frequency percentage of 61%. 

Note that one signature change can include more than one change 
kind. For example a signature change can include parameter 
addition, parameter deletion, and ordering changes. As a result, 
the summation of each percentage is greater than 100%. For 
example, the sum of all the CVS project change kinds is 157 %. It 
means that whenever a function has a signature change in the 
CVS project, the signature change includes 1.57 different kinds of 
change, on average. If there is more than one instance of a 
particular change kind in a signature change, we count the kind 
only once. For example, if a signature change includes a 
parameter addition change three times, we count only one 
parameter addition change.  
Figure 2 shows that the most common change kinds are parameter 
addition (average 52.13%), complex type changes (average 
30.5%), and parameter deletion (average 22.75%). The 
array/pointer and primitive type change are relatively uncommon 
change kinds. 

5. RATIO OF SIGNATURE CHANGES 
To show the distribution of signature changes across functions, 
we counted the number of functions having n signature changes, 
with n varying from 0 to 16 signature changes (see Figure 4 for 
the signature change distribution for Subversion). Figure 4 shows 
that 5466 functions (77%) never changed their signature and 95% 
of the functions had fewer than three signature changes.  
Another interesting ratio of signature changes can be obtained by 
comparing the number of signature changes and number of 
function body changes. We may examine this in future work. 
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Figure 4. Count of signature changes of functions in the 
Subversion project. The x-axis indicates the number of 
signature changes, and the y-axis indicates the number of 
functions (log scale).  

6. SIGNATURE EVOLUTION PATH 
We wondered whether common signature evolution paths could 
be used to predict future software changes. For example, we 

Function Client
Arg

R



might detect that the most common signature changes occurred in 
this order: parameter addition (A), parameter deletion (D), 
ordering change (O), return type change (R), and parameter 
addition (A). In the future, when a known signature change 
evolution sequence occurred, such as A, D, O and R, we could 
predict the next signature change is likely to be a parameter 
addition (A).  
To determine whether or not such common evolutionary paths 
exist, we noted all signature change evolution sequences. For 
example, when the signature of a function changes in this order: 
A, D, O, R, and A (See Table 3 for the change pattern 
abbreviations), we generate a change sequence, ‘ADORA’. We 
examined all signature change sequences whose length is larger 
than three. We assumed that change sequences with fewer than 
four changes are rarely associated with common evolution paths.  
After having an array of the sequences, we looked for the most 
common sequence (MCS) patterns using a modified longest 
common sequence (LCS) search algorithm [7]. Table 6 shows the 
top five common sequences of the Subversion project and overall 
eight projects. The occurrence shows how many times we found 
the change sequence patterns over all patterns, and percentage 
shows how common each occurrence is as a fraction of all 
observed occurrences (1,428 for the Subversion project and 2,025 
for overall). We need to determine the conditional probabilities of 
each change kind to see if it depends on previous changes, and 
that the dependency rate is high enough to predict future change 
kinds. We weren’t able to find predictable evolution paths from 
common sequences. 

Table 6. The top five common function signature change 
pattern sequences of the Subversion project and across all 
projects. # means the count of occurrences of the pattern, 

and % means the percentage of times this sequence occurs. 
Subversion Project Overall projects 

Common 
Sequence # % Common 

Sequence # % 

ACDA 186 13% AADA 198 9%
AADA 183 12% ACDA 186 9%
AACD 159 11% ADDD 171 8%
ADDD 152 10% AACD 159 7%
ACAA 133 9% ADAD 141 6%

7. THREATS TO VALIDITY 
The results presented in this paper are based on selected eight 
open source projects. It includes major open source projects, but 
other open source or commercial software projects may not have 
the same properties we presented here. We analyzed only projects 
written in the C programming language; software written in other 
programming languages may have different signature change 
patterns. Some open source projects have revisions that are not 
compilable and contain syntactically invalid source code. In that 
case, we had to guess at the signatures or skip the invalid parts of 
the code. We ignored ‘#ifdef’ statements because we cannot 
determine the real definition value; ignoring ‘#ifdef’ caused us to 
add some extra signatures which will not be compiled in the real 
program.  

8. CONCLUSIONS AND FUTURE WORK 
We have introduced a fine-grain taxonomy of signature change 
kinds. Among change kinds, the common change kinds are 
parameter addition (52.13%), complex type change (30.5%) and 

parameter deletion (22.75%). In future work we hope to this result 
can be used to alleviate signature change impact. If we can 
provide an ontological framework that includes a conceptual 
meaning for each parameter with its data type, it is possible to 
accommodate ordering changes and parameter deletion changes 
by generating glue code that resolves the signature mismatch 
problem. We found that about 77% of functions never change 
their signature and another 23% of functions change their 
signature once or twice.  

We used a function name as an identifier to keep track of 
signature changes. Unfortunately, this means that if a function 
name changes, we loose its previous history of signature changes. 
The C++ and Java programming languages allow method 
overloading – more than one method with the same name but 
different parameters. When groups of overloaded methods evolve, 
sometimes ambiguity prevented us from determining which old 
method changed to which new method. Tu et al. introduced an 
origin analysis algorithm to find the origins of new procedures or 
files [8]. Origin analysis helps to find evolution paths when 
function names are changed or methods are overloaded. However, 
origin analysis requires heavy computation for entity analysis and 
dependency analysis. Providing more accurate results using origin 
analysis remains future work. 

About 55% of parameters are complex data types such as 
structures, unions, or classes. Even though the signature remains 
unchanged, when a complex data type has changed internally, 
such as the addition of a member variable, it should be regarded 
as a signature change. Monitoring changes to each complex data 
type used in a signature to observe this kind of change remains 
future work.  

Finally, further study is needed to explore the correlations 
between signature evolution and whole system evolution. 
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