
An Empirical Analysis of the FixCache Algorithm
Caitlin Sadowski, Chris Lewis, Zhongpeng Lin, Xiaoyan Zhu*, E. James Whitehead, Jr.

ABSTRACT
The FixCache algorithm, introduced in 2007, effectively identi-
fies files or methods which are likely to contain bugs by analyzing
source control repository history. However, many open questions
remain about the behaviour of this algorithm. What is the variation
in the hit rate over time? How long do files stay in the cache? Do
buggy files tend to stay buggy, or can they be redeemed? This pa-
per analyzes the behaviour of the FixCache algorithm on four open
source projects. FixCache hit rate is found to generally increase
over time for three of the four projects; file duration in cache fol-
lows a Zipf distribution; and topmost bug-fixed files go through
periods of greater and lesser stability over a project’s history.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and En-
hancement – Restructuring, reverse engineering, and reengineer-
ing, D.2.8 [Software Engineering]: Metrics – Product metrics

General Terms
Algorithms, Measurement, Experimentation

Keywords
Software bug prediction, fixcache

1. INTRODUCTION
Today, software quality assurance is a reactive process. Software
testers, developers, beta testers, and users encounter incorrect be-
havior in software, report it, and then fix the problem. Even though
it is well known that nearly all software harbors latent—as yet un-
discovered—software bugs, bug fixing activity is only initiated in
response to a report of bad behavior. Ideally, we would like to pro-
actively remove bugs from software, before they are encountered
by users.

There are two main strategies for bug prediction. Code metrics-
based approaches use software quality metrics such as LOC or cy-
clomatic complexity to predict faulty entities [3, 9]. Metrics-based
approaches are easy to implement, but also tend to be relatively
static and do not quickly adapt. In contrast, repository-based ap-
proaches, like FixCache, analyze the source control repository his-
tory to predict future faults [10,7].

Software bug prediction is becoming increasingly effective at iden-
tifying those areas of a software system that are highly likely to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
MSR 2011, May 21-22, 2011, Honolulu, Hawaii, USA.
Copyright 2011 ACM 978-1-4503-0574-7/11/05...$10.00.

contain latent software bugs. With software bug prediction, it be-
comes possible to take action to remove bugs from software before
these bugs are encountered by users. Such actions can include soft-
ware inspections, code refactoring, running static analysis bug find-
ing tools, and increasing code coverage within existing test suites.
All of these techniques can uncover or remove bugs early, thereby
increasing code quality and potentially reducing software quality
assurance costs.

Most bug prediction algorithms described in the research literature
are evaluated against a single moment in time of one or more soft-
ware systems. Even bug prediction algorithms that use information
from a project’s history of changes typically only report bug pre-
diction results at one specific point in time. This is a problem: for
bug prediction to be effectively used in real-world software devel-
opment settings, software engineers will need to perform software
bug predictions repeatedly on the same project. Since the same bug
prediction algorithm will be used at different points in time during
a project’s development, it is important to understand (1) how bug
prediction algorithms accommodate the changes a software project
experiences over time, and (2) what kind of variation can be ex-
pected in bug prediction accuracy.

This paper provides a preliminary exploration of the above ques-
tions by taking a detailed look at the performance of the FixCache
bug prediction algorithm [8]. Briefly, FixCache is run over the
change history of a software project, and provides as output a list
of files that are predicted to hold the most latent bugs. The number
of files reported is configurable, and is typically 10% of the to-
tal code files in a project. The original publication presenting Fix-
Cache reports the prediction results at one point in time, at the end
of each project’s mined software history. Subsequent to this origi-
nal implementation, a different group of researchers independently
implemented FixCache, and provided results on its prediction ac-
curacy at weekly intervals over a two month period [15, 16]. The
focus of this work was on leveraging FixCache recommendations
to select regression tests. They found that FixCache performance
varied over time, with considerable variation in performance from
week to week. However, they evaluated only a single project, for
a short time period, and reported at weekly intervals. Still, the re-
sults are interesting, and suggest that deeper investigation on larger
projects and timespans would be useful. Members of the same re-
search group further verified that FixCache can improve test-case
recommendations [6]. They found that the most fault-prone module
changed over time, and that faults are not always clustered in the
same module.

In this paper we explore the following specific research questions:
RQ1. How does the prediction performance of the FixCache algo-
rithm vary over time?
This information is very important for any software team seeking to
adopt the FixCache bug prediction algorithm, since it provides in-

Software Introspection Laboratory
University of California, Santa Cruz

Santa Cruz, CA 95060
{supertri, cflewis, linzhp, ejw}@soe.ucsc.edu

* Department of Computer Science and Technology,
Xi’an Jiaotong

University, Xi’an 710049, China
xyxyzh@gmail.com

formation on the range of expected performance, as well as a sense
of how stable the prediction accuracy is over time.

RQ2. How static is the set of most-buggy files? Can files go from
being fault-prone to relatively fault-free?

Since the focus of activity in a software project changes over time
as new features are added and others modified, it makes sense that
the most buggy files will also vary over time. That is, we expect
that the most buggy files will not remain constant over a project’s
history, but will instead vary over time. One characteristic of the
FixCache algorithm is that it is capable of adapting to varying bug-
gy hotspots in a project over time. We would like to characterize
this adaptation.

The following sections describe the FixCache algorithm (Section
2) and mining approach (Section 3), followed by a brief description
of related work (Section 4). We then present our findings (Section
5), and briefly mention some threats to validity (Section 6).

2. THE FIXCACHE ALGORITHM
The FixCache algorithm maintains a fixed-size “cache” of the en-
tities that are most likely to have bugs. This algorithm works at
either the file or method level; here we only focus on identification
of fault-prone files. Addition of files to the cache is determined by
three heuristics: new or modified files are likely to contain bugs,
buggy files are likely to contain more bugs, and files which are
changed with buggy files are likely to contain bugs.

The cache is built using the source control history data of a project,
and is parameterized by the cache size, cache replacement strategy,
“blocksize”, and “prefetchsize” (described below). The cache is
pre-loaded (filled) with the largest files in the initial revision. Fix-
Cache then cycles through commits sequentially ordered by date.
Upon each commit, the FixCache algorithm adds up to prefetchsize
new or modified files to the cache. We use the SZZ algorithm [14,
8] to identify bug-fixing commits, and trace bug fixing commits to
the time when a bug was introduced. Every file which is modified
during a bug-fixing commit is identified as containing a bug fix.
When a bug fix is identified, the file itself will be put into the cache,
plus up to blocksize of the files most frequently changed with the
buggy file at the time the fault was introduced (co-changed files).

When a file containing a bug fix is added to the cache, FixCache
checks to see if that file is already in the cache. If it is, FixCache
counts it as a cache hit. Otherwise, FixCache counts it as a cache
miss. The hit rate is equal to:

number of hits / (number of hits + number of misses)

The size of the cache can be set based on available resources, such
as time available for bug removal activities. In this paper we set
it to 10% of the number of code files in the repository at the end
of the period analyzed. To keep the cache at a fixed size, before a
file is put into the cache, we have to determine if the cache is full.
If it is full, one file has to be moved out of the cache. We imple-
mented four cache replacement policies: least recently used (LRU),
the number of times a file has been changed, the number of bugs
identified in a file, and the number of distinct authors for a file.
All cache replacement policies use LRU to break ties. We only use
the LRU cache replacement policy, since it performed better than
the others. Cache size, blocksize, and prefetchsize are given in pa-
renthesis in figure captions as “(cachesize/blocksize/prefetchsize)”.
Our implementation of the FixCache algorithm is freely available1.

3. MINING APPROACH
We mined two large, long-lifetime projects: Apache httpd [1] and
PostgreSQL [11], each of which appeared in the original FixCache
paper [8]. We also mined two smaller projects: Voldemort [14]
and V8 [17] (see Table 1). Accessing Git repositories significantly
speeds up mining in comparison to accessing centralized approach-
es like CVS or SVN. For example, finding the number of lines of
each file at each revision requires a call to the repository for every
file at every commit. This process is expensive on a centralized
source control management system, taking on the order of weeks
for a large project. Rather than making a network request for data to
a central server that is busy concurrently communicating with other
clients, our mining code queries the local Git repository, and runs
as quickly as the CPU, database, and local I/O can handle, reducing
expensive multi-week queries to days or hours. Working mostly
with projects whose repositories have been mirrored to Git allows
us to benefit from this locality, though with the drawback of need-
ing to handle the complexity of branching within Git [5].

Project Language Period Number of
Revisions

Number of
Hunks

Appx. Number
of Code Files*

Number of Buggy
Revisions**

Apache httpd C 1996-01-14 - 2011-01-21 38,230 582,262 1,233 5,848
PostgreSQL C 1996-07-09 - 2011-01-08 36,848 1,760,057 2,725 13,176
V8 Javascript/C++ 2008-06-30 - 2011-03-15 6,178 213,644 1,377 2,630
Voldemort Java 2009-01-02 - 2011-01-24 2,292 41,540 935 511

Table 1. Analyzed projects.

* Code files are identified with a regular expression matching common source code file extensions, such as .c, .h and .java. The number given
is the number of unique file names CVSanalY identified. Files with the same name across the directory structure will only count as one, so
the number of files may be marginally higher. This number includes files that were deleted from the repository.

** The number of buggy revisions is a count of the unique revisions that are flagged as bug introducing. This means that there is a commit
message which matches one of the following case-insensitive regular expressions: defect(s)?, patch(ing|es|ed)?, bug(s|fix(es
)?)?,(re)?fix(es|ed|ing|age|\s?up(s)?)?, debug(ged)?, \#\d+, back\s?out, revert(ing|ed)? or the case-sensitive
[A-Z]+(-|#)\d+, CVE-\d+-\d+ , and the changes are mapped back to a number of bug introducing changes.

1 https://github.com/SoftwareIntrospectionLab/FixCache

CVSAnalY [12] was used for history mining. We extended this
tool2 to gather the number of lines in each file revision, determine
the code hunks modified at each commit, and link bug-fixing hunks
back to the original bug-introducing commit using SZZ [13].

4. RESULTS
This section presents empirical results exploring the two research
questions. The cache size for each project is 10% of the number of
code files in the current project directory at the end of the analyzed
period, calculated via a shell script. This worked out to be 75 for
Voldemort, 177 for Postgres, 55 for Apache httpd and 123 for V8.

RQ1. How does the prediction performance of the FixCache algo-
rithm vary over time?

Figure 1 presents the hit rate over the entire analyzed history for all
four projects. There is a dot on the graph at each three month bound-
ary. The hit rate is relatively stable over time, although each project
has hit rate trends. We believe that the initial downward trend in
the httpd project is caused by a much smaller amount of files at
project start. Once the project ramps up to the current number of
source code files, the hit rate stabilizes. Figure 2 is an in-depth look
at how the hit rate changes over time for the httpd project. Overlaid
with the changing hit rate is the number of files which are added to
the cache within each time slice. The discontinuities in the hit rate
curve appear to be the result of a sharp increase of additions.

Figure 3 shows the total duration of time spent in the cache for files
(in terms of the source control repository timescale) vs. the number
of hits for those files. As expected, the trend is generally upwards:
staying in the cache for a long time is correlated with having lots

0
20

40
60

80
10
0

Month

H
itR
at
e

3 15 27 39 51 63 75 87 99 114 129 144 159 174

Apache
Postgres
Voldemort
V8

0
20

40
60

80
10

0

Month

H
itR

at
e

3 15 27 39 51 63 75 87 99 114 129 144 159 174

63.36

93.75

NumHits
NumAdds

Figure 1. Hit rate vs time for all projects. Apache (55/18/7)
PostgreSQL (177/100/20), Voldemort (74/21/15), V8 (123/20/45)

Figure 2. Hit rate vs time overlaid with number of files added to
the cache (Apache httpd, 55/18/7).

0 100 200 300 400 500 600 700

0
50

10
0

15
0

20
0

25
0

Total Time in Cache (weeks)

N
um

be
r o

f C
ac

he
 H

its

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0

File

To
ta

l T
im

e
in

 C
ac

he
 (w

ee
ks

)

Figure 3. Total number of cache hits for a file vs total amount
of time that file spent in the cache (PostgreSQL, 177/100/20).

Figure 4. Distribution of the total amount of time each file spent
in the cache (Apache htttpd, 55/18/7).

2 https://github.com/SoftwareIntrospectionLab/cvsanaly

of hits. However, there are still several files which stay in the cache
for long periods of time, but do not have a high hit count.

Figure 4 displays the distribution of total duration of files in the
cache. The vertical line near the top of this graph marks the dura-
tion of the entire source control history. It is clear that most files
spend a relatively short amount of total time in the cache, hence
demonstrating that FixCache is adapting to changing conditions.

RQ2. How static is the set of most-buggy files? Can files go from
being fault-prone to relatively fault-free?

Figure 5 shows the top 30 buggy files over time for the Apache
project. For a particular time, a dot at position k represents the kth
buggiest file. The buggiest files are at the top. As time moves from
left to right, lines track how particular files shift in the ranking. It
is evident that there is a set of core files which always rank high in
terms of bug count. It is also evident that some files change their
ranking, with periods of greater and lesser stability of rankings.

Figure 6 plots the maximum LOC for files against the number of
bug fixing commits. Although larger files are more likely to contain
bugs, it is clear that LOC alone is not a good predictor of fault
density. This graph reinforces the dynamic nature of fault density
in files—and highlights why FixCache is more effective than code
metrics-based approaches.

5. THREATS TO VALIDITY
Bug Tracking. Many bug fixing commits cannot be identified as
such from the commit logs, hence our results may be biased based
on the type and severity of bugs identified [4], and this may reduce
the number of faulty files identified by FixCache [2].

File Identity. Our current approach uses the last path segment in a
file’s path as a unique identifier for that file. This can cause multiple
files with different pathnames but the same final path segment to be
treated as the same file. In the projects examined, the set of such
duplicate file segments was found to be very small.

6. CONCLUSION
In this short paper, we analyze the behaviour of the FixCache algo-
rithm over time. We find that the FixCache hit rate is stable in the
short term, but has definite long-term trends. We also find that the
set of most-buggy files is not static, although there is a core set of
files which consistently have the highest fault density.

REFERENCES
[1] Apache httpd. https://github.com/apache/httpd.
[2] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Ber-

nstein. The missing links: Bugs and bug-fix commits. FSE
2010.

[3] V. Basili, L. Briand, W. Melo. A validation of object-oriented
design metrics as quality indicators. IEEE TSE, 22(10):751-
761, 2002.

[4] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V.
Filkov, and P. Devanbu. Fair and balanced?: Bias in bug-fix
datasets. FSE 2009.

[5] C. Bird, P. Rigby, E. Barr, D. Hamilton, D. German, and P.
Devanbu. The promises and perils of mining Git. MSR 2009.

[6] E. Engstrm, P. Runeson, and G. Wikstrand. An empirical eval-
uation of regression testing based on fix-cache recommenda-
tions. Int’l Conf. Software Testing, Verification & Validation
(ICST) 2010.

[7] A. Hassan R. Holt. The top ten list: Dynamic fault prediction. 
ICSM 2005.

[8] S. Kim, T. Zimmermann, E. Whitehead Jr, and A. Zeller. Pre-
dicting faults from cached history. ICSE 2007.

[9] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict
component failures. ICSE 2006.

[10] T. Ostrand, E. Weyuker, and R. Bell. Predicting the location
and number of faults in large software systems. IEEE TSE,
31(4):340–355, 2005.

[11] Postgres. http://www.github.com/postgres/postgres.
[12] G. Robles, S. Koch, J. M. Gonzlez-Barahona, and J. Carlos.

Remote analysis and measurement of libre software systems
by means of the CVSAnalY tool. RAMSS 2004.

[13] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes
induce fixes? MSR 2005.

[14] Voldemort. https://github.com/voldemort/voldemort
[15] Z. Wang. Fix Cache Based Regression Test Selection. Mas-

ter’s thesis, Chalmers Univ. of Technology, Univ. of Gothen-
burg, 2010.

[16] G. Wikstrand, R. Feldt, J. Gorantla, W. Zhe, and C. White.
Dynamic regression test selection based on a file cache an in-
dustrial evaluation. ICST 2009.

[17] V8. https://github.com/v8/v8

Figure 5. Top 32 most buggy files in Apache httpd (55/18/7) Figure 6. LOC vs number of bugs (Apache httpd, 55/18/7).

month

ra
nk

5

10

15

20

25

30

50 100 150

0 50 100 150 200 250

0
20
00

40
00

60
00

80
00

Number of Bugs

LO
C

