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ABSTRACT 
Software evolution research inherently has several resource-
intensive logistical constraints.  Archived project artifacts, such 
as those found in source code repositories and bug tracking 
systems, are the principal source of input data.  Analysis-specific 
facts, such as commit metadata or the location of design patterns 
within the code, must be extracted for each change or 
configuration of interest.  The results of this resource-intensive 
“fact extraction”  phase must be stored efficiently, for later use by 
more experimental types of research tasks, such as algorithm or 
model refinement.  In order to perform any type of software 
evolution research, each of these logistical issues must be 
addressed and an implementation to manage it created.  In this 
paper, we introduce Kenyon, a system designed to facilitate 
software evolution research by providing a common set of 
solutions to these common logistical problems.  We have used 
Kenyon for processing source code data from 12 systems of 
varying sizes and domains, archived in 3 different types of 
software configuration management systems.  We present our 
experiences using Kenyon with these systems, and also describe 
Kenyon’s usage by students in a graduate seminar class. 

Categories and Subject Descriptors 
D.2.7 [Software Engineering]: Distribution, Maintenance, and 
Enhancement – Restructuring, reverse engineering, and 
reengineering. 

General Terms 
Management, Measurement, Documentation, Design, Reliability. 

Keywords 
Software evolution, software stratigraphy, software 
configuration management 

1. INTRODUCTION 
Software evolution research has investigated many different 
issues, from modeling program development [3] to using the 
archived development history to recommend likely members of 
change-impact sets [18, 20].  Many of these research analyses 
sample the archived project artifacts, such as source code 

configurations or modification request forms, at specific points in 
time, either by date or by semantic label, over a significant 
portion of the entire project history.  Depending upon the type of 
analysis being performed, different types of “facts”  may be 
extracted from each configuration, or from the data associated 
with the difference between a pair of configurations (e.g., source 
code repository commit data).  These facts, which comprise the 
raw data on which the evolution analysis operates, are commonly 
stored once and used during multiple analysis passes. 

The method of obtaining the input data, preprocessing it to 
extract the relevant facts, and storing the results has traditionally 
been re-implemented for each software evolution research system 
created.  Due to the time cost of implementation, researchers are 
forced to make tradeoffs in the type of data they can analyze, 
such as committing to a single programming language or 
supporting a single software configuration management (SCM) 
system.  For example, the tradeoff of only supporting CVS [5] is 
commonly considered acceptable [7, 8, 10], given the large 
number of CVS-archived projects available through 
SourceForge.  The primary threat to validity with such systems, 
however, stems from the fact that most industrial systems do not 
use CVS, and therefore the applicability of the analysis results to 
such systems is sometimes questioned [20].   

These types of tradeoffs, and the practice of implementing new 
solutions to these common problems in each analysis system, lead 
to difficulties when attempting to apply the results of one analysis 
technique to improve or refine the results of another.  We believe 
that these difficulties stem from the process of mapping the set of 
data structures and their associated assumptions used by one 
researcher to the set of data structures used by another.  It is also 
not always true that one analysis system can use the final results 
of another system; instead, the partial results from an earlier 
point in the processing may be the optimal point of composition 
or reuse.  For example, both Ying et al. and Zimmerman use 
association rule mining to provide recommendation sets on 
artifacts that are likely to need changing given an initial source 
code modification [18, 20]. If a different analysis engine wants to 
reuse the computed association sets for a different purpose, they 
are not necessarily easily available or reusable.  We believe a 
shared set of data structures for common software evolution 
representation problems would improve researchers’  ability to 
compare and leverage results by improving such data availability 
and minimizing (or removing) the need to map one structure to 
another. 

In this paper, we present Kenyon, a system inspired by our desire 
to improve the results of our instability analysis system (IVA) [4] 
with the origin analysis performed by Beagle [11]. While 
examining the Beagle data flow, we noticed the similarities 

 



between its early preprocessing stages and our own.  In fact, 
Zimmerman and Weissgerber identified very similar 
preprocessing tasks as those “performed by most analyses”  [19].  
As a result, we redesigned a significant portion of our existing 
software, including some of the Beagle code, to become an 
independent subsystem, and defined a set of responsibilities and 
services that it would provide.  This is Kenyon. 

Kenyon supports software evolution research systems that 
perform “stratigraphy” , the analysis of a series of related layers 
(strata) that comprise a time-based software development 
history.  For source code, the strata are the configurations within 
the historical record archived by an SCM system, with possible 
associations to data in other, time-variant sources such as bug-
tracking systems.  Kenyon provides automated configuration 
retrieval from an SCM system onto the local filesystem, invokes 
analysis-specific “fact extractors”  on each retrieved 
configuration, and saves the extracted facts into a relational 
database using an object/relational mapping (ORM) system.  
These results are then accessible to any number of later analysis 
techniques implemented by external evolution analysis systems.  
While Kenyon does not mandate that these independent 
evolution analysis systems report results in a specific format, it 
does provide reusable data structures via the ORM system that 
are expected to provide a common basis for interpreting and 
reusing the results that are provided. 

Our aim in creating Kenyon is to reduce the start-up time 
associated with software evolution research by providing a 
common framework within which new analysis methods can use 
any of the supported SCM systems and any of the supported data 
types.  Additionally, by providing a sufficiently flexible structure 
for storing extracted facts, the process of composing or 
comparing results is much simpler.  As a means of testing our 
progress towards these goals, we provided Kenyon to the 
students in a 10-week graduate seminar on software evolution, 
during which they were required to complete a software 
evolution-based research project.  Concurrently with this seminar 
we used Kenyon to analyze one 500 KLOC industrial system and 
nine different open-source systems up to 298 KLOC, to better 
test and model its scalability.   

The rest of the paper is structured as follows. Section 2 discusses 
the requirements associated with any infrastructure tool intended 
to support software evolution research.  Section 3 presents the 
structure and data flow of Kenyon, and describes how each of 
the requirements are addressed.  Section 4 describes in greater 
detail our experiences using Kenyon in the classroom, on the 
open-source systems, and on the industrial system.  It also 
describes the adaptations to Kenyon made in order to meet the 
needs exposed during this time.  Section 5 discusses related 
work, and Section 6 discusses planned future work for Kenyon. 

2. EVOLUTION INFRASTRUCTURE 
REQUIREMENTS 
Any infrastructure tool that proposes to assist software evolution 
research must allow researchers to focus on their research-
specific interests.  This goal implies that the tool should reduce 
manual labor costs as much as possible.  The key such benefit 
that an evolution assistance tool could provide is automated per-
configuration fact extraction processing: the current most labor-

intensive tasks in software evolution research are those of 
interacting with various data archives (e.g. SCM systems), 
identifying and extracting semantically consistent configurations, 
and analysis-tool invocation.  A secondary benefit is a reduction 
in “time-to-research” , because research-specific systems would 
not need to reinvent solutions to the common logistical problems; 
the time saved may even be used to perform more in-depth 
analyses than otherwise possible within fixed time limitations.  
An acceptable evolution assistance tool must support these 
benefits without limiting the types of evolution research possible 
on the preprocessing results; for example, requiring the “data 
cleaning”  [19] phase as used by association rule mining 
techniques [18, 20] would remove data required by IVA [4]. 
These benefits and constraints imply several requirements on a 
software evolution infrastructure tool.  We outline these 
requirements below, and discuss the extent to which they impact 
the acceptability of such as system. 

Req. 1:  Automated configuration retrieval.  A significant 
part of the labor associated with per-configuration fact extraction 
is based on interacting with the systems that archive the 
configuration data.  Given a specification of the times for which 
configurations should be retrieved, a set of constraints that define 
the membership of the retrieved configurations (e.g. files in 
directory “foo” , or not ending in “.doc”), and a set of data 
sources, the infrastructure tool must automatically, without any 
further manual assistance, obtain a time series of configurations 
from the archiving systems. 

Req. 2:  Allow user control on configuration times.   
Req. 2.a:  Allow limits on timespan processed.  
Software evolution systems do not always need to analyze the 
entire history of a system to produce interesting results.  An 
evolution infrastructure tool must therefore accept a timespan 
specification that explicitly limits the earliest and latest 
configuration times to be processed.   

Req. 2.b:  Allow user-specified minimal processing 
interval.  The frequency at which configurations need to be 
retrieved is also a function of the evolution analysis to be 
performed and the software project being analyzed.  An 
infrastructure tool must also accept a “sampling rate”-type 
specification (such as “once per day”) that selects a subset of 
configurations to be processed from the set of configurations 
available within a given timespan. 

Req. 3:  Support for different software configuration 
management systems.  Software configuration management 
(SCM) have several implementations with widely varying 
capabilities, such as CVS [5] and ClearCase [14].  An infra-
structure tool must have the ability to interact with several 
commonly-used such systems, and the ability to easily add 
support for others.   

Req. 3.a:  Retrieve consistent source code config-
urations.  We consider the smallest unit of change in the state 
of a source code repository that is of interest to software 
evolution researchers to be a “ logical change” [19], interpreted 
at the level of a single, user-issued “commit”  command.  Non-
transaction based systems such as CVS alter the state of the 
repository each time a change to a given file is stored, instead of 
once per such logical change.  Configurations from such 



systems must be retrieved such that only the effects of logical 
changes are visible. 

Req. 3.b:  Access archived metadata associated with 
each logical change.  If a data source records metadata 
associated with archived data, such as the author and log 
message for a given SCM commit, the infrastructure tool must 
be able to access it and make it available to analysis tools. 

Req. 4:  Support multiple data input sources.  The 
necessary data to perform software evolution analysis is not 
always stored in a single data source.  While different types of 
data are certainly expected to be stored in different types of 
systems (such as bug tracking data and version history data), 
sometimes the same type of data may be spread across different 
systems.  For example, if two libraries are co-evolving and 
interdependent, but are archived in separate SCM systems, an 
evolution infrastructure tool must be able to access both version 
histories in a consistent and seamless manner. 

Req. 5:  Allow incremental processing. A software 
evolution infrastructure tool must allow researchers to both 
“catch up”  to the present time and to “keep up”  with ongoing 
development.  Given the computational costs that still apply to 
per-configuration processing, previous processing results must be 
able to be easily integrated with results from new processing. 

Req. 6:  Support a broad variety of user-defined fact 
extraction tools.  Automated per-configuration processing is 
only useful when the user has the ability to select arbitrary fact 
extraction tools that provide the data relevant to the specific 
research being performed.  Given the time cost of retrieving each 
configuration from the archiving systems, an infrastructure tool 
must therefore support the invocation of a user-specified, 
heterogeneous set of fact extraction tools on each retrieved 
configuration. 

Req. 7:  Support processing of multiple types of data in 
multiple languages.  A software evolution infrastructure tool 
must not inherently limit the types of systems whose evolution 
may be analyzed.  While it may place the burden for language-
specific analysis on the user-defined processing tools, it must not 
make it impossible to accommodate systems with unfamiliar or 
mixed languages (e.g. modeling or programming languages) or 
data types (e.g. source code, design documents). 

Req. 8:  Provide efficient, accessible, and optional 
storage of extracted facts.  The facts extracted during per-
configuration processing may be stored in several different ways, 
from XML files to relational databases.  Because software 
evolution research is likely to analyze the time series of per-
configuration results, a storage method that allows efficient 
access to these results along the time dimension must be 
provided.  Evolution researchers must also be allowed to decide 
to not use the provided storage method, as it might not be 
immediately compatible with their existing analysis systems. 

Req. 9:  Scalability. 
Req. 9.a:  Computational scalability.  The infrastructure 
tool must not require significantly more memory or CPU 
resources to automatically process a series of configurations 
than that required for processing of a single configuration.  This 

allows an arbitrary number of configurations to be automatically 
processed. 

Req. 9.b:  Data access scalability.  The infrastructure tool 
must not require that all facts extracted from a given 
configuration be loaded into memory when access to a subset of 
these facts is desired.  This allows multi-configuration analysis 
tools to minimize their own memory usage. 

Req. 9.c:  Support parallel batch processing. Even 
though a tool that supports automatic per-configuration 
processing can dramatically reduce the labor costs of software 
evolution research, the computational costs can still be 
significant.  The results from processing different timespans in 
parallel must be able to be merged in the storage system, to 
further reduce the time-to-research. 

Req. 10:  Availability.  Any system that intends to facilitate 
software evolution research must be easily available to 
researchers (ideally through a web-based download), run on 
several common processing platforms, and provide effective and 
helpful documentation to its intended audience. 

3. KENYON ARCHITECTURE 
Kenyon currently fulfills all of the requirements described in 
Section 2, with the exception of supporting multiple data input 
sources (Req. 4).  In this section we present a more detailed look 
at Kenyon’s design and how it addresses each of the functional 
requirements. 

3.1 Usage Overview 
Kenyon is designed as an asynchronous, minimally interactive 
application.  It is configured via a user-supplied processing 
configuration file: a text “properties”  file that names the data 
sources, configuration selection guides, and third-party tools to 
be invoked on each configuration (Req. 6).  Kenyon is also 
normally configured with an ORM-specific properties file that 
names the database to which the preprocessed data should be 
stored (Req. 8).  Kenyon “samples”  a data source (i.e. SCM 
system) at a specified time interval, such as once per second or 
twice per day, between a start date and an end date, which may 
be set to “ last”  for incremental processing (Req. 2). 

Kenyon’s data source sampling algorithm is driven by the 
expected needs of its users.  Software evolution research is 
primarily concerned with the effects of “ logical changes”  [19].  
We interpret a logical change at the lowest archived level: that 
associated with a user-issued “commit”  command.  We use the 
term “configuration”  as a set of files defined by a set of inclusion 
constraints; Kenyon configurations represent the state of the 
repository along a particular branch (variant) at a given 
timestamp.  We perceive these configurations as analogous to the 
geologic strata that form a fossil record, and give each a unique 
configuration specification comprised of the project identifier, 
branch identifier, and timestamp.  The set of “ interesting”  
configuration specifications are those that reflect the result of 
applying a single logical change.  When sampling the data source, 
Kenyon retrieves configurations only for these “interesting”  
configuration specifications, and uses the user-specified time 
interval to ensure a minimum time between successive retrieved 
configurations. 
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Some SCM systems, such as CVS, do not archive files changed 
by a single user-issued “commit”  command as a single, logical 
change.  In the case of CVS, files that should be considered as 
being part of the same commit “transaction”  are actually stored 
in the repository with different timestamps.  When Kenyon 
retrieves data from such systems, it applies a sliding-window 
“transaction recovery”  algorithm [19] to regroup these files into 
a single logical change (Req. 3.a).  Kenyon uses the set of times 
at which at least one transaction completed (i.e. the latest time at 
which a file in a given commit transaction was written to the 
repository) to define the set of logical change-based 
configurations.  When retrieving a configuration from such a 
system, Kenyon ensures that any file that was already saved to 
the repository at the specification timestamp, but that is also part 
of an uncompleted (or, “ongoing”) transaction, is retrieved as it 
existed before that ongoing transaction began. 

Kenyon supports incremental updates to an existing processed 
data set (Req. 5).  It can therefore be used to process a 
development history, and then keep up with ongoing 
development using, for example, nightly updates.  It can also be 
used in a successive-refinement mode, where a large time interval 
is initially used to identify areas of particular interest.  What 
constitutes “particular interest”  is of course analysis-specific.  
One scenario where successive refinement is useful occurs when 
analysis quality is dependent upon the amount of change that 
occurs between two compared configurations.  For example, it 
may be that as the number of logical changes incorporated 
between two compared configurations increases, so does the 
difficulty of producing a correct result.  If the analysis provides a 
result-quality “confidence value” , then an automated successive 
refinement process could be configured.  

For example, if Kenyon preprocessing is performed at an initial 
interval (such as once per week), the analysis tool could run over 
those results, generating a set of confidence values for each 
successive pair of configurations.  For each pair where the 
confidence value is below a certain threshold, Kenyon could be 
rerun at a smaller time interval (such as once per day or once per 
hour).  This process could iterate until either the smallest time 

interval possible is reached (once per second) or the confidence 
value exceeds the threshold.  Successive refinement allows 
Kenyon users to avoid processing all data at small time intervals, 
which reduces part of the computational cost of performing 
software evolution analyses (Reqs. 1,2,5).  

3.2 Data Flow Architecture 
The high-level Kenyon data flow architecture is shown in Figure 
1.  The DataManager class is the execution entry point; it reads 
the configuration files and invokes the configuration retrieval, 
fact extraction, and object storage methods.  The SCMInterface 
class isolates Kenyon from the implementations associated with 
each concrete SCM subclass (Req. 3): at this point, Kenyon 
supports the CVS, Subversion, and ClearCase SCM systems.  It 
also supports a “filesystem” implementation that is intended for 
use when access to the SCM repository is not available but a 
series of pre-downloaded configurations (such as system 
releases) are.  The FactExtractor and MetricLoader abstract 
classes are the API points for research-specific tool invocation 
extensions. 

Kenyon retrieves each configuration to be processed and places it 
in the local filesystem.  We do this because program analysis 
tools commonly support a filesystem input source and rarely 
support direct SCM interaction.  The DataManager class then 
invokes the series of concrete FactExtractor subclasses specified 
by the user in the processing configuration file.  These subclasses 
are the means by which external, analysis-specific, fact extraction 
tools interface with Kenyon.  While we expect most users to 
provide FactExtractor subclasses, Kenyon does come with two: 
one that invokes and loads the data from Grammatech’s 
CodeSurfer1, and one that invokes part of the SWAGKIT2 
pipeline and reads the resulting TA-formatted files. 

Kenyon draws a distinction between programs that produce a 
graph representation of the configuration under analysis (such as 

                                                               
1 www.grammatech.com/products/codesurfer 
2 www.swag.uwaterloo.ca/tools.html 

Figure 1.  High-level data flow architecture of Kenyon.  The numbers on the solid arrows indicate the processing order. 



 
Kenyon Repository 

Evolution 
System 1 

Kenyon 
Evolution 
System 2 

a call graph or a containment graph) and those that calculate 
metrics that may be associated with the configuration or some of 
its entities (such as total number of lines of code, or average 
number of files per directory).  The former programs are 
considered to be fact extractors, and the latter are termed “metric 
loaders” .  The rationale behind this distinction is that metrics may 
be calculated by different systems on different program entities, 
and a common system representation is necessary to merge the 
results of each individual metric loader.  We therefore expect 
metric loaders to attribute the graph (or elements therein) 
produced by a fact extractor; each such graph is expected to be 
an internally consistent system representation. 

The user-supplied Kenyon processing configuration file specifies 
the metric loaders that will be invoked by each fact extractor, via 
a concrete MetricLoader subclass.  For performance reasons, 
Kenyon ensures that each metric loader only calculates its results 
once, although it may load its results onto many different graphs.  
As with FactExtractor subclasses, we expect most users to 
provide their own MetricLoader subclasses, although Kenyon 
does provide one that invokes and loads the data produced by 
UnderstandForC++3. 

Kenyon saves the results from each processed configuration to a 
database (Req. 8).  As part of our goal to improve the ability of 
third-party analysis systems to reuse Kenyon data structures, we 
decided to use an object-relational mapping (ORM) system to 
help automate the storage to, and retrieval of Java objects from, 
the database (Reqs. 8,9.b).  This affords us some added SQL 
dialect isolation, allows automatically generated object-based 
database schemas to be used, and simplifies the process of 
merging of results processed either in parallel or incrementally 
(Reqs. 5,9.c).  Kenyon’s current ORM system is Hibernate 2.1.6 
[2], which has been helpful in some respects although it has had 
some scalability problems.  Hibernate allows Kenyon to use 
XDoclet [17] tags, embedded within javadoc-type comments, to 
annotate the source code with the information necessary to 
automatically generate the object-relational mapping files.  These 
in turn are used to generate the database schemas.  Hibernate 
also provides HQL, an object-based query language that 
translates the queries into SQL based on the dialect specified in 
the Hibernate configuration file.   

Kenyon does provide some prepackaged Hibernate convenience 
queries for obtaining the set of analyzed projects, the 
configuration specifications for which data is available in a given 
project, and the fact extractor-specific result for a given 
specification.  We have found that, in practice, our own analysis 
systems use handcrafted HQL, optimized for the specific query 
goal, for almost any purpose other than these. 

Software evolution researchers are not required to use Hibernate, 
because they can still access the Kenyon-processed data using 
SQL.  The benefit from an ORM system primarily comes from 
the concept of “persistent objects” , which means that a Java 
object instance can be retrieved from the database in exactly the 
same state that it was persisted to the database.  This retrieval 
mechanism simplifies the source code necessary to load results 
stored either by Kenyon or by a third-party analysis tool.  The 
data flow for this type of scenario is shown in Figure 2, where 

                                                               
3 www.scitools.com 

solid lines indicate data storage and dashed lines indicate data 
access. 

Kenyon does not currently place any restrictions on the database 
used for storing the preprocessed data, beyond the requirement 
that a JDBC driver be available.  Database administration issues, 
such as write permissions, are also not managed in Kenyon.  
Kenyon does make its tables “ immutable”  to external analysis 
systems via Hibernate, but this only restricts deletions and 
modifications, not insertions.  We expect to be refining our 
database requirements as we evaluate collaborative evolution 
analysis environments in the future. 

3.3 Persisted Data Structures 
The goal of our persisted data model is to facilitate result 
comparison and reuse across different evolution analysis systems.  
We balance the expressiveness of a flexible schema with the 
comparability of a rigid schema by adopting a model that 
provides flexibility only in the portions of the schema associated 
with analysis-specific results, and that is rigid everywhere else.  
We maximize the comparability of the flexible, analysis-specific, 
schema by using an expressive and rigid graph-based framework 
and requiring the use of a descriptive graph schema data 
structure to provide information on the specific organization of a 
given graph.  Certainly, “ log-based” evolution analyses do not 
require a graph representation to convey results [7, 8, 10, 18, 
20], but they do not preclude it.  On the other hand, evolution 
research based in program analysis [4, 11-13] commonly use 
some form of graph-based representation (such as a call graph, 
or via an entity identification scheme rooted in a containment 
hierarchy), without which it is very difficult to compare results.  
The Kenyon graph structure can not only express several 
different standard graph exchange formats such as GXL or TA, 
but is in fact more expressive than either of these; as one 
example, it allows multiple ordered values to be associated with a 
single attribute. 

Kenyon stores all results generated from the per-configuration 
fact extractor processing, as well as analysis-independent data 
such as the configuration specifications processed and the project 
to which the per-configuration results should be assigned.  The 
association relationships between most of the Kenyon-persisted 
classes are shown in Figure 3.  The Project and ConfigSpec 
classes act as the principle identifiers used to retrieve a specific 
ConfigData instance, which contains a set of per-configuration 

Figure 2.  Data flow between Kenyon and two software 
evolution tools, one of which uses the results of the other. 



ConfigGraph results.  Each ConfigGraph is identified by the 
name of the FactExtractor subclass that created it, and references 
the GraphSchema subclass used during its construction.  This is 
the mechanism by which ConfigGraphs provide a description of 
their structure (such as naming scheme and containment 
hierarchy) to evolution analysis systems (Req. 7).  ConfigGraphs 
are comprised of nodes, edges, and any attributes assigned to 
these graph entities; these classes are naturally persisted as well. 

To further isolate research-specific fact extractor tools from the 
specific SCM requirements, differences between successive 
configurations are calculated automatically by Kenyon, stored as 
ConfigDelta instances, and associated with two configuration 
specifications.  Because ConfigDeltas are generated from data 
within the software configuration management system, the 
granularity of the data stored is not required to be uniform; 
however, the minimal data granularity identifies which lines in 
which files were added, deleted, or modified.  In the case where 
Kenyon is being invoked on a timespan that overlaps previously 
processed data (as would be done with a successive refinement 
approach to data processing), no configurations that were 
previously processed are reprocessed. ConfigDeltas are re-
computed whenever the time difference between successive 
configurations is smaller than previously stored. 

Software evolution analysis systems are not required use 
Hibernate to store their results.  We do feel that making software 
evolution results available in this way will improve the ease with 
which researchers can compare or reuse the results of others.  To 
this end, Kenyon provides an abstract, Hibernate-persistable, 
“EvolutionPath”  class that associates a set of nodes in one 
ConfigGraph to a set of nodes in another ConfigGraph.  This 
class can be used as a building block for composing or persisting 
more complex software evolution results. 

3.4 Scalability 
Certain performance issues should be given consideration when 
creating a FactExtractor subclass.  The per-configuration running 
time of Kenyon is the total of the fact extractor run time plus the 

time to load the resulting graph into memory and store it to the 
database.  The larger the graph, the more time it takes to perform 
these latter two steps.  Our goal has been to ensure that Kenyon 
is scalable, within the limitation that any given pairing between a 
fact extractor and a system to be analyzed will dramatically 
impact the performance numbers (Req. 9.a). 

Memory usage is also an issue: Kenyon cannot enforce that third-
party fact extractors remove all references to the created 
ConfigGraph or its components.  If a fact extractor does not do 
this, the garbage collector will not be able to reclaim the memory 
used.  Analyzing the memory usage of Kenyon while it is running 
over a limited number of configurations with a new fact extractor 
is a very useful secondary validation phase. 

4. KENYON IN PRACTICE 
We have recently concluded concurrent projects in which 
Kenyon was used in three very different settings. The first setting 
was in the lab, where a Kenyon developer used Kenyon to 
process a 500 KLOC industrial system archived in ClearCase for 
later analysis by IVA [4]. In a second lab setting, another Kenyon 
developer processed several different open-source projects up to 
298 KLOC using Kenyon, for later analysis with SignatureFE 
[13].  The third setting was in the classroom, where students in a 
10-week graduate seminar class were expected to perform some 
type of software evolution analysis as a project.  Independent of 
these projects, developers of a third-party code-clone evolution 
analysis system [12] also used Kenyon.  The next sections 
describe these projects and the lessons learned from them. 
 

4.1 System X 
We applied Kenyon to “System X” as a preprocessing phase 
before invoking IVA, an evolution analysis tool that identifies 
historically high-maintenance, statically-dependent, code regions 
[4].  System X is approximately 500 KLOC (commented) of 
mixed C/C++ source code.  Its developer made six months of its 
ClearCase history available to us.  We used CodeSurfer as our 
fact extractor, and created ConfigGraphs at a mixed 
line/procedure level of granularity.  The owners of System X 
specified that we were to process the configurations at each of a 
list of ClearCase labels. This use of Kenyon represented the first 
time we had applied a commercial fact extraction tool to a 
mixed-language system of this size.  We expected to get a better 
sense of how well our support of third-party per-configuration 
analysis tools performed, and to also discover any scalability 
problems that we had not anticipated.  We did encounter several 
such challenges, which allowed us to assess how well we were 
meeting the requirements for an evolution infrastructure tool, as 
well as to further refine and improve those requirements. 

Our first significant challenge with System X arose as we realized 
that while we had the available history for the project, we did not 
have the history of the project’s “environment” : a set of co-
evolving libraries that defined several macros, procedures, and 
global variables used by System X.  The environment’s version 
history was archived in a separate SCM system, to which we did 
not have access.  We therefore needed to manually align specific 
releases of this environment with the ClearCase history.  This 
situation resulted in the creation of our “filesystem” SCM 
subclass, wherein a set of pre-existing directories are assigned 
configuration specifications in an XML file.  We realized that we 

Figure 3.  Association relationships between persisted 
Kenyon classes. 
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would eventually need to extend Kenyon to access data from 
multiple SCM systems to produce a consistent configuration for 
projects like System X (Req. 4), but for this specific project we 
instead opted to create a set of configurations, combined with the 
appropriate environment, on the filesystem.  This decision gave 
us the advantage of being able to run Kenyon on the data from 
multiple machines, some of which were not able to directly 
mount ClearCase views due to access restrictions. 

The second challenge with System X arose from a realization 
that graph node names, as produced by CodeSurfer, were not 
normalized to remove semantically meaningless whitespace, such 
as found in the parameter lists in C++.  This caused name-based 
associations (performed by IVA) between nodes in different 
configurations to fail.  This problem couldn’ t be solved within 
Kenyon due to its origins in the fact extraction process; however, 
we did modify the Kenyon-provided CodeSurfer FactExtractor 
subclass to perform the normalization (Reqs. 6,7). 

Our last significant challenge when processing System X with 
Kenyon stemmed from a scalability issue with our use of 
Hibernate (Req. 9a).  Kenyon had been taking advantage of a 
cascaded “save”  operation, in which a single save call would 
persist all associated data structures to the database.  To this 
point, we had not found a problem with this process.  The 
System X graphs, however, averaged approximately 650MB in 
memory each, and saving them using Hibernate directly was 
causing OutOfMemory errors.  The core reason for the memory 
growth was the lack of a “write-and-discard”  operation in 
Hibernate; instead, Hibernate replaces newly saved objects with 
“persistent”  versions that contain the added state necessary to 
perform caching and dirty-object checking.  The persistent 
versions of the graph nodes alone added approximately 600MB 
to the Kenyon memory usage during a save operation.  To avoid 
this memory growth, we modified Kenyon to directly save each 
ConfigGraph using JDBC calls, and continued to use Hibernate 
to save to all of the other objects associated with the ConfigData.  
We would prefer to maintain SQL-dialect independence through 
an improved ORM system; however, this solution does solve the 
immediate problem. 

Our running time for Kenyon/CodeSurfer on a single 
configuration of System X was approximately 1 hour on a 
computer with a 2.8GHz processor and 3GB of physical 
memory. It reached a steady-state memory usage of 
approximately 1.8GB.  CodeSurfer contributed 30 minutes to 
this total, producing per-configuration graphs containing both 
containment and dependence relations with approximately 
135,000 nodes and 344,000 edges.  The remaining 30 minutes 
involved reading the CodeSurfer-produced graph file from disk, 
calculating a ConfigDelta directly from a ClearCase-provided 
delta, and saving the results into the database.  We expect to gain 
some reduction in the Kenyon-specific time from optimizations 
such as tuning our database transactions per graph ratio. 

Because Kenyon was primarily extracted from existing IVA 
code, the data structure reuse level between the programs was 
quite high.  Even so, the process of applying a familiar evolution 
analysis tool to Kenyon data caused us to realize several API-
level weaknesses between Kenyon and IVA in the early releases.  
These weaknesses were primarily related to the functionality 
provide by the GraphSchema class and to the expected boundary 

between which data should be persisted by Kenyon and which by 
IVA.  We resolved most these issues before the graduate seminar 
class started to use Kenyon.   

Our experience using Kenyon as the preprocessing stage for IVA 
with System X provided us with several key validations.  First, it 
proved that the separation of analysis-independent, logistical 
issues (Kenyon) and the analysis-specific research issues (IVA) 
was possible.  It also showed that this separation provided a 
significant benefit; only minimal reprocessing was needed when 
correcting an IVA error.  We determined that not only could 
Kenyon perform automatic per-configuration processing with a 
third-party fact extraction tool, but that it could do so with 
reasonable performance and at high scale. 

4.2 SignatureFE 
We also used Kenyon during an ongoing signature change 
analysis project on a total of nine different open-source systems 
of up to 298 KLOC in size [13].  The fact extractor used during 
this process, SignatureFE, is entirely separate from Kenyon, and 
was created by a Kenyon developer that had not been involved in 
creating either of the provided FactExtractor subclasses.  The 
systems analyzed using SignatureFE can be found in Table 1, 
where “revisions”  indicates the number of configurations 
extracted by Kenyon directly from the SCM repository.  In some 
SignatureFE analyses, a set of releases was processed instead, via 
Kenyon’s filesystem (FS) SCM interface subclass. 

Table 1.  Projects analyzed by SignatureFE using Kenyon. 

The most significant findings from this project related to our 
expectations on the ease of access using HQL to the Kenyon 
data (Req. 8).  Creating queries to retrieve, for example, only 
those Procedure nodes that had a specific metric value over a 
certain amount was still more difficult than we had hoped. 

The reason for this difficulty is that Hibernate 2.x does not 
directly support mapping or referencing collections of 
collections. Kenyon, on the other hand, uses cascading 
collections within its ConfigGraph class, as shown in Figure 3. 
Hibernate actually forced the creation of a distinct AttributeSet in 
order to create a mapping for the AttributedImpl class.  HQL has 
a similar weakness when working with collections of collections, 
especially when lazy initialization is used to avoid loading an 
entire graph.  While in most cases the HQL for a given query is 
simpler than the equivalent query in SQL, in this case it is not.  
Our best approach for this query with the current version of 
Hibernate is performed in memory, using an iterative approach 
that avoids loading the entire graph. 

Project SCM 
# revisions 

(or releases)  
Apache Portable Runtime (APR) SVN 5990 revisions 
Apache HTTP 1.3 (Apache 1.3) SVN 7747 revisions 
Apache HTTP 2.0 (Apache 2) CVS 3877 revisions 
APR utility (APU) SVN 1353 revisions 
Subversion SVN 5886 revisions 
CVS CVS 2873 revisions 
Linux Kernel 2.5 (Linux) FS 75 releases 
GCC FS 15 releases 
GCC CVS 3012 revisions 
Sendmail FS 37 releases 
Subversion (SVN) SVN 6029 revisions 



We still believe that our use of an ORM solution will improve the 
ability of evolution analysis tools to reuse Kenyon data 
structures.  In most cases, evolution analysis tools will still need 
to handcraft queries, whether they be performed in the database 
or not, specific to their interests.  We are planning a two-stage 
approach to managing these types of problems in future versions 
of Kenyon.  The first involves upgrading to Hibernate 3; this 
appears worthwhile due to improvements in its query and 
mapping capabilities.  During this time we will review the 
existing Hibernate mappings and try to design new mappings that 
would be easier to query.  The second phase will likely involve 
migrating Kenyon to use an ORM framework instead of using a 
specific ORM solution. 

Our experience using Kenyon with SignatureFE provided us with 
several more key validation points.  Kenyon correctly handled a 
large number of revisions from each of several different open-
source systems of varying sizes.  It also allowed a third-party fact 
extractor to be used without any modifications to Kenyon.  
Another benefit of this project was a better understanding of the 
API-level questions that might be raised by third-party 
researchers when creating a FactExtractor subclass. 

4.3 Kenyon in the Classroom 
To test Kenyon’s ability to reduce the overhead associated with 
performing software evolution research, we made Kenyon 
available to the students in a 10-week graduate seminar class on 
software evolution for use with their projects.  We expected the 
students to pick projects in which they would use the already-
processed data in a Kenyon repository as the input for their 
analyses.  Instead, most of the students chose projects where 
they created their own fact extractors and performed their own 
analyses. 

Table 2 shows the projects analyzed by students in the class.  Of 
the 6 students, 1 used Kenyon fully, 2 only used the SCM 
configuration retrieval and fact extractor invocation portions, 2 
were not able to use Kenyon at its then-current set of 
capabilities, and 1 chose a project in which the use of Kenyon 
was not applicable.  

Table 2.  Projects analyzed by students in seminar class. 

The reasons given for not using Kenyon fell into two main 
categories: support and data storage flexibility (Reqs. 4,6,7).  
Kenyon currently supports only the CVS, Subversion, and 
ClearCase SCM systems.  Student 5 selected a project for 
analysis that was archived in Perforce; Kenyon was therefore not 
an option for him.  Kenyon also does not yet provide a built-in 
Java containment model.  While in this case it did not prove to be 
a major issue, the primary benefits of such containment schemas 
are in language-specific graph construction and convenience 
query methods.  Student 4 created his own graph schema for his 
project, and therefore was able to use Kenyon completely. 

The approaches used by the remaining students were not 
compatible with Kenyon for the second category of reasons: data 
storage flexibility.  Specifically, Kenyon 1.3 did not have support 
for persisting configuration-based results generated by analyzing 
the abstract syntax tree (AST) of a program. Students using such 
approaches had their fact extractors write their results to the 
filesystem instead. 

This realization changed our perception of what types of results a 
fact extractor might produce (Req. 8).  For example, Student 1 
used a third-party tool that analyzes abstract syntax trees to 
identify code clones within source code.  The results generated 
are analogous to proper subgraphs of the full system graph, as 
opposed to our expectation of the full system graph itself.  To 
better support this and other types of configuration-specific 
results, we developed a new “ConfigSummary”  interface and 
added an association from ConfigGraph to any class that 
implements this interface.  We also created an inheritable 
Hibernate mapping for this interface.  Student 1 could now, for 
example, create a ConfigSummary subclass that contained a 
collection of SubGraph (a Kenyon-provided class) instances that 
mapped nodes belonging to a given clone identifier onto a 
ConfigGraph that represented the containment structure of the 
system.  This data could be automatically persisted with 
Hibernate, which would give the student the advantage of 
reusing the Kenyon data structures during evolution analysis of 
the extracted code clones. 

4.4 Clone Genealogy Extraction 
M. Kim et al. at the Univ. of Washington have developed a tool 
that extracts clone “genealogies”  as part of their research on 
clone evolution [12].  They analyze multiple versions of a 
program where each version corresponds to a commit 
transaction, because they are interested in understanding how 
code clones evolve in finer granularity than releases. 

Table 3.  Projects analyzed for clone genealogy. 

Kim et al. were the first external adopters of Kenyon, and at the 
time were primarily interested in it for the automated 
configuration retrieval from CVS.  They had previously analyzed 
only system releases, and wanted to decrease the amount of time 
required to perform the same analysis in a finer granularity.  To 
speed up their process, they used Kenyon only to automatically 
retrieve each configuration that corresponded to a repository 
“check-in” , or commit.  Table 3 shows the projects for which 
configurations were retrieved in this manner. 

It was through their early support that we realized the need to 
fully support a “no database”  mode of operation, especially as 
our persisted-classes data model was still rapidly evolving.  
Given our addition of the ConfigSummary class, we believe that 
this clone genealogy tool can now adopt Kenyon more fully. 

4.5 Beagle 
Beagle performs “entity mapping” , where a system entity in one 
configuration is associated to another entity in a different 
configuration.  Beagle focuses on associating file and procedure 
entities that were not wholly added or deleted between two 

Student Project SCM Kenyon?  
1 Hibernate N/A No 
1 Eclipse N/A No 
2 Kenyon SVN Yes / no database 
3 <test program> SVN Yes/ no database 
4 Recoder CVS Yes 
5 <proprietary> Perforce No 

Project SCM # transactions 
carol CVS 164 revisions 
dnsjava CVS 905 revisions 



system releases, but instead were “renamed, moved, or otherwise 
changed” [11].  This process is named “origin analysis” , and can 
be used to improve the results of software evolution analysis by 
allowing an entity’s history to be followed across these types of 
changes.   

Six months ago we performed a preliminary integration between 
a previous version of Beagle and an early version of Kenyon.  
We were pleased with the results with respect to code reuse: we 
were able to reduce the Beagle source code size by 18% even 
without performing a complete replacement of compatible data 
structures.  Instead, we mapped the Beagle data structures used 
by the analysis portions of the system to Kenyon data structures, 
and used Kenyon classes from those integration points down to 
the database access level.  We then used this experience to better 
refine the Kenyon data model.  We would expect the current 
version of Beagle to attain a similar level of code reduction, 
because the core set of facts required for origin analysis has not 
significantly changed.  This experience furthered our goal of 
minimizing the effort necessary to reuse results between 
disparate evolution analysis systems via a shared set of data 
structures. 

5. RELATED WORK 
While many systems have focused on mining version control 
systems for software evolution analysis, only a few stand out as 
having addressed some of the requirements that a software 
evolution infrastructure tool must support, as discussed in 
Section 2.  All of these tools incorporate some research-specific 
design decisions that keep them from being general-purpose 
infrastructure tools, and they each address similar issues in 
unique ways.   

Minero, created by Alonso, Devanbu, and Gertz [1], and Bloof, 
created by Draheim and Pekacki [8], are most like Kenyon in 
their separation of the logistical issues of mining software 
repositories from research-specific issues. Several key 
differences, however, stand out.  Minero uses database schemas 
that are tied to the type of data source analyzed, and requires the 
built-in capabilities of a commercial database to improve the 
searchability of the database contents.  Bloof allows users to 
define custom evolution metrics using the data from CVS log 
files as input, but their database schema is based on a minimal 
common subset of commit metadata (e.g. author, lines changed, 
etc.) archived in version control systems.  Conversely, Kenyon 
does not place significant requirements on the capabilities of its 
underlying database, and avoids schema restrictions by using an 
object-relational mapping system that maximizes the benefits of 
both flexible and rigid schemas.  Furthermore, Bloof is not 
intended to incorporate program analysis results, and this is 
reflected in its design.  It is unclear if Minero’s design will easily 
extend to include program analysis results. 

The other systems of note all deal with the issue of inferring 
relationships between different types of historical data, such as 
that archived in version control systems, bug-tracking data, email 
archives, and so forth. Hipikat, created by Cubranic and Murphy 
[7], infers associations between the data archived within these 
different sources to create an “implicit group memory” , and uses 
the resulting data to recommend relevant artifacts for a given 
task.  German and Mockus’  softChange system [10] analyzes 
these data sources to identify “software trails”  for later analysis 

and visualization.  Neither of these systems treats its 
preprocessing subsystem as an independent system usable for 
other analysis techniques.  Both support only CVS as their SCM 
repository.  Fischer, Pinzger, and Gall created a system to 
populate a “Release History Database”  (RHDB) [9] that 
associates bug tracking data with version control data; this 
system is more closely related to Kenyon than the other two 
because the results of the association are stored for later, 
unspecified, evolution analysis.  The types of evolution analysis 
that can be performed on the RHDB-stored data are, of course, 
limited to using data from CVS log files.  None of these systems 
can easily incorporate third-party per-configuration analysis tools 
into their design.  Kenyon, on the other hand, is designed to 
support multiple types of data sources. 

Lastly, OSSmole [6] shares a similar approach as Kenyon, 
although it is intended for project-level analysis instead of 
program-level analysis.  It collects and archives project data, and 
third-party analysis results based on project data, for open-source 
software systems such as found on SourceForge. 

6. FUTURE WORK 
Kenyon has three main tasks: automated SCM configuration and 
associated data retrieval, fact extractor invocation, and data 
storage and access.  Our next steps in developing each of these 
areas are outlined below: 

••••    SCM/Data Support.  While we have already demonstrated 
the flexibility of our SCM interface, we do intend to add 
support for Perforce, and other commonly used SCM systems, 
as needed.  Our next phase of development for the data retrieval 
side of Kenyon is the ability to access multiple SCM repositories 
and to associate data from systems such as Bugzilla to the 
retrieved configurations.  We expect that the majority of this 
effort will be spent in managing the association of specific states 
in the alternate data sources to specific time-based 
configurations in a primary data source. We hope to incorporate 
several of the association inference techniques developed for 
Hipikat [7], softChange [10], and RHDB [9].  

As part of this effort, we plan to research a more comprehensive 
data model for the types of, and relationships between, the data 
that comprise a single configuration.  We also plan to extend 
our SCM model to allow for single projects with dependent 
components archived separate repositories (e.g. CVS 
“modules”), the names and locations of which may also evolve 
over time. 

••••    Fact Extractor Support. We have shown that the in-
vocation of third-party fact extractors from Kenyon is already 
well supported.  Our data model for extractor results, on the 
other hand, did need to be modified and refined as we gained 
experience from applying different types of fact extractors.  Our 
current efforts are focused on applying the lessons learned from 
the graduate seminar class, specifically with respect to language 
support and “partial result”  support, such as those generated by 
AST analyzers or code clone detectors.  Our future work in 
language support includes the adoption of the Java containment 
model created by Godfrey, as well as finalizing the newly 
created Recoder4 fact extractor subclass. 

                                                               
4 recoder.sourceforge.net 



••••    Data Storage/Access Support.  We plan to adopt 
Hibernate 3 as soon as it stabilizes.  The anticipated 
performance and mapping improvements alone make it worth 
the effort to convert, even if support for collections of 
collections remains weak. The adoption of an ORM framework, 
instead of requiring a specific implementation, is desirable but 
not a high priority. 

7. CONCLUSIONS 
Kenyon was created in order to facilitate both the creation of 
new software evolution analysis tools and the sharing of data 
between such tools.  We have provided requirements that any 
software evolution infrastructure tool should support.  To date, 
Kenyon comes closest to simultaneously supporting all these 
requirements.  It provides a flexible, extensible, and scalable 
infrastructure that addresses the common logistical software 
evolution issues of configuration retrieval, fact extractor 
invocation, and database storage and access.  Kenyon makes it 
possible to separate these common concerns from evolution 
research concerns by allowing analysis-specific fact extraction 
tools to be invoked on each of a set of automatically retrieved 
historical configurations. 

Kenyon supports many different types of stratigraphic software 
evolution research, from code feature evolution analyses [12, 13] 
to dependence graph-based maintenance history analysis [4]. It 
can also serve as an automated data collection infrastructure for 
development-assisting recommendation systems such as those 
created by Ying et al. and Zimmerman et al. [18, 20].  It has been 
used with five heterogeneous third-party fact extractor tools, 
three different software configuration management systems, and 
has processed both industrial and open-source systems up to 500 
KLOC in size.  We have tested Kenyon’s ability to provide 
commonly usable data structures during preliminary integrations 
with two distinct tools [4, 11].  We look forward to improving 
our support of software evolution research as other evolution 
analysis systems look to adopt Kenyon. 
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