
Facilitating Software Evolution Research with Kenyon
Jennifer Bevan1, E. James Whitehead1, Jr., Sunghun Kim1, and Michael Godfrey2

1Department of Computer Science
University of California, Santa Cruz

Santa Cruz, CA, USA
01-831-459-1227

{jbevan, ejw, hunkim}@cs.ucsc.edu

2School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada
01-519-888-4567

migod@uwaterloo.ca

ABSTRACT
Software evolution research inherently has several resource-
intensive logistical constraints. Archived project artifacts, such
as those found in source code repositories and bug tracking
systems, are the principal source of input data. Analysis-specific
facts, such as commit metadata or the location of design patterns
within the code, must be extracted for each change or
configuration of interest. The results of this resource-intensive
“fact extraction” phase must be stored efficiently, for later use by
more experimental types of research tasks, such as algorithm or
model refinement. In order to perform any type of software
evolution research, each of these logistical issues must be
addressed and an implementation to manage it created. In this
paper, we introduce Kenyon, a system designed to facilitate
software evolution research by providing a common set of
solutions to these common logistical problems. We have used
Kenyon for processing source code data from 12 systems of
varying sizes and domains, archived in 3 different types of
software configuration management systems. We present our
experiences using Kenyon with these systems, and also describe
Kenyon’s usage by students in a graduate seminar class.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – Restructuring, reverse engineering, and
reengineering.

General Terms
Management, Measurement, Documentation, Design, Reliability.

Keywords
Software evolution, software stratigraphy, software
configuration management

1. INTRODUCTION
Software evolution research has investigated many different
issues, from modeling program development [3] to using the
archived development history to recommend likely members of
change-impact sets [18, 20]. Many of these research analyses
sample the archived project artifacts, such as source code

configurations or modification request forms, at specific points in
time, either by date or by semantic label, over a significant
portion of the entire project history. Depending upon the type of
analysis being performed, different types of “facts” may be
extracted from each configuration, or from the data associated
with the difference between a pair of configurations (e.g., source
code repository commit data). These facts, which comprise the
raw data on which the evolution analysis operates, are commonly
stored once and used during multiple analysis passes.

The method of obtaining the input data, preprocessing it to
extract the relevant facts, and storing the results has traditionally
been re-implemented for each software evolution research system
created. Due to the time cost of implementation, researchers are
forced to make tradeoffs in the type of data they can analyze,
such as committing to a single programming language or
supporting a single software configuration management (SCM)
system. For example, the tradeoff of only supporting CVS [5] is
commonly considered acceptable [7, 8, 10], given the large
number of CVS-archived projects available through
SourceForge. The primary threat to validity with such systems,
however, stems from the fact that most industrial systems do not
use CVS, and therefore the applicability of the analysis results to
such systems is sometimes questioned [20].

These types of tradeoffs, and the practice of implementing new
solutions to these common problems in each analysis system, lead
to difficulties when attempting to apply the results of one analysis
technique to improve or refine the results of another. We believe
that these difficulties stem from the process of mapping the set of
data structures and their associated assumptions used by one
researcher to the set of data structures used by another. It is also
not always true that one analysis system can use the final results
of another system; instead, the partial results from an earlier
point in the processing may be the optimal point of composition
or reuse. For example, both Ying et al. and Zimmerman use
association rule mining to provide recommendation sets on
artifacts that are likely to need changing given an initial source
code modification [18, 20]. If a different analysis engine wants to
reuse the computed association sets for a different purpose, they
are not necessarily easily available or reusable. We believe a
shared set of data structures for common software evolution
representation problems would improve researchers’ ability to
compare and leverage results by improving such data availability
and minimizing (or removing) the need to map one structure to
another.

In this paper, we present Kenyon, a system inspired by our desire
to improve the results of our instability analysis system (IVA) [4]
with the origin analysis performed by Beagle [11]. While
examining the Beagle data flow, we noticed the similarities

between its early preprocessing stages and our own. In fact,
Zimmerman and Weissgerber identified very similar
preprocessing tasks as those “performed by most analyses” [19].
As a result, we redesigned a significant portion of our existing
software, including some of the Beagle code, to become an
independent subsystem, and defined a set of responsibilities and
services that it would provide. This is Kenyon.

Kenyon supports software evolution research systems that
perform “stratigraphy” , the analysis of a series of related layers
(strata) that comprise a time-based software development
history. For source code, the strata are the configurations within
the historical record archived by an SCM system, with possible
associations to data in other, time-variant sources such as bug-
tracking systems. Kenyon provides automated configuration
retrieval from an SCM system onto the local filesystem, invokes
analysis-specific “fact extractors” on each retrieved
configuration, and saves the extracted facts into a relational
database using an object/relational mapping (ORM) system.
These results are then accessible to any number of later analysis
techniques implemented by external evolution analysis systems.
While Kenyon does not mandate that these independent
evolution analysis systems report results in a specific format, it
does provide reusable data structures via the ORM system that
are expected to provide a common basis for interpreting and
reusing the results that are provided.

Our aim in creating Kenyon is to reduce the start-up time
associated with software evolution research by providing a
common framework within which new analysis methods can use
any of the supported SCM systems and any of the supported data
types. Additionally, by providing a sufficiently flexible structure
for storing extracted facts, the process of composing or
comparing results is much simpler. As a means of testing our
progress towards these goals, we provided Kenyon to the
students in a 10-week graduate seminar on software evolution,
during which they were required to complete a software
evolution-based research project. Concurrently with this seminar
we used Kenyon to analyze one 500 KLOC industrial system and
nine different open-source systems up to 298 KLOC, to better
test and model its scalability.

The rest of the paper is structured as follows. Section 2 discusses
the requirements associated with any infrastructure tool intended
to support software evolution research. Section 3 presents the
structure and data flow of Kenyon, and describes how each of
the requirements are addressed. Section 4 describes in greater
detail our experiences using Kenyon in the classroom, on the
open-source systems, and on the industrial system. It also
describes the adaptations to Kenyon made in order to meet the
needs exposed during this time. Section 5 discusses related
work, and Section 6 discusses planned future work for Kenyon.

2. EVOLUTION INFRASTRUCTURE
REQUIREMENTS
Any infrastructure tool that proposes to assist software evolution
research must allow researchers to focus on their research-
specific interests. This goal implies that the tool should reduce
manual labor costs as much as possible. The key such benefit
that an evolution assistance tool could provide is automated per-
configuration fact extraction processing: the current most labor-

intensive tasks in software evolution research are those of
interacting with various data archives (e.g. SCM systems),
identifying and extracting semantically consistent configurations,
and analysis-tool invocation. A secondary benefit is a reduction
in “time-to-research” , because research-specific systems would
not need to reinvent solutions to the common logistical problems;
the time saved may even be used to perform more in-depth
analyses than otherwise possible within fixed time limitations.
An acceptable evolution assistance tool must support these
benefits without limiting the types of evolution research possible
on the preprocessing results; for example, requiring the “data
cleaning” [19] phase as used by association rule mining
techniques [18, 20] would remove data required by IVA [4].
These benefits and constraints imply several requirements on a
software evolution infrastructure tool. We outline these
requirements below, and discuss the extent to which they impact
the acceptability of such as system.

Req. 1: Automated configuration retrieval. A significant
part of the labor associated with per-configuration fact extraction
is based on interacting with the systems that archive the
configuration data. Given a specification of the times for which
configurations should be retrieved, a set of constraints that define
the membership of the retrieved configurations (e.g. files in
directory “foo” , or not ending in “.doc”), and a set of data
sources, the infrastructure tool must automatically, without any
further manual assistance, obtain a time series of configurations
from the archiving systems.

Req. 2: Allow user control on configuration times.
Req. 2.a: Allow limits on timespan processed.
Software evolution systems do not always need to analyze the
entire history of a system to produce interesting results. An
evolution infrastructure tool must therefore accept a timespan
specification that explicitly limits the earliest and latest
configuration times to be processed.

Req. 2.b: Allow user-specified minimal processing
interval. The frequency at which configurations need to be
retrieved is also a function of the evolution analysis to be
performed and the software project being analyzed. An
infrastructure tool must also accept a “sampling rate”-type
specification (such as “once per day”) that selects a subset of
configurations to be processed from the set of configurations
available within a given timespan.

Req. 3: Support for different software configuration
management systems. Software configuration management
(SCM) have several implementations with widely varying
capabilities, such as CVS [5] and ClearCase [14]. An infra-
structure tool must have the ability to interact with several
commonly-used such systems, and the ability to easily add
support for others.

Req. 3.a: Retrieve consistent source code config-
urations. We consider the smallest unit of change in the state
of a source code repository that is of interest to software
evolution researchers to be a “ logical change” [19], interpreted
at the level of a single, user-issued “commit” command. Non-
transaction based systems such as CVS alter the state of the
repository each time a change to a given file is stored, instead of
once per such logical change. Configurations from such

systems must be retrieved such that only the effects of logical
changes are visible.

Req. 3.b: Access archived metadata associated with
each logical change. If a data source records metadata
associated with archived data, such as the author and log
message for a given SCM commit, the infrastructure tool must
be able to access it and make it available to analysis tools.

Req. 4: Support multiple data input sources. The
necessary data to perform software evolution analysis is not
always stored in a single data source. While different types of
data are certainly expected to be stored in different types of
systems (such as bug tracking data and version history data),
sometimes the same type of data may be spread across different
systems. For example, if two libraries are co-evolving and
interdependent, but are archived in separate SCM systems, an
evolution infrastructure tool must be able to access both version
histories in a consistent and seamless manner.

Req. 5: Allow incremental processing. A software
evolution infrastructure tool must allow researchers to both
“catch up” to the present time and to “keep up” with ongoing
development. Given the computational costs that still apply to
per-configuration processing, previous processing results must be
able to be easily integrated with results from new processing.

Req. 6: Support a broad variety of user-defined fact
extraction tools. Automated per-configuration processing is
only useful when the user has the ability to select arbitrary fact
extraction tools that provide the data relevant to the specific
research being performed. Given the time cost of retrieving each
configuration from the archiving systems, an infrastructure tool
must therefore support the invocation of a user-specified,
heterogeneous set of fact extraction tools on each retrieved
configuration.

Req. 7: Support processing of multiple types of data in
multiple languages. A software evolution infrastructure tool
must not inherently limit the types of systems whose evolution
may be analyzed. While it may place the burden for language-
specific analysis on the user-defined processing tools, it must not
make it impossible to accommodate systems with unfamiliar or
mixed languages (e.g. modeling or programming languages) or
data types (e.g. source code, design documents).

Req. 8: Provide efficient, accessible, and optional
storage of extracted facts. The facts extracted during per-
configuration processing may be stored in several different ways,
from XML files to relational databases. Because software
evolution research is likely to analyze the time series of per-
configuration results, a storage method that allows efficient
access to these results along the time dimension must be
provided. Evolution researchers must also be allowed to decide
to not use the provided storage method, as it might not be
immediately compatible with their existing analysis systems.

Req. 9: Scalability.
Req. 9.a: Computational scalability. The infrastructure
tool must not require significantly more memory or CPU
resources to automatically process a series of configurations
than that required for processing of a single configuration. This

allows an arbitrary number of configurations to be automatically
processed.

Req. 9.b: Data access scalability. The infrastructure tool
must not require that all facts extracted from a given
configuration be loaded into memory when access to a subset of
these facts is desired. This allows multi-configuration analysis
tools to minimize their own memory usage.

Req. 9.c: Support parallel batch processing. Even
though a tool that supports automatic per-configuration
processing can dramatically reduce the labor costs of software
evolution research, the computational costs can still be
significant. The results from processing different timespans in
parallel must be able to be merged in the storage system, to
further reduce the time-to-research.

Req. 10: Availability. Any system that intends to facilitate
software evolution research must be easily available to
researchers (ideally through a web-based download), run on
several common processing platforms, and provide effective and
helpful documentation to its intended audience.

3. KENYON ARCHITECTURE
Kenyon currently fulfills all of the requirements described in
Section 2, with the exception of supporting multiple data input
sources (Req. 4). In this section we present a more detailed look
at Kenyon’s design and how it addresses each of the functional
requirements.

3.1 Usage Overview
Kenyon is designed as an asynchronous, minimally interactive
application. It is configured via a user-supplied processing
configuration file: a text “properties” file that names the data
sources, configuration selection guides, and third-party tools to
be invoked on each configuration (Req. 6). Kenyon is also
normally configured with an ORM-specific properties file that
names the database to which the preprocessed data should be
stored (Req. 8). Kenyon “samples” a data source (i.e. SCM
system) at a specified time interval, such as once per second or
twice per day, between a start date and an end date, which may
be set to “ last” for incremental processing (Req. 2).

Kenyon’s data source sampling algorithm is driven by the
expected needs of its users. Software evolution research is
primarily concerned with the effects of “ logical changes” [19].
We interpret a logical change at the lowest archived level: that
associated with a user-issued “commit” command. We use the
term “configuration” as a set of files defined by a set of inclusion
constraints; Kenyon configurations represent the state of the
repository along a particular branch (variant) at a given
timestamp. We perceive these configurations as analogous to the
geologic strata that form a fossil record, and give each a unique
configuration specification comprised of the project identifier,
branch identifier, and timestamp. The set of “ interesting”
configuration specifications are those that reflect the result of
applying a single logical change. When sampling the data source,
Kenyon retrieves configurations only for these “interesting”
configuration specifications, and uses the user-specified time
interval to ensure a minimum time between successive retrieved
configurations.

SCM Repository Filesystem Database

DataManager

<abstract>

FactExtractor

<abstract>

MetricLoader

Fact Extraction

SCMInterface

Configuration Retrieval
Object Data Storage

ORM

(Hibernate)

<invokes>

1 2 3

4

5

Some SCM systems, such as CVS, do not archive files changed
by a single user-issued “commit” command as a single, logical
change. In the case of CVS, files that should be considered as
being part of the same commit “transaction” are actually stored
in the repository with different timestamps. When Kenyon
retrieves data from such systems, it applies a sliding-window
“transaction recovery” algorithm [19] to regroup these files into
a single logical change (Req. 3.a). Kenyon uses the set of times
at which at least one transaction completed (i.e. the latest time at
which a file in a given commit transaction was written to the
repository) to define the set of logical change-based
configurations. When retrieving a configuration from such a
system, Kenyon ensures that any file that was already saved to
the repository at the specification timestamp, but that is also part
of an uncompleted (or, “ongoing”) transaction, is retrieved as it
existed before that ongoing transaction began.

Kenyon supports incremental updates to an existing processed
data set (Req. 5). It can therefore be used to process a
development history, and then keep up with ongoing
development using, for example, nightly updates. It can also be
used in a successive-refinement mode, where a large time interval
is initially used to identify areas of particular interest. What
constitutes “particular interest” is of course analysis-specific.
One scenario where successive refinement is useful occurs when
analysis quality is dependent upon the amount of change that
occurs between two compared configurations. For example, it
may be that as the number of logical changes incorporated
between two compared configurations increases, so does the
difficulty of producing a correct result. If the analysis provides a
result-quality “confidence value” , then an automated successive
refinement process could be configured.

For example, if Kenyon preprocessing is performed at an initial
interval (such as once per week), the analysis tool could run over
those results, generating a set of confidence values for each
successive pair of configurations. For each pair where the
confidence value is below a certain threshold, Kenyon could be
rerun at a smaller time interval (such as once per day or once per
hour). This process could iterate until either the smallest time

interval possible is reached (once per second) or the confidence
value exceeds the threshold. Successive refinement allows
Kenyon users to avoid processing all data at small time intervals,
which reduces part of the computational cost of performing
software evolution analyses (Reqs. 1,2,5).

3.2 Data Flow Architecture
The high-level Kenyon data flow architecture is shown in Figure
1. The DataManager class is the execution entry point; it reads
the configuration files and invokes the configuration retrieval,
fact extraction, and object storage methods. The SCMInterface
class isolates Kenyon from the implementations associated with
each concrete SCM subclass (Req. 3): at this point, Kenyon
supports the CVS, Subversion, and ClearCase SCM systems. It
also supports a “filesystem” implementation that is intended for
use when access to the SCM repository is not available but a
series of pre-downloaded configurations (such as system
releases) are. The FactExtractor and MetricLoader abstract
classes are the API points for research-specific tool invocation
extensions.

Kenyon retrieves each configuration to be processed and places it
in the local filesystem. We do this because program analysis
tools commonly support a filesystem input source and rarely
support direct SCM interaction. The DataManager class then
invokes the series of concrete FactExtractor subclasses specified
by the user in the processing configuration file. These subclasses
are the means by which external, analysis-specific, fact extraction
tools interface with Kenyon. While we expect most users to
provide FactExtractor subclasses, Kenyon does come with two:
one that invokes and loads the data from Grammatech’s
CodeSurfer1, and one that invokes part of the SWAGKIT2
pipeline and reads the resulting TA-formatted files.

Kenyon draws a distinction between programs that produce a
graph representation of the configuration under analysis (such as

1 www.grammatech.com/products/codesurfer
2 www.swag.uwaterloo.ca/tools.html

Figure 1. High-level data flow architecture of Kenyon. The numbers on the solid arrows indicate the processing order.

Kenyon Repository

Evolution
System 1

Kenyon
Evolution
System 2

a call graph or a containment graph) and those that calculate
metrics that may be associated with the configuration or some of
its entities (such as total number of lines of code, or average
number of files per directory). The former programs are
considered to be fact extractors, and the latter are termed “metric
loaders” . The rationale behind this distinction is that metrics may
be calculated by different systems on different program entities,
and a common system representation is necessary to merge the
results of each individual metric loader. We therefore expect
metric loaders to attribute the graph (or elements therein)
produced by a fact extractor; each such graph is expected to be
an internally consistent system representation.

The user-supplied Kenyon processing configuration file specifies
the metric loaders that will be invoked by each fact extractor, via
a concrete MetricLoader subclass. For performance reasons,
Kenyon ensures that each metric loader only calculates its results
once, although it may load its results onto many different graphs.
As with FactExtractor subclasses, we expect most users to
provide their own MetricLoader subclasses, although Kenyon
does provide one that invokes and loads the data produced by
UnderstandForC++3.

Kenyon saves the results from each processed configuration to a
database (Req. 8). As part of our goal to improve the ability of
third-party analysis systems to reuse Kenyon data structures, we
decided to use an object-relational mapping (ORM) system to
help automate the storage to, and retrieval of Java objects from,
the database (Reqs. 8,9.b). This affords us some added SQL
dialect isolation, allows automatically generated object-based
database schemas to be used, and simplifies the process of
merging of results processed either in parallel or incrementally
(Reqs. 5,9.c). Kenyon’s current ORM system is Hibernate 2.1.6
[2], which has been helpful in some respects although it has had
some scalability problems. Hibernate allows Kenyon to use
XDoclet [17] tags, embedded within javadoc-type comments, to
annotate the source code with the information necessary to
automatically generate the object-relational mapping files. These
in turn are used to generate the database schemas. Hibernate
also provides HQL, an object-based query language that
translates the queries into SQL based on the dialect specified in
the Hibernate configuration file.

Kenyon does provide some prepackaged Hibernate convenience
queries for obtaining the set of analyzed projects, the
configuration specifications for which data is available in a given
project, and the fact extractor-specific result for a given
specification. We have found that, in practice, our own analysis
systems use handcrafted HQL, optimized for the specific query
goal, for almost any purpose other than these.

Software evolution researchers are not required to use Hibernate,
because they can still access the Kenyon-processed data using
SQL. The benefit from an ORM system primarily comes from
the concept of “persistent objects” , which means that a Java
object instance can be retrieved from the database in exactly the
same state that it was persisted to the database. This retrieval
mechanism simplifies the source code necessary to load results
stored either by Kenyon or by a third-party analysis tool. The
data flow for this type of scenario is shown in Figure 2, where

3 www.scitools.com

solid lines indicate data storage and dashed lines indicate data
access.

Kenyon does not currently place any restrictions on the database
used for storing the preprocessed data, beyond the requirement
that a JDBC driver be available. Database administration issues,
such as write permissions, are also not managed in Kenyon.
Kenyon does make its tables “ immutable” to external analysis
systems via Hibernate, but this only restricts deletions and
modifications, not insertions. We expect to be refining our
database requirements as we evaluate collaborative evolution
analysis environments in the future.

3.3 Persisted Data Structures
The goal of our persisted data model is to facilitate result
comparison and reuse across different evolution analysis systems.
We balance the expressiveness of a flexible schema with the
comparability of a rigid schema by adopting a model that
provides flexibility only in the portions of the schema associated
with analysis-specific results, and that is rigid everywhere else.
We maximize the comparability of the flexible, analysis-specific,
schema by using an expressive and rigid graph-based framework
and requiring the use of a descriptive graph schema data
structure to provide information on the specific organization of a
given graph. Certainly, “ log-based” evolution analyses do not
require a graph representation to convey results [7, 8, 10, 18,
20], but they do not preclude it. On the other hand, evolution
research based in program analysis [4, 11-13] commonly use
some form of graph-based representation (such as a call graph,
or via an entity identification scheme rooted in a containment
hierarchy), without which it is very difficult to compare results.
The Kenyon graph structure can not only express several
different standard graph exchange formats such as GXL or TA,
but is in fact more expressive than either of these; as one
example, it allows multiple ordered values to be associated with a
single attribute.

Kenyon stores all results generated from the per-configuration
fact extractor processing, as well as analysis-independent data
such as the configuration specifications processed and the project
to which the per-configuration results should be assigned. The
association relationships between most of the Kenyon-persisted
classes are shown in Figure 3. The Project and ConfigSpec
classes act as the principle identifiers used to retrieve a specific
ConfigData instance, which contains a set of per-configuration

Figure 2. Data flow between Kenyon and two software
evolution tools, one of which uses the results of the other.

ConfigGraph results. Each ConfigGraph is identified by the
name of the FactExtractor subclass that created it, and references
the GraphSchema subclass used during its construction. This is
the mechanism by which ConfigGraphs provide a description of
their structure (such as naming scheme and containment
hierarchy) to evolution analysis systems (Req. 7). ConfigGraphs
are comprised of nodes, edges, and any attributes assigned to
these graph entities; these classes are naturally persisted as well.

To further isolate research-specific fact extractor tools from the
specific SCM requirements, differences between successive
configurations are calculated automatically by Kenyon, stored as
ConfigDelta instances, and associated with two configuration
specifications. Because ConfigDeltas are generated from data
within the software configuration management system, the
granularity of the data stored is not required to be uniform;
however, the minimal data granularity identifies which lines in
which files were added, deleted, or modified. In the case where
Kenyon is being invoked on a timespan that overlaps previously
processed data (as would be done with a successive refinement
approach to data processing), no configurations that were
previously processed are reprocessed. ConfigDeltas are re-
computed whenever the time difference between successive
configurations is smaller than previously stored.

Software evolution analysis systems are not required use
Hibernate to store their results. We do feel that making software
evolution results available in this way will improve the ease with
which researchers can compare or reuse the results of others. To
this end, Kenyon provides an abstract, Hibernate-persistable,
“EvolutionPath” class that associates a set of nodes in one
ConfigGraph to a set of nodes in another ConfigGraph. This
class can be used as a building block for composing or persisting
more complex software evolution results.

3.4 Scalability
Certain performance issues should be given consideration when
creating a FactExtractor subclass. The per-configuration running
time of Kenyon is the total of the fact extractor run time plus the

time to load the resulting graph into memory and store it to the
database. The larger the graph, the more time it takes to perform
these latter two steps. Our goal has been to ensure that Kenyon
is scalable, within the limitation that any given pairing between a
fact extractor and a system to be analyzed will dramatically
impact the performance numbers (Req. 9.a).

Memory usage is also an issue: Kenyon cannot enforce that third-
party fact extractors remove all references to the created
ConfigGraph or its components. If a fact extractor does not do
this, the garbage collector will not be able to reclaim the memory
used. Analyzing the memory usage of Kenyon while it is running
over a limited number of configurations with a new fact extractor
is a very useful secondary validation phase.

4. KENYON IN PRACTICE
We have recently concluded concurrent projects in which
Kenyon was used in three very different settings. The first setting
was in the lab, where a Kenyon developer used Kenyon to
process a 500 KLOC industrial system archived in ClearCase for
later analysis by IVA [4]. In a second lab setting, another Kenyon
developer processed several different open-source projects up to
298 KLOC using Kenyon, for later analysis with SignatureFE
[13]. The third setting was in the classroom, where students in a
10-week graduate seminar class were expected to perform some
type of software evolution analysis as a project. Independent of
these projects, developers of a third-party code-clone evolution
analysis system [12] also used Kenyon. The next sections
describe these projects and the lessons learned from them.

4.1 System X
We applied Kenyon to “System X” as a preprocessing phase
before invoking IVA, an evolution analysis tool that identifies
historically high-maintenance, statically-dependent, code regions
[4]. System X is approximately 500 KLOC (commented) of
mixed C/C++ source code. Its developer made six months of its
ClearCase history available to us. We used CodeSurfer as our
fact extractor, and created ConfigGraphs at a mixed
line/procedure level of granularity. The owners of System X
specified that we were to process the configurations at each of a
list of ClearCase labels. This use of Kenyon represented the first
time we had applied a commercial fact extraction tool to a
mixed-language system of this size. We expected to get a better
sense of how well our support of third-party per-configuration
analysis tools performed, and to also discover any scalability
problems that we had not anticipated. We did encounter several
such challenges, which allowed us to assess how well we were
meeting the requirements for an evolution infrastructure tool, as
well as to further refine and improve those requirements.

Our first significant challenge with System X arose as we realized
that while we had the available history for the project, we did not
have the history of the project’s “environment” : a set of co-
evolving libraries that defined several macros, procedures, and
global variables used by System X. The environment’s version
history was archived in a separate SCM system, to which we did
not have access. We therefore needed to manually align specific
releases of this environment with the ClearCase history. This
situation resulted in the creation of our “filesystem” SCM
subclass, wherein a set of pre-existing directories are assigned
configuration specifications in an XML file. We realized that we

Figure 3. Association relationships between persisted
Kenyon classes.

1
1

1 N

1

1

1

1 1

N N

N

1

1

N N

AttributedImpl

Edge Node

ConfigGraph

GraphSchema

1

1

N

1

1

2

ConfigData

ConfigSpec

Project

ConfigDelta

AttributeSet

would eventually need to extend Kenyon to access data from
multiple SCM systems to produce a consistent configuration for
projects like System X (Req. 4), but for this specific project we
instead opted to create a set of configurations, combined with the
appropriate environment, on the filesystem. This decision gave
us the advantage of being able to run Kenyon on the data from
multiple machines, some of which were not able to directly
mount ClearCase views due to access restrictions.

The second challenge with System X arose from a realization
that graph node names, as produced by CodeSurfer, were not
normalized to remove semantically meaningless whitespace, such
as found in the parameter lists in C++. This caused name-based
associations (performed by IVA) between nodes in different
configurations to fail. This problem couldn’ t be solved within
Kenyon due to its origins in the fact extraction process; however,
we did modify the Kenyon-provided CodeSurfer FactExtractor
subclass to perform the normalization (Reqs. 6,7).

Our last significant challenge when processing System X with
Kenyon stemmed from a scalability issue with our use of
Hibernate (Req. 9a). Kenyon had been taking advantage of a
cascaded “save” operation, in which a single save call would
persist all associated data structures to the database. To this
point, we had not found a problem with this process. The
System X graphs, however, averaged approximately 650MB in
memory each, and saving them using Hibernate directly was
causing OutOfMemory errors. The core reason for the memory
growth was the lack of a “write-and-discard” operation in
Hibernate; instead, Hibernate replaces newly saved objects with
“persistent” versions that contain the added state necessary to
perform caching and dirty-object checking. The persistent
versions of the graph nodes alone added approximately 600MB
to the Kenyon memory usage during a save operation. To avoid
this memory growth, we modified Kenyon to directly save each
ConfigGraph using JDBC calls, and continued to use Hibernate
to save to all of the other objects associated with the ConfigData.
We would prefer to maintain SQL-dialect independence through
an improved ORM system; however, this solution does solve the
immediate problem.

Our running time for Kenyon/CodeSurfer on a single
configuration of System X was approximately 1 hour on a
computer with a 2.8GHz processor and 3GB of physical
memory. It reached a steady-state memory usage of
approximately 1.8GB. CodeSurfer contributed 30 minutes to
this total, producing per-configuration graphs containing both
containment and dependence relations with approximately
135,000 nodes and 344,000 edges. The remaining 30 minutes
involved reading the CodeSurfer-produced graph file from disk,
calculating a ConfigDelta directly from a ClearCase-provided
delta, and saving the results into the database. We expect to gain
some reduction in the Kenyon-specific time from optimizations
such as tuning our database transactions per graph ratio.

Because Kenyon was primarily extracted from existing IVA
code, the data structure reuse level between the programs was
quite high. Even so, the process of applying a familiar evolution
analysis tool to Kenyon data caused us to realize several API-
level weaknesses between Kenyon and IVA in the early releases.
These weaknesses were primarily related to the functionality
provide by the GraphSchema class and to the expected boundary

between which data should be persisted by Kenyon and which by
IVA. We resolved most these issues before the graduate seminar
class started to use Kenyon.

Our experience using Kenyon as the preprocessing stage for IVA
with System X provided us with several key validations. First, it
proved that the separation of analysis-independent, logistical
issues (Kenyon) and the analysis-specific research issues (IVA)
was possible. It also showed that this separation provided a
significant benefit; only minimal reprocessing was needed when
correcting an IVA error. We determined that not only could
Kenyon perform automatic per-configuration processing with a
third-party fact extraction tool, but that it could do so with
reasonable performance and at high scale.

4.2 SignatureFE
We also used Kenyon during an ongoing signature change
analysis project on a total of nine different open-source systems
of up to 298 KLOC in size [13]. The fact extractor used during
this process, SignatureFE, is entirely separate from Kenyon, and
was created by a Kenyon developer that had not been involved in
creating either of the provided FactExtractor subclasses. The
systems analyzed using SignatureFE can be found in Table 1,
where “revisions” indicates the number of configurations
extracted by Kenyon directly from the SCM repository. In some
SignatureFE analyses, a set of releases was processed instead, via
Kenyon’s filesystem (FS) SCM interface subclass.

Table 1. Projects analyzed by SignatureFE using Kenyon.

The most significant findings from this project related to our
expectations on the ease of access using HQL to the Kenyon
data (Req. 8). Creating queries to retrieve, for example, only
those Procedure nodes that had a specific metric value over a
certain amount was still more difficult than we had hoped.

The reason for this difficulty is that Hibernate 2.x does not
directly support mapping or referencing collections of
collections. Kenyon, on the other hand, uses cascading
collections within its ConfigGraph class, as shown in Figure 3.
Hibernate actually forced the creation of a distinct AttributeSet in
order to create a mapping for the AttributedImpl class. HQL has
a similar weakness when working with collections of collections,
especially when lazy initialization is used to avoid loading an
entire graph. While in most cases the HQL for a given query is
simpler than the equivalent query in SQL, in this case it is not.
Our best approach for this query with the current version of
Hibernate is performed in memory, using an iterative approach
that avoids loading the entire graph.

Project SCM
revisions

(or releases)
Apache Portable Runtime (APR) SVN 5990 revisions
Apache HTTP 1.3 (Apache 1.3) SVN 7747 revisions
Apache HTTP 2.0 (Apache 2) CVS 3877 revisions
APR utility (APU) SVN 1353 revisions
Subversion SVN 5886 revisions
CVS CVS 2873 revisions
Linux Kernel 2.5 (Linux) FS 75 releases
GCC FS 15 releases
GCC CVS 3012 revisions
Sendmail FS 37 releases
Subversion (SVN) SVN 6029 revisions

We still believe that our use of an ORM solution will improve the
ability of evolution analysis tools to reuse Kenyon data
structures. In most cases, evolution analysis tools will still need
to handcraft queries, whether they be performed in the database
or not, specific to their interests. We are planning a two-stage
approach to managing these types of problems in future versions
of Kenyon. The first involves upgrading to Hibernate 3; this
appears worthwhile due to improvements in its query and
mapping capabilities. During this time we will review the
existing Hibernate mappings and try to design new mappings that
would be easier to query. The second phase will likely involve
migrating Kenyon to use an ORM framework instead of using a
specific ORM solution.

Our experience using Kenyon with SignatureFE provided us with
several more key validation points. Kenyon correctly handled a
large number of revisions from each of several different open-
source systems of varying sizes. It also allowed a third-party fact
extractor to be used without any modifications to Kenyon.
Another benefit of this project was a better understanding of the
API-level questions that might be raised by third-party
researchers when creating a FactExtractor subclass.

4.3 Kenyon in the Classroom
To test Kenyon’s ability to reduce the overhead associated with
performing software evolution research, we made Kenyon
available to the students in a 10-week graduate seminar class on
software evolution for use with their projects. We expected the
students to pick projects in which they would use the already-
processed data in a Kenyon repository as the input for their
analyses. Instead, most of the students chose projects where
they created their own fact extractors and performed their own
analyses.

Table 2 shows the projects analyzed by students in the class. Of
the 6 students, 1 used Kenyon fully, 2 only used the SCM
configuration retrieval and fact extractor invocation portions, 2
were not able to use Kenyon at its then-current set of
capabilities, and 1 chose a project in which the use of Kenyon
was not applicable.

Table 2. Projects analyzed by students in seminar class.

The reasons given for not using Kenyon fell into two main
categories: support and data storage flexibility (Reqs. 4,6,7).
Kenyon currently supports only the CVS, Subversion, and
ClearCase SCM systems. Student 5 selected a project for
analysis that was archived in Perforce; Kenyon was therefore not
an option for him. Kenyon also does not yet provide a built-in
Java containment model. While in this case it did not prove to be
a major issue, the primary benefits of such containment schemas
are in language-specific graph construction and convenience
query methods. Student 4 created his own graph schema for his
project, and therefore was able to use Kenyon completely.

The approaches used by the remaining students were not
compatible with Kenyon for the second category of reasons: data
storage flexibility. Specifically, Kenyon 1.3 did not have support
for persisting configuration-based results generated by analyzing
the abstract syntax tree (AST) of a program. Students using such
approaches had their fact extractors write their results to the
filesystem instead.

This realization changed our perception of what types of results a
fact extractor might produce (Req. 8). For example, Student 1
used a third-party tool that analyzes abstract syntax trees to
identify code clones within source code. The results generated
are analogous to proper subgraphs of the full system graph, as
opposed to our expectation of the full system graph itself. To
better support this and other types of configuration-specific
results, we developed a new “ConfigSummary” interface and
added an association from ConfigGraph to any class that
implements this interface. We also created an inheritable
Hibernate mapping for this interface. Student 1 could now, for
example, create a ConfigSummary subclass that contained a
collection of SubGraph (a Kenyon-provided class) instances that
mapped nodes belonging to a given clone identifier onto a
ConfigGraph that represented the containment structure of the
system. This data could be automatically persisted with
Hibernate, which would give the student the advantage of
reusing the Kenyon data structures during evolution analysis of
the extracted code clones.

4.4 Clone Genealogy Extraction
M. Kim et al. at the Univ. of Washington have developed a tool
that extracts clone “genealogies” as part of their research on
clone evolution [12]. They analyze multiple versions of a
program where each version corresponds to a commit
transaction, because they are interested in understanding how
code clones evolve in finer granularity than releases.

Table 3. Projects analyzed for clone genealogy.

Kim et al. were the first external adopters of Kenyon, and at the
time were primarily interested in it for the automated
configuration retrieval from CVS. They had previously analyzed
only system releases, and wanted to decrease the amount of time
required to perform the same analysis in a finer granularity. To
speed up their process, they used Kenyon only to automatically
retrieve each configuration that corresponded to a repository
“check-in” , or commit. Table 3 shows the projects for which
configurations were retrieved in this manner.

It was through their early support that we realized the need to
fully support a “no database” mode of operation, especially as
our persisted-classes data model was still rapidly evolving.
Given our addition of the ConfigSummary class, we believe that
this clone genealogy tool can now adopt Kenyon more fully.

4.5 Beagle
Beagle performs “entity mapping” , where a system entity in one
configuration is associated to another entity in a different
configuration. Beagle focuses on associating file and procedure
entities that were not wholly added or deleted between two

Student Project SCM Kenyon?
1 Hibernate N/A No
1 Eclipse N/A No
2 Kenyon SVN Yes / no database
3 <test program> SVN Yes/ no database
4 Recoder CVS Yes
5 <proprietary> Perforce No

Project SCM # transactions
carol CVS 164 revisions
dnsjava CVS 905 revisions

system releases, but instead were “renamed, moved, or otherwise
changed” [11]. This process is named “origin analysis” , and can
be used to improve the results of software evolution analysis by
allowing an entity’s history to be followed across these types of
changes.

Six months ago we performed a preliminary integration between
a previous version of Beagle and an early version of Kenyon.
We were pleased with the results with respect to code reuse: we
were able to reduce the Beagle source code size by 18% even
without performing a complete replacement of compatible data
structures. Instead, we mapped the Beagle data structures used
by the analysis portions of the system to Kenyon data structures,
and used Kenyon classes from those integration points down to
the database access level. We then used this experience to better
refine the Kenyon data model. We would expect the current
version of Beagle to attain a similar level of code reduction,
because the core set of facts required for origin analysis has not
significantly changed. This experience furthered our goal of
minimizing the effort necessary to reuse results between
disparate evolution analysis systems via a shared set of data
structures.

5. RELATED WORK
While many systems have focused on mining version control
systems for software evolution analysis, only a few stand out as
having addressed some of the requirements that a software
evolution infrastructure tool must support, as discussed in
Section 2. All of these tools incorporate some research-specific
design decisions that keep them from being general-purpose
infrastructure tools, and they each address similar issues in
unique ways.

Minero, created by Alonso, Devanbu, and Gertz [1], and Bloof,
created by Draheim and Pekacki [8], are most like Kenyon in
their separation of the logistical issues of mining software
repositories from research-specific issues. Several key
differences, however, stand out. Minero uses database schemas
that are tied to the type of data source analyzed, and requires the
built-in capabilities of a commercial database to improve the
searchability of the database contents. Bloof allows users to
define custom evolution metrics using the data from CVS log
files as input, but their database schema is based on a minimal
common subset of commit metadata (e.g. author, lines changed,
etc.) archived in version control systems. Conversely, Kenyon
does not place significant requirements on the capabilities of its
underlying database, and avoids schema restrictions by using an
object-relational mapping system that maximizes the benefits of
both flexible and rigid schemas. Furthermore, Bloof is not
intended to incorporate program analysis results, and this is
reflected in its design. It is unclear if Minero’s design will easily
extend to include program analysis results.

The other systems of note all deal with the issue of inferring
relationships between different types of historical data, such as
that archived in version control systems, bug-tracking data, email
archives, and so forth. Hipikat, created by Cubranic and Murphy
[7], infers associations between the data archived within these
different sources to create an “implicit group memory” , and uses
the resulting data to recommend relevant artifacts for a given
task. German and Mockus’ softChange system [10] analyzes
these data sources to identify “software trails” for later analysis

and visualization. Neither of these systems treats its
preprocessing subsystem as an independent system usable for
other analysis techniques. Both support only CVS as their SCM
repository. Fischer, Pinzger, and Gall created a system to
populate a “Release History Database” (RHDB) [9] that
associates bug tracking data with version control data; this
system is more closely related to Kenyon than the other two
because the results of the association are stored for later,
unspecified, evolution analysis. The types of evolution analysis
that can be performed on the RHDB-stored data are, of course,
limited to using data from CVS log files. None of these systems
can easily incorporate third-party per-configuration analysis tools
into their design. Kenyon, on the other hand, is designed to
support multiple types of data sources.

Lastly, OSSmole [6] shares a similar approach as Kenyon,
although it is intended for project-level analysis instead of
program-level analysis. It collects and archives project data, and
third-party analysis results based on project data, for open-source
software systems such as found on SourceForge.

6. FUTURE WORK
Kenyon has three main tasks: automated SCM configuration and
associated data retrieval, fact extractor invocation, and data
storage and access. Our next steps in developing each of these
areas are outlined below:

•••• SCM/Data Support. While we have already demonstrated
the flexibility of our SCM interface, we do intend to add
support for Perforce, and other commonly used SCM systems,
as needed. Our next phase of development for the data retrieval
side of Kenyon is the ability to access multiple SCM repositories
and to associate data from systems such as Bugzilla to the
retrieved configurations. We expect that the majority of this
effort will be spent in managing the association of specific states
in the alternate data sources to specific time-based
configurations in a primary data source. We hope to incorporate
several of the association inference techniques developed for
Hipikat [7], softChange [10], and RHDB [9].

As part of this effort, we plan to research a more comprehensive
data model for the types of, and relationships between, the data
that comprise a single configuration. We also plan to extend
our SCM model to allow for single projects with dependent
components archived separate repositories (e.g. CVS
“modules”), the names and locations of which may also evolve
over time.

•••• Fact Extractor Support. We have shown that the in-
vocation of third-party fact extractors from Kenyon is already
well supported. Our data model for extractor results, on the
other hand, did need to be modified and refined as we gained
experience from applying different types of fact extractors. Our
current efforts are focused on applying the lessons learned from
the graduate seminar class, specifically with respect to language
support and “partial result” support, such as those generated by
AST analyzers or code clone detectors. Our future work in
language support includes the adoption of the Java containment
model created by Godfrey, as well as finalizing the newly
created Recoder4 fact extractor subclass.

4 recoder.sourceforge.net

•••• Data Storage/Access Support. We plan to adopt
Hibernate 3 as soon as it stabilizes. The anticipated
performance and mapping improvements alone make it worth
the effort to convert, even if support for collections of
collections remains weak. The adoption of an ORM framework,
instead of requiring a specific implementation, is desirable but
not a high priority.

7. CONCLUSIONS
Kenyon was created in order to facilitate both the creation of
new software evolution analysis tools and the sharing of data
between such tools. We have provided requirements that any
software evolution infrastructure tool should support. To date,
Kenyon comes closest to simultaneously supporting all these
requirements. It provides a flexible, extensible, and scalable
infrastructure that addresses the common logistical software
evolution issues of configuration retrieval, fact extractor
invocation, and database storage and access. Kenyon makes it
possible to separate these common concerns from evolution
research concerns by allowing analysis-specific fact extraction
tools to be invoked on each of a set of automatically retrieved
historical configurations.

Kenyon supports many different types of stratigraphic software
evolution research, from code feature evolution analyses [12, 13]
to dependence graph-based maintenance history analysis [4]. It
can also serve as an automated data collection infrastructure for
development-assisting recommendation systems such as those
created by Ying et al. and Zimmerman et al. [18, 20]. It has been
used with five heterogeneous third-party fact extractor tools,
three different software configuration management systems, and
has processed both industrial and open-source systems up to 500
KLOC in size. We have tested Kenyon’s ability to provide
commonly usable data structures during preliminary integrations
with two distinct tools [4, 11]. We look forward to improving
our support of software evolution research as other evolution
analysis systems look to adopt Kenyon.

8. ACKNOWLEDGMENTS
Thanks to Lijie Zou at the University of Waterloo for her insight
into Beagle, to Miryung Kim at the University of Washington for
her feedback while using Kenyon, and to the students of the 2005
winter-quarter UCSC CS290G course. Thanks also to Paul
Anderson at Grammatech for his help with Kenyon’s support and
use of CodeSurfer. Kenyon was originally a subsystem of IVA, a
software evolution analysis tool currently funded by NSF Grant
CCR-01234603 and a Cooperative Agreement with NASA Ames
Research Center. Kenyon and its associated documentation are
available for download from its project web page at
www.cse.ucsc.edu/research/labs/grase/kenyon/.

9. REFERENCES
[1] Alonso, O., Devanbu, P., and Gertz, M., "Database

Techniques for the Analysis and Exploration of Software
Repositories," In MSR '04 [15], pp. 37-41.

[2] Bauer, C. and King, G., Hibernate In Action, Practical
Object/Relational Mapping: Manning Publications, 2004.

[3] Belady, L. A. and Lehman, M. M., "A Model of Large
Program Development," IBM Systems Journal, vol. 15(3),
1976, pp. 225-252.

[4] Bevan, J. and Whitehead Jr., E. J., "Identification of
Software Instabilities," Proc. of Working Conference on
Reverse Engineering (WCRE '03), Victoria, BC, Canada,
Nov. 2003, pp. 134-143.

[5] Cederqvist, P., "Version Management with CVS"
http://www.cvshome.org/docs/manual/

[6] Conklin, M., Howison, J., and Crowston, K., "Collaboration
Using OSSmole: A Repository of FLOSS Data and
Analyses," In MSR '05 [16], pp. 116-120.

[7] Cubranic, D. and Murphy, G. C., "Hipikat: Recommending
Pertinent Software Development Artifacts," Proc. of 25th
Int'l Conference on Software Engineering (ICSE '03),
Portland, OR., May, 2003, pp. 408-418.

[8] Draheim, D. and Pekacki, L., "Process-Centric Analytical
Processing of Version Control Data," Proc. of Int'l
Workshop on Principles of Software Evolution (IWPSE
'03), Helsinki, Finland, Sept., 2003, pp. 131-136.

[9] Fischer, M., Pinzger, M., and Gall, H., "Populating a
Release History Database from Version Control and Bug
Tracking Systems," Proc. of Int'l Conference on Software
Maintenance (ICSM '03), Sept. 2003, pp. 23-32.

[10] German, D., "Mining CVS Repositories, the softChange
experience," In MSR '04 [15], pp. 17-21.

[11] [Godfrey, M. and Zou, L., "Using Origin Analysis to Detect
Merging and Splitting of Source Code Entities," IEEE
Transactions on Software Engineering, vol. 31(2), Feb.
2005, pp. 166-181.

[12] Kim, M., Sazawal, V., Notkin, D., and Murphy, G. C., "An
Empirical Study of Code Clone Genealogies," to appear, in
Proc. of Joint 10th European Software Engineering
Conference and 13th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE '05),
Lisbon, Portugal, Sept. 2005.

[13] Kim, S., Whitehead Jr., E. J., and Bevan, J., "Analysis of
Signature Change Patterns," In MSR '05 [16], pp. 64-68.

[14] Leblang, D., "The CM Challenge: Configuration
Management that Works," in Configuration Management,
W. F. Tichy, Ed.: John Wiley & Sons, 1994, pp. 1-38.

[15] Proc. 1st Int'l Workshop on Mining Software Repositories
(MSR '04), Edinburgh, Scotland, U.K., May 25, 2004.
ACM.

[16] Proc. 2nd Int'l Workshop on Mining Software Repositories
(MSR '05), St. Louis, MO, USA, May 17, 2005. ACM.

[17] Walls, C. and Richards, N., XDoclet In Action: Manning
Publications, 2003.

[18] Ying, A. T., Murphy, G. C., Ng, R., and Chu-Carroll, M.
C., "Predicting Source Code Changes by Mining Change
History," IEEE Transactions of Software Engineering, vol.
30(9), Sep. 2004, pp. 574-586.

[19] Zimmerman, T. and Weissgerber, P., "Preprocessing CVS
Data for Fine-Grained Analysis," In MSR '04 [15], pp. 2-6.

[20] Zimmerman, T., Weissgerber, P., Diehl, S., and Zeller, A.,
"Mining Version Histories to Guide Software Changes,"
Proc. of Int'l Conference on Software Engineering (ICSE
'04), Edinburgh, Scotland, UK, May 2004, pp. 563-572.

