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Tanagra: Reactive Planning and Constraint Solving
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Abstract—Tanagra is a mixed-initiative tool for level design, al-
lowing a human and a computer to work together to produce a
level for a 2-D platformer. An underlying, reactive level generator
ensures that all levels created in the environment are playable, and
provides the ability for a human designer to rapidly viewmany dif-
ferent levels thatmeet their specifications. The human designer can
iteratively refine the level by placing and moving level geometry, as
well as through directly manipulating the pacing of the level. This
paper presents the design environment, its underlying architecture
that integrates reactive planning and numerical constraint solving,
and an evaluation of Tanagra’s expressive range.

Index Terms—Augmented design, constraint programming,
games, level design, mixed initiative, procedural content genera-
tion, reactive planning.

I. INTRODUCTION

C REATING a good level is a time-consuming and highly
iterative process: the level may start as a simple sketch

of the space, which is then filled in with specific geometry. De-
signers will typically play the level themselves many times be-
fore showing it to anyone else, checking that it is playable, en-
gaging, and meets their expectations [1]. Making a change to a
small section of a level, such as moving a single critical plat-
form, can have a significant impact on the design and require
much of the rest of the level to be modified as well.
Tanagra is a mixed-initiative level design tool, operating in

the domain of side-scrolling 2-D platformer levels, that incorpo-
rates procedural level generation to ease this authoring burden.
This paper presents a detailed description of the tool, an archi-
tecture for integrating hierarchical reactive planning with nu-
merical constraint solving, and an evaluation of the expressivity
of the system by examining the range of content it can create.
Themixed-initiative approach to design, where content is cre-

ated through iterative cycles between the human designer and
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a procedural content generator, capitalizes on the strengths of
both human and computer designers. Tanagra’s underlying level
generator is capable of producing many different variations on
a level more rapidly than human designers, whose strengths in-
stead lie in creativity and the ability to judge the quality of the
generated content. The generator is able to guarantee that all the
levels it creates are playable, thus refocusing early playtesting
effort from checking that all sections of the level are reachable to
exploring how to create fun levels. Also, our gameplay-centric
approach to level representation and content generation opens
up possibilities for novel editing operations: in addition to con-
trolling physical properties of the world such as platform place-
ment, the designer is also able to control properties related to
potential player behavior by influencing the pacing of the level.
In Tanagra, the human designer and procedural generator work
together in a collaborative way, each taking turns to build on the
work of the other.
A combination of reactive planning and constraint program-

ming allows Tanagra to respond to designer changes in real-
time. We use A Behavior Language (ABL) [2] for reactive plan-
ning, and Choco [3] for numerical constraint solving. Reactive
planning allows for the expression of generator behaviors, such
as placing patterns of geometry or altering the pacing of the
level, which can be interleaved with a human designer’s ac-
tions. These behaviors monitor multiple aspects of the gener-
ator in parallel, and their hierarchical nature allows for complex
geometry patterns to be built up from simpler components. The
geometric relationship between level components is expressed
as a set of numerical constraints that must be satisfied, thus en-
suring that the design tool will never allow for the creation of
an unplayable level. This architecture sits atop a rhythm-based
representation for levels, where each beat in the rhythm corre-
sponds to a single action taken by the player. This rhythm-based
representation is based on the observation that there is a rhythm
and pacing of distinct player actions in many kinds of 2-D plat-
formers [4], [5].
In creating Tanagra, we were guided by design principles for

intelligent creativity and design support tools [6]–[9]. There has
recently been a call for such intelligent design tools specifically
in the domain of games [10], [11]. We have been careful to
ensure that Tanagra does not push its own agenda on the de-
signer by protecting decisions made by the human so that they
cannot be overridden by the system, although it can augment
human-placed geometry through the placement of additional
level components. Tanagra provides expertise through its ability
to ensure that levels are always playable; i.e., every platform
and object in the level is reachable, and it is possible to pro-
ceed from the left to right side of the level. Tanagra also allows
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the designer to directly manipulate the pacing of the level by
editing the underlying beat structure. It works with the iterative
design process by supporting new decisions from the designer
at any time during creation, and rapidly regenerating sections of
a level as needed.

II. RELATED WORK

The earliest uses of procedural content generation in games
had the purpose of improving replayability. These games pro-
vided more worlds than a human designer could be reasonably
expected to author, given both time constraints during design
and hardware constraints for storing large, detailed worlds [12],
[13]. This is still a primarymotivation for PCG inmodern games
such as the Diablo series [14], the Civilization series [15], and
Dwarf Fortress [16]. In such games, levels are completely gen-
erated by the computer, with little to no creative interplay be-
tween human designer and computer generator. Much of the de-
sign of levels is implicitly encoded in the generation algorithm
itself, with designer input limited to tweaking parameters or re-
stricting the random seeds to ensure that all levels the generator
creates are playable, fun, and appropriate. This interaction style
can be unintuitive and time consuming, with small shifts in pa-
rameters leading to radical changes in the produced content [17].
In contrast, Tanagra provides more direct control over sculpting
its generative space to produce a level through editing tools for
both precise geometry placement and level pacing.
Another increasingly common use for PCG is personalized

content creation, either adapting to a player at runtime [18]–[21]
or learning player preferences offline [22], [23]. Many of these
techniques involve inferring a model of behavior for specific
players by observing actions taken in the game world. The beat
representation used for levels in Tanagra is an implicit model of
player behavior; interesting future work would be to incorporate
different styles of play, perhaps learned from many different
players, to encourage designers to includemore diversity in their
levels.
Author-guided level generation tends to place all authorial

control over the generator at the beginning of the process
[24]–[26], occasionally allowing editing after the level is com-
plete [27]. For example, the world builder for Civilization IV
allows the scenario designer to set certain terrain parameters
ahead of time, such as the size of the land masses, distribution
of water and land, and climate. After the generator creates the
initial world, the designer can modify the terrain according to
her own desires. However, there is no way to request another
map that respects the changes that the designer has made, or
that only a part of the level be regenerated. The mixed-initia-
tive nature of Tanagra means that the designer and computer
can collaborate throughout the design process. One important
exception is the SketchaWorld project [28], which provides
a mixed-initiative authoring environment for virtual worlds,
including terrain editing and city building. This project faces
many of the same design concerns as Tanagra in determining
how best to have designers interact with a PCG system.
SketchaWorld focuses on building large-scale virtual worlds
made up of largely noninteractive structures, whereas Tanagra
focuses on building levels that dictate the core gameplay.

A mixed-initiative approach to level generation requires a
new set of techniques, especially given the real-time nature of
a design tool. Heavily search-based approaches, such as evolu-
tionary algorithms, have been successful in offline level gener-
ation and adaptive content creation between play sessions [22],
[23], [29], but their reliance on an unbounded search process
makes them too slow for a real-time tool. An interactive design
tool requires the same, if not greater, amount of responsiveness
as online PCG techniques. Grammar and rule-based approaches
show a great deal of promise in this area [30]; however, existing
grammar-based design tools are confined to creating large struc-
tures that the player does not interact with. For example,Unreal-
Facade [31] enables procedural design of buildings, but aspects
of the design that are heavily tied to core gameplay are still en-
tirely authored by hand [32]. Tanagra use of reactive planning
and constraint solving permits a designer tomanually and proce-
durally create levels which focus more on the game’s mechanics
than its aesthetics, giving greater control over the human–ma-
chine design process.
Platformers are well suited for research in procedural level

design due to their relatively simple and well-understood rules
but emergently complex level designs: despite the simplicity of
their mechanics, there is astonishing variety in levels within the
genre [5]. For example, the popular game Sonic the Hedgehog
2 [33] has only three movement mechanics—running, jumping,
and spin dashing—yet a massive variety in level elements
and configurations. There have been a number of 2-D plat-
formers released recently with procedurally generated levels.
Canabalt [34] and Robot Unicorn Attack [35] are both heavily
rhythm-based games where the player is forced to move
forward at a constantly increasing rate, and must precisely
time his jumps. These levels are built by fitting together large
preauthored chunks according to simple rules for what chunks
can be adjacent to each other [36]. Spelunky [37] is a rogue-like
platformer where preauthored pieces are fit together on a grid.
Infinite Mario Bros.1 [38] is an open source clone of the Super
Mario World engine in which levels are procedurally generated
with an increasing difficulty. These levels are also built by
fitting together hand-authored chunks, although at a smaller
scale than Canabalt’s, and then scattering the level with a
number of enemies proportional to the desired difficulty of the
level. All of these generation techniques employ relatively large
hand-authored sections of a level. These generation techniques
work well for their specific game, but cannot easily be applied
to other games in the same genre without the significant design
burden of authoring large chunks of levels for the generator
to use. Spelunky’s level generator is especially dependent on
its game mechanics, since the player can use tools (that are
in-game resources to manage) to modify the level and traverse
otherwise impossible terrain. The player’s desire to conserve
such tools means that many areas of the level will deliberately
go unexplored. These aspects of the gameplay mean that there

1The Infinite Mario Bros. engine was also used in the Mario AI level genera-
tion competition held at the 2010 Computational Intelligence in Games Confer-
ence (CIG; http://www.marioai.org). To our knowledge, this competition was
the first of its kind. The competition is a testament to the growing field of PCG
and the appropriateness of 2-D platformers for investigating procedural level
generation.
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Fig. 1. Tiles used by Tanagra. Each level component is made up of one or more
of these tiles.

is not a strict requirement for the level generator to ensure that
every level it creates is playable, or that every part of the level
is guaranteed to be reachable.
Tanagra’s level generator differs from these techniques in

that the building blocks that it uses are much smaller—a beat
encompasses a single player action—and are extensible to
different sets of geometry. Furthermore, these building blocks
specify patterns for geometry, which may have many different
instantiations. Tanagra’s level generation technique is built on
our previous work in generating levels based on a rhythm that
the player feels [26], which in turn is based on Compton and
Mateas’s work in pattern-based level generation [4].

III. LEVEL REPRESENTATION

Levels are represented in Tanagra as a series of beats, where
each beat corresponds to a single-player action. These beats
contain level components, also referred to as geometry. Sup-
ported level components are platforms, gaps, springs, enemies,
and stompers. In turn, each of these components is made up of a
set of one or more tiles (Fig. 1). Tile maps are a common repre-
sentation for 2-D levels; all geometry that is drawn into the level
is done at the tile representation layer, which provides a simple
interface for creating the level. Tanagra maintains the geometry
and beat representations internally. For example, if the designer
adds a platform tile adjacent to an existing platform, Tanagra is
responsible for ensuring that this tile is grouped into a platform,
rather than creating a new platform.
A physics model defines the maximum running speed, max-

imum jump height, and physics properties of level components,
thus guaranteeing that all geometry placed into the level is
playable and meets beat duration constraints.

A. Beats

As the building blocks of rhythms, beats are the underlying
structure for Tanagra’s level generator. A designer can control
the pacing of the level by changing their length, or adding, and
removing them. A beat represents a single action that is taken
by the player, such as jumping or waiting. Its primary role in the
level design is to constrain the length of the geometry within it
to the distance that can be traversed by the player in the duration
of the beat, as calculated from the physics model. Beats are also
a convenient way of subdividing the space for the generation
algorithm, since geometry for each beat can be generated largely
independently.
The action that the player takes can occur at any time between

the start and end times of the beat. Each beat has the following
properties: constraint variables for the start time, end time, and
length of the beat (measured in milliseconds), and knowledge of
its preceding and following beats. Beats also keep track of their

Fig. 2. Example instantiations of the four single-beat geometry patterns used in
Tanagra. (A) A gap between two platforms. (B) A stomper. (C) An enemy. (D)
A spring to a different platform. Patterns are described and produced using ABL
behaviors. Note that there are many different configurations of each pattern; the
precise placement of geometry is determined by the constraint solver (Choco).

entry and exit platforms; level playability is guaranteed through
beat constraints that match up the exit platform of one beat to
the entry platform of its next beat. At any time, the designer can
add, remove, or modify a beat, which propagates any changes
down to the geometry contained within it.

B. Geometry Pattern Library

Level components are built up into patterns based on the ac-
tion the player should perform during the associated beat. There
is a hierarchy of level patterns, each layer of which builds on
the layer below it. At the base of the hierarchy are the following
single beat patterns:
• jumping over a gap from one platform to another;
• jumping to kill an enemy;
• jumping onto a spring;
• waiting before running underneath a stomper.
Each of these patterns contains a single user action, and there-

fore spans a single beat. Gaps can be of variable width, from
zero to the maximum length that the player can jump, and vari-
able height, from the maximum height that the player can jump
to its opposite value. Examples of each of these patterns are
shown in Fig. 2. Enemies, springs, and stompers all occupy only
one tile, but can have different positions along the platform.
Multibeat patterns provide further structure to levels and

mimic patterns commonly found in 2-D platformers. They are
composed of the single-beat patterns mentioned above with
some additional constraints. The multibeat patterns that are
currently implemented, and the number of beats they span (in
parentheses), are:
• gap followed immediately by an enemy (2);
• a valley, consisting of a jump down, an enemy to kill, and
then a jump back up (3);

• a staircase, consisting of three gaps in a row, each of them
going either entirely up or entirely down (3);

• a mesa, consisting of a jump up, an enemy to kill, and then
a jump back down (3).

These more abstract patterns are straightforward to specify
due to ABL’s hierarchical nature and the separate specification
of geometry placement and physics constraints. All of these pat-
terns span consecutive beats, however, this is not a general re-
quirement. For example, it would be possible to specify a more
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Fig. 3. The empty Tanagra editing environment. The blue gridded area in the upper left is the geometry canvas. Below that is the beat timeline. Along the right-hand
side of the screen are the editing controls.

abstract staircase pattern for an entire level, where every other
beat contains a jump up over a gap, but the intermediate beats
contain randomly selected geometry. In future work, we hope to
examine these complex patterns in more detail, add more pat-
terns to the library, and allow designers to specify their own
patterns.

IV. DESIGN ENVIRONMENT

Fig. 3 shows the empty Tanagra environment that designers
are first presented with. The main region is the level canvas, a
tile-based level editing tool. Below the level canvas is the beat
timeline, which is a long gray rectangle subdivided into smaller
rectangles which represent beats. The width of each of the beat
rectangles corresponds to the length of that beat. On the right
of the screen are a number of controls for the designer: zoom
controls for the level canvas; a tile selector for placing tiles into
the level; controls for pinning, unpinning, and moving level ge-
ometry; beat creation, deletion, and resizing controls; and level
generator controls.
This section discusses the editing operations available to the

designer for both geometry and beat creation and manipulation,
and discusses when and why the generator runs.

A. Geometry Editing

The level canvas is the area where both the human designer
and computer assistant draw geometry. The canvas, which is
initially empty, is made up of a grid of tiles, scaled to fit into the
window. The tile-based structure is primarily for ease of design,
as tile-based level editors are extremely common for 2-D games.
However, this structure also provides a reduced search space for
the constraint solver, as geometry constraints can be expressed
in terms of tiles rather than pixels.
The following geometry editing operations are available to

the designer.
• Drawing Platforms. A designer can place tiles into the
level canvas just as he would for a nonintelligent level
editor. When placing platform tiles, Tanagra automatically
detects the individual platforms that these tiles create,
adding them to the appropriate beat for their position in
the level canvas and creating a new beat if necessary.

• Pin/Unpin Geometry. Once tiles have been placed into the
canvas, geometry components (platforms, enemies, stom-
pers, springs) can be selected and either “pinned” in place
so that they stay where they are, or “unpinned” so that the
generator can create new geometry in their place.

• Move Geometry. Platforms can be selected and moved up
and down in the level canvas. When these platforms are
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moved, the remainder of the levelmorphs around the newly
constrained platform, changing as little as possible.

B. Beat Editing

The beat timeline provides a mechanism for editing the
pacing of the level by inserting or removing beats and mod-
ifying their length. Beat changes prompt Tanagra to make
geometry changes, allowing pacing changes without the need
to manipulate geometry. The following beat timeline editing
operations are available to the designer.
• Resize Beat. Change the length of the selected beat, auto-
matically adjusting the length of its neighboring beats. The
length change can be made at the beginning or end of the
beat.

• Split Beat. Add a new beat to the level by splitting the se-
lected beat in half. Any geometry contained in the original
beat is retained and reevaluated to fit the new length con-
straints. Unless it contains user-placed tiles, the new beat
has no geometry in it and can have geometry generated for
it.

• Remove Beat. Remove the beat and its associated geom-
etry, and change the length of its two neighboring beats to
be adjacent to each other.

C. Generator Invocation

The designer may request that the generator run at any time
during the editing process by clicking the “generate” button.
This button regenerates level geometry, incorporating any user-
created geometry. The designer may also request that geometry
be recreated for the selected beat. If a new beat is created during
editing and the level already contains geometry, then the gener-
ator is called for that new beat to ensure that the level remains
playable.
The level “resolves” (i.e., the constraint solver is called again)

whenever a change has been made that potentially alters the
playability of the level. For example, if a platform is moved
then it is important to ensure that move did not make the level
unplayable, e.g., if the platform movement caused a gap to be
too high to cross. Resolving the level can cause the generator
to be invoked, if no solution can be found by keeping all the
geometry patterns in place. This use of the generator is discussed
further in Section VIII.

V. TANAGRA SYSTEM OVERVIEW

Tanagra integrates reactive planning and numerical constraint
solving to perform level generation and enable the editing oper-
ations described above. The level generator fulfills the following
requirements:
1) autonomously create levels in the absence of designer
input;

2) respond to designer input in the form of placing and
moving geometry;

3) respond to designer input in the form of modifying the beat
timeline;

4) ensure that all levels are playable.

Fig. 4. Tanagra is made up of three main components: the GUI, an ABL agent,
and the Choco constraint solver. The GUI and ABL communicate through
working memory. ABL posts constraints to Choco and determines when the
solver should be called; Choco responds with either a potential solution or a
notification that no solution exists. A library of geometry patterns are specified
using ABL behaviors.

Fig. 4 is a general architecture diagram for Tanagra, showing
how the components of the system interact with each other.
We use the reactive planning language ABL [2] to respond to
designer input, choose the geometry that should be placed for
each beat, and communicate with Choco. Choco [3] is the con-
straint solving library used to specify and solve constraints on
the placement of different level components. The Tanagra ABL
agent can be imagined as a subordinate assistant to the pri-
mary level designer. It can suggest different potential designs
based on what has been done so far, and obeys the primary de-
signer’s commands for geometry or pacing changes. This ABL
“assistant” has a colleague, Choco, which determines the pre-
cise physical placement of components in the level, and is re-
sponsible for reporting to the designer if his changes lead to an
unplayable level.
Tanagra works quickly enough to permit rapid reaction to

designer input. It can generate parts of levels in response to
a change made by the designer, or can regenerate the entire
level on demand, while respecting any constraints placed by the
human designer. We have found it useful to keep separate the
choice of a geometry pattern (using ABL) from the instantia-
tion of that pattern (using Choco), as the precise placement of
level components is influenced by surrounding geometry. This
means that the placement of components in one beat may be
able to change based on the placement of level components in a
later beat, while still maintaining the same geometry pattern in
both beats.
Many different configurations of component placement meet

the same geometry pattern. For example, a jump to a different
platform could have a short initial platform and a long later plat-
form, or vice versa. The search for a valid level occurs in two
stages: ABL searches at the structural, pattern level, and Choco
searches for a valid, numerically parameterized instantiation.
The pattern abstraction also permits adding new kinds of de-
sign patterns easily, as instead of specifying all possible combi-
nations of geometry components, we can instead specify rules
for the construction of the pattern.
This section provides an overview of how ABL and Choco

each work, their responsibilities in Tanagra, and how they com-
municate with each other. Sections VI and VII provide a more
detailed explanation of how different generation and editing op-
erations are implemented.
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Fig. 5. The hierarchy of working memory elements used to represent levels
in Tanagra. Solid, black arrows denote inheritance; dashed blue arrows denote
ownership. For example,ConstraintWMEs have multiple owners, each of which
must be a ConstrainableWME.

Listing 1. Two different behavior definitions for placing a platform into a spe-
cific beat, given that the platformmust have the specified entrance and exit prop-
erties in relation to the beat.

A. Reactive Planning With ABL

ABL is a Java-based reactive planning language created by
Mateas and Stern for use in creating believable agents that
can rapidly react to a changing world state. Reactive planning,
as a paradigm, is focused on domains where the world can
change out from underneath an agent’s own actions: this is

exactly the situation in mixed-initiative level generation, where
the designer makes manual edits that warrant a response from
Tanagra. The world state is communicated using a blackboard
architecture with working memory elements (WMEs), which
represent facts that the automated design agent knows and
reasons about. These facts can be asserted or retracted from the
agent’s memory by either the human or the computer. Every
object in the world that the Tanagra ABL agent must interact
with is stored as a WME: Fig. 5 shows the inheritance hierarchy
for all WMEs used in Tanagra.
ABL agents are authored as a set of hierarchical behaviors

that can be performed towards goals, where each of these be-
haviors can have a number of subgoals, similar to the behavior
and goal relationship in a hierarchical task network. These be-
haviors can operate either in sequence or in parallel. Behaviors
“ground out” in direct actions that should be taken in the world.
In Tanagra’s case, these actions are expressed in mental acts,
which are written as normal, sequential Java code. There are
typically several behaviors that can fulfill a particular goal. A
particular behavior is chosen to fulfill the goal based on whether
its precondition is true, and what internal priority (specificity) is
given for it. If a behavior fails for any reason, the next most suit-
able behavior is chosen to fulfill the goal.2

For example, Listing 1 shows the ABL code for two out of the
five different behaviors used in Tanagra’s geom-
etry creation. The first of these behaviors handles the situation
in which there is already a PlatformWME whose beat owner,
entry, and exit conditions exactly match those specified in the
behavior’s arguments. This platform is bound to the variable

. If the precondition succeeds, then is added to the beat’s
geometry set and is flagged to be ready for solving by Choco. If
this behavior’s precondition fails, then it is still possible for the
second behavior to execute for the goal. The second behavior
handles the case where there is no PlatformWME that fulfills the
stated requirements, and less than two platforms already in the
beat. In this case, a new platform is created (which, by default,
is ready for solving) and added to working memory. Similar be-
haviors exist for placing gaps, enemies, stompers, and springs
into the level, as well as for adding and removing constraints
and handling beat changes.
Tanagra uses a number of parallel behaviors called managers

which wait for a change in a certain aspect of the world state and
then initiate behaviors that react to that change. Much of the in-
telligence behind Tanagra comes from these managers working
towards different, but related, goals in concert. For example,
consider a scenario in which a designer adds a tile to an ex-
isting partial level. The ABL behavior that reacts to this change
may add or extend an existing piece of geometry, which in turn
modifies the length of the beat containing the tile. The change
also mandates the need for further constraints to be placed on
the level. All these changes may also lead to a need for different
geometry to be generated for the remainder of the level, to main-
tain its playability. Each of these scenarios is handled by sep-
arate managers, which are specified independently from each
other.

2For a more complete description of ABL’s semantics, inner workings, and
design idioms we refer the reader to other literature on the topic [41], [42].
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Fig. 6. This diagram shows the communication channels between working memory, ABL, and Choco, and dependencies between different managers within ABL.
Green solid lines denote WME reading and writing, and orange dashed lines denote behavior and function calling.

There are four different categories of managers. Beat man-
agement and geometry management handle changes made to
beats and geometry, respectively. In parallel, the solution man-
agers address solution management and assignment, and the
constraint managers handle adding constraints to the level as
necessary. Each manager has a different priority; for example,
beat management has a higher priority than geometry manage-
ment, since the geometry that can be placed is dependent on its
beat’s length being predetermined.
Fig. 6 shows the communication model for Tanagra between

working memory, ABL managers, and the Choco constraint
solver.

B. Numerical Constraint Solving With Choco

Choco is a Java library for modeling and solving numerical
constraint satisfaction problems. Constraints can be expressed
on variables that are boolean, integer, or real numbers. These
constraints are then read by Choco’s constraint solver, which
finds a value for each variable such that all constraints are sat-
isfied.
We use Choco to model constraints for the geometric rela-

tionships within and between level components in geometry pat-
terns, and also for the relationship between each geometry pat-
tern and its associated beat. These constraints are designed to
ensure that the level is playable by taking into account a simple
avatar physics model. Tanagra is aware of the player’s move-
ment speed, initial jump velocity, and the impact that springs
have on this jump velocity.
Each type of level component has a number of constraint vari-

ables associated with it. A platform’s variables are a start posi-

tion and an end position and a width. Enemies, stompers, and
springs have an and coordinate. Gaps have a width and
height. Each component also has a length variable associated
with it, which states the amount of time the player takes to in-
teract with that component in an ideal playthrough—i.e., a sit-
uation in which the player character takes minimal time to tra-
verse the level. This allows a single numerical constraint—that
the sum of the lengths of all components equals the length of the
beat they inhabit—to maintain the desired length and pacing of
the level.
All constraints store a set of their “owners,” which are all

ConstrainableWMEs (i.e., beats and geometry components).
This ownership property makes it straightforward to remove
constraints whenever geometry or beats are modified or deleted.
As seen in Fig. 5, there are a number of different kinds of con-
straints, each of which serves a different purpose in ensuring
the playability of levels. Constraints are differentiated to ensure
that some of them (such as those that specify internal geometry
constraints) are never retracted during solving, and others (such
as those that force geometry to a specific position) are retracted
at the appropriate time. The ConstraintWMEs below encode
facts about the structure of the level.
• BeatBindConstraintWME. This is a constraint that binds
the exit point of one beat to the entry point of the next
beat, and vice versa. It ensures that geometry between beats
“lines up.”

• BeatEntryConstraintWME, BeatExitConstraintWME.
These constraints bind the start point of the entry platform
for a beat to the entry point of that beat, and the end point
of the exit platform for a beat to the exit point of that beat.
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Fig. 7. A diagram representing a potential partial level during level generation. Blue, rounded boxes denote ABL behaviors. Green boxes are WMEs. Not repre-
sented here are the tiles that make up each level component. Table I provides examples of the constraints imposed between each level component.

• GeometryComponentConstraintWME. This is a constraint
internal to specific geometry. For example, the expression
that the width of a platform is equal to its ending position
minus its starting position.

• MultibeatConstraintWME. This is a constraint that is ap-
plied to geometry within patterns that span multiple beats.
For example, the staircase pattern consists of three gaps be-
tween platforms. The multibeat constraints for these gaps
ensure that each gap has identical width and height.

• PositioningConstraintWME. This is a constraint that is
placed on every geometry component when a solution is
found, which forces geometry to stay in the same position
whenever possible. Positioning constraints are frequently
added and removed during the geometry search process.

• UserConstraintWME. A constraint placed on geometry by
the user, either when drawing platforms into the canvas or
by pinning geometry in place. User constraints are never
removed unless the designer unpins or removes the con-
straints’ owner.

Choco is called each time the generator places geometry for
a beat; typically, solutions are found within 5 ms, on a 3-GHz
Intel Core 2 Duo. It can take significantly longer to exhaustively
determine that there is no solution, so Tanagra stops Choco from
searching after 50 ms, since it is unlikely to find a solution after
that point. Choco is set to attempt a random integer value in the
domain (postpropagation) of the variable, allowing it to create a
variety of levels even when using the same geometry patterns.

VI. GEOMETRY MANAGEMENT AND GENERATION

The majority of ABL behaviors in Tanagra deal with man-
aging user-provided geometry and generating new geometry.
These behaviors can be grouped into three major categories: ex-
pression and implementation of hierarchical geometry patterns,
creating level components from user-placed tiles, and incorpo-
rating user-created geometry into patterns. This section will dis-
cuss in detail how ABL and Choco interact to perform these
tasks.

A. Hierarchical Geometry Patterns

At its base, a geometry pattern consists of a set of level com-
ponents and constraints that are asserted on these components.
Geometry patterns can contain other geometry patterns, and op-
tionally additional constraints on components that exist between
patterns. Once a pattern has been assigned to a beat, the solver
ensures that at least one instantiation of the pattern still allows
the level to be playable.
Tanagra’s representation for levels mandates that no beat may

contain more than two platforms, since each beat may con-
tain only a single player action, such as jumping or waiting.
An enemy or a stomper pattern uses a single platform; a gap
or spring pattern uses two platforms. Platforms are labeled by
whether they are an entry or exit platform for a beat. Playability
is guaranteed by constraining the exit platform of one beat to
have an identical vertical coordinate to the entry platform of its
neighboring beat. While the level may still be playable if the
platforms had positions that differed by only one or two tiles,
this difference would constitute a separate player action (i.e., a
jump between platforms) which would belong in a separate beat.
Fig. 7 shows a diagram representing a partially specified

level; Table I describes its constraints. In this example, the first
three beats in the level are assigned the valley pattern. This pat-
tern consists of a jump down over a gap, followed by a platform
with an enemy on it, and finally a jump over a gap, consuming
three beats in total. In addition to the internal constraints for
each geometry pattern, the valley pattern also imposes the
constraint that the gaps in the first and third beats should have
values that are consistent with building a valley: the first gap
should cause the player to jump down to the platform, and
the second gap should have an equal height to the first but in
the opposite direction. The final beat of the partial example
contains the spring pattern, which consists of two platforms, a
gap between them, and a spring that sits on the first platform for
the player to jump on. This pattern has all the constraints that a
gap pattern has, but also the constraint that the spring must sit
on the end of the first platform. The spring modifies the domain
values of the gap to support a larger height, according to the
physics model for the game. Playability is ensured within beats
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TABLE I
A REPRESENTATIVE SAMPLE OF THE CONSTRAINTS IMPOSED ON THE EXAMPLE LEVEL STRUCTURE SHOWN IN FIG. 7

by the constraints for each pattern; it is ensured across the entire
level by matching up exit and entry platforms between beats.

B. Creating User Geometry From Tiles

The designer interacts with the level canvas by placing in-
dividual tiles into it. Since all level generation and playability
verification is performed on level components rather than indi-
vidual tiles, Tanagra must determine the appropriate level com-
ponents based on the tiles that it detects such that Tanagra’s in-
ternal representation for levels is not violated. This geometry is
then incorporated into geometry patterns as appropriate.
Platforms, like any other geometry, are “owned” by a par-

ticular beat. While handling platform placement from tiles, it
is also important to determine if the placed platform is an entry
platform, exit platform, both, or neither, to assist with the pattern
assignment described above. Also, constraints must be added to
the system to ensure that the newly created platform stays in the
place indicated by the designer.
This entire process of creating platforms from tiles is accom-

plished in two stages, using two different managers: the first,

higher priority, manager is responsible for constructing plat-
forms from tiles, and the second is responsible for placing con-
straints on the platform and determining entrance and exit prop-
erties. When creating a platform from tiles, ABL determines if
the tile that belongs to a platform that is not already in working
memory should be added to an existing platform, or should
cause the merging of two neighboring platforms. Beat owner-
ship and entry/exit determination are calculated by the position
of the tile: from this position, and an understanding of the move-
ment speed of the avatar, we can calculate the beat that the plat-
form must belong to. A newly created platform is given con-
straints such that the tiles placed by the designer will always
be contained in the platform, but the platform may eventually
contain additional tiles. This allows platforms to extend to fit
whichever geometry pattern they are assigned to.

C. Incorporating User-Created Geometry Into Patterns

User-created geometry is incorporated into patterns through
additional behaviors that check to see if a certain geometry com-
ponent already exists in a beat before creating new geometry.
Because constraints are expressed on individual geometry com-
ponents and beats, rather than on the pattern as a whole, it is
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Fig. 8. The necessity for correcting beat placement based on geometry place-
ment. The blue shaded boxes denote beat boundaries. If the designer draws ge-
ometry as depicted on the left-hand side, there can never be a solution to the
level as the platforms do not line up at the beat boundary. However, this ge-
ometry placement should clearly be playable. The right-hand side shows how
Tanagra corrects beat boundaries to address this issue.

possible to simply swap out the existing platform for the plat-
form that otherwise would have been generated, and have the
constraints expressed as normal. The additional user constraints
placed during platform inference remain associated with the
platform, and any additional constraints placed on the platform
are redundant.

VII. BEAT MANAGEMENT

There are four main design concerns that Tanagra must be
able to reason about with regard to the beat timeline: handling
responses to the designer making a change to the length of a
beat, splitting a beat to create a new one, deleting a beat, or
adding too many platforms to a single beat. Each of these is
resolved by separate ABL managers. The first three managers
work simply by monitoring for a flag that is set on a beat
when the designer initiates one of these changes. When the flag
appears, a new behavior is subgoaled to handle the necessary
changes.
The TooManyPlatformsManager handles a slightly more

subtle problem that can arise from a designer placing geometry
into the level canvas. Tanagra begins with a default number
of beats in the timeline, but the designer is capable of freely
drawing platforms wherever (and however frequently) she
wishes. Recall, however, that a single beat is only ever allowed
to contain at most two platforms, which are the beat’s entry and
exit platforms. Therefore, when a designer places more than
two platforms into a beat, Tanagra must respond by splitting
beats in an appropriate location. An associated manager, the
PlatformMatchupManager, handles a related problem: if the
designer draws two platforms at different vertical positions, but
whose endpoints match up to the same beat boundary, Tanagra
should be able to move the beat boundary in attempting to en-
sure level playability (Fig. 8). These two managers constantly
monitor for platforms that violate these rules, and raise the beat
length change flag or beat split flag as appropriate.

VIII. CONSTRAINT SOLVING AND SEARCH

The motivating force behind Tanagra’s solving and search
process is to minimize the number of global changes that must
be made to a level in order to resolve small, locally made
changes from either the human or computer designer. This is
essential to providing the designer with an editing environment
in which the response to any changes made to the level con-
tinues to ensure playability while leaving the level as similar

Fig. 9. This example shows how constraint relaxation is necessary when cre-
ating levels. On the left-hand side, a level with a user-specified platform on the
right-hand side is being generated. A gap pattern has been chosen for the first
beat, and Choco has instantiated this pattern as a jump down. In the middle ex-
ample, the second beat also has a gap pattern, but using the existing constraints
for the first beat, the level is unplayable. The right-hand side example shows how
relaxing the positioning constraints for the first beat renders the level playable,
without changing any of the geometry patterns.

Fig. 10. A small example illustrating the need for geometry search. On the
left-hand side, a partial level is being solved, where existing geometry in the
first and third beats is pinned in place by the user. A geometry pattern must be
selected for the middle beat. In the middle level, Tanagra selected the stomper
pattern to fill the middle beat, which leads to an unsolvable level, as the exit
platform and entry platforms for beats two and three can never line up. On the
right-hand side, Tanagra has instead selected the spring pattern, which leads to
a playable level segment.

as possible to its prior state. However, the designer should still
be able to request a complete regeneration of the level at any
time, in order to see different potential levels given the current
constraints. This motivation leads to a two-stage solution and
search process whenever a change is made to the level. The first
stage iteratively relaxes constraints on the level; if necessary,
the second stage iteratively regenerates small sections of the
level until a solution is found.
Recall that ABL assigns positioning constraints to level com-

ponents upon solving, to minimize the changes made to the
level when new geometry is generated. These constraints must
often be partially relaxed when new geometry is added (Fig. 9).
There are also many situations in which the first geometry pat-
tern selected for a beat would be invalid. For example, consider
a scenario in which the designer has drawn two long platforms
that are separated by a single beat. These platforms have dif-
ferent values, so the connecting geometry for the middle beat
could not be another single platform, as the endpoints would
not line up. However, using a different geometry pattern, such
as a spring, may complete the level geometry to make a playable
level. Fig. 10 illustrates this scenario.
These two scenarios lead to the need for multistage constraint

solving on Choco’s side, and backtracking on ABL’s side.

A. Constraint Solving

ABL calls the constraint solver by subgoaling the Solve be-
havior. This behavior takes as a parameter a list of Constrain-
ableWMEs whose positioning constraints should be ignored,
called an “ignore set.” Solve is subgoaled after each attempt
to place a new geometry pattern during geometry generation,
and after modifying the beat time through adding, deleting, or
changing the length of a beat. The list of ConstrainableWMEs
initially consists only of the new geometry components added
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to the level, or the beats affected by the timeline change. The
solver iterates over every ConstraintWME in working memory,
excluding only positioning constraints belonging to objects in
the ignore set. If a solution is not found, then positioning con-
straints are slowly relaxed outward from the original ignore set.
On each attempt to solve, the solver finds the ignore set’s “fron-
tier” beats (i.e., those that are in the set but whose neighbors
are not) and randomly chooses one of these frontier beats to
add to the ignore set. Constraints imposed on geometry by the
user are never added to the ignore set. When the frontier meets
user-specified geometry or the edge of the level, there is no solu-
tion for this particular configuration of geometry, and ABLmust
search for a solution (Section VIII-B). By running the solver so
many times just for a single geometry pattern placement, this
algorithm does incur a high solving cost, but provides the ben-
efit of minimizing global changes. Even with the solver running
so frequently in the worst case scenario, Tanagra still can find
valid levels at an interactive rate.

B. Searching for a Solution

If the solver does not find a solution, then we can be sure
that the last change made to the level has resulted in making it
unplayable. There are two potential causes for this.
1) The concrete geometry corresponding to the most recent

change leads to the level being unplayable, and should be
replaced: To address this issue, Tanagra maintains a solution
state. This state consists of the geometry patterns that are being
used at any given time, indexed by the beat they belong to, and
a set of states that are known to be invalid. Whenever the solver
runs, a CleanupSolver behavior is subgoaled. This behavior
can do four different things, depending on the solution state. If
the solver succeeds, then the CleanupSolver behavior simply
records a success. However, if the solver fails, then the behavior
must record the state currently being attempted as invalid and
all nonuser geometry and constraints should be removed from
the beat. If there are remaining geometry patterns to be tried
for a beat, then the cleanup behavior is complete, and the
MissingGeometryManager will take care of attempting a new
pattern. If there are no remaining geometry patterns for the beat,
then nonuser geometry and constraints are removed from both
that particular beat and its neighbors, as the solver’s failure
signifies a more global problem with geometry placement.
This search continues until either a solution is found, or it is
determined that the failure to solve is due to a different cause:
2) The player has imposed constraints that contradict each

other, or drawn geometry that can never lead to a solvable level:
Due to the requirement that Tanagra respect every constraint
that the designer places on a level, it is possible that the designer
will place constraints that conflict with each other. This is most
common during geometry placement, by placing platform tiles
that, no matter the intervening geometry, would never be reach-
able from each other given the game’s mechanics. In this sce-
nario, Tanagra changes the background of the level canvas from
pale blue to red, denoting the lack of a solution. From here, the
designer can begin manually removing offending geometry.

IX. EXPRESSIVITY

As a level generator that must support designers, it is espe-
cially important that Tanagra can create a wide range of levels.
While it is easy to show that Tanagra can create a large quantity
of levels, we feel it is more interesting to examine the qualities
of the levels that are produced, and compare how similar they
are to each other. In this section, an analysis of Tanagra’s ex-
pressive range is presented, using a similar technique3 to that
defined in our previous work in analyzing and visualizing the
expressive range of a level generator [39]. Two different met-
rics are used for comparing levels: the linearity of a level and
how lenient the level is towards the player. These metrics are
then applied to levels that are entirely procedurally generated
using the default beat timeline.
Linearity. The first metric for evaluating Tanagra’s expres-

sivity is evaluating the “profile” of produced levels. We do this
by fitting a line to the produced geometry, and determining how
well the geometry fits that line. The goal here is not to deter-
mine what exactly the line is, but rather to understand Tanagra’s
ability to produce levels that range between highly linear and
highly nonlinear. The linearity of a level is measured by per-
forming linear regression on the level, taking the center points
of each platform as a data point. Each level is then scored by
taking the sum of the absolute values of the distance from each
platform midpoint to its expected value on the line, and dividing
by the total number of points. Results are normalized to a
scale, with being highly nonlinear and being highly linear.
Leniency. While we hesitate to classify the difficulty of

Tanagra’s levels, as such a measure would be 1) subjective,
and 2) highly dependent on the ordering of geometry, we can
classify how “lenient” each geometry pattern is to the player.
Clearly, a level made up of mostly gaps and enemies is far less
forgiving than a level with no gaps and a number of long, flat
platforms. To measure this, we define a leniency score that is
the weighted sum of chosen geometry patterns in the level,
normalized by the number of beats in the level. A score of 1
describes a highly lenient level, and 0 is a nonlenient level.
Scores for each pattern are as follows:

These two metrics allow us to compare produced levels and
describe Tanagra’s expressive range by categorizing a represen-
tative sample of levels it produces into bins based on their lin-
earity and leniency scores. Fig. 11 shows the expressive range
of the generator when it runs without any user constraints. Each
hexagon is colored to indicate the number of generated levels
that have the corresponding linearity and leniency scores. These
data are collected by generating 10 000 levels without any user-

3Note that the details of the metrics themselves have changed from this prior
work. Scales are now reset such that the higher the score for a metric, the better
the level fits its metric. Leniency is now also on a scale.
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Fig. 11. Tanagra’s expressive range, measured on the linearity and leniency of
generated levels. 10 000 unique levels were generated and graded by these met-
rics. In this visualization, each hexagon corresponds to a bin containing levels
and is colored by the size of each bin according to the scale on the right-hand
side.

Fig. 12. An example of the most common kind of level Tanagra produces, ac-
cording to expressive range analysis shown in Fig. 11.

placed geometry or modifications to the beat timeline. Each
of these 10 000 levels is unique, although there are only 7201
unique pattern combinations in that set; i.e., there are some
levels that have an identical combination of patterns but dif-
ferent geometry positioning. Repetition in levels at the pattern
layer is largely due to the influence of multibeat patterns: they
have an equal likelihood for selection as a single-beat pattern,
and restrict the other patterns that can be chosen.
This expressive range is slightly skewed towards creating

linear, nonlenient levels, with a peak in the graph at linearity
and leniency . This graph does imply a limit to

the expressivity of the generator: not many generated levels are
both highly nonlinear and highly lenient. However, the number
of unique levels and level patterns implies that there is a reason-
able amount of variation within each of the bins shown in the
graph. Since a designer will be constructing a single level, it is
encouraging to see that Tanagra provides good coverage across
both linearity and leniency. Fig. 12 shows a level that fits into the
largest bin in Tanagra’s expressive range. We expect that more
sophisticated patterns of geometry, in terms of both new geom-
etry components and more hierarchical patterns, would improve

the expressivity of Tanagra a great deal, and hope to investigate
this in future work.

X. USE SCENARIO

This section presents a detailed use scenario, showcasing
Tanagra’s key abilities: auto-filling geometry, brainstorming
level ideas, and manipulating level pacing. Fig. 13 illustrates
this scenario with screenshots taken at key moments. A video
showing Tanagra in action is also available online.4

Tanagra can generate levels with or without initial designer
guidance. Fig. 13(A) shows an example level generated without
any input, using the default beat timeline, while Fig. 13(B)
shows a level with partially designer-specified geometry, which
altered the beat timeline to ensure that there are never more than
two platforms per beat. Tanagra can rapidly regenerate the level
to show different variations that meet the same requirements
[Fig. 13(C) and (D)]. Geometry for a beat can be moved around
within that beat at any time; for example, Fig. 13(E) shows that
the level has been modified to have the closing platform moved
significantly higher. Notice that only the geometry at the end of
the level has changed to accommodate this alteration. Tanagra
also supports editing the beat structure itself, in addition to
manipulating geometry. In Fig. 13(F), the designer has signif-
icantly changed the pacing of the level by adding a number
of beats to the middle and deleting beats at the beginning and
end of the level. The designer then extends the lengths of the
middle beats slightly in Fig. 13(G). Finally, Tanagra is capable
of regenerating geometry for specific beats rather than the
entire level. The designer completes the level in Fig. 13(H) by
regenerating geometry for the third beat and second to last beat.

XI. DISCUSSION AND FUTURE WORK

Tanagra is a mixed-initiative level design tool for 2-D plat-
formers that supports a human designer through procedurally
generating new content on demand, verifying the playability of
levels, and allowing the designer to edit the pacing of the level
without needing to manipulate geometry. An important motiva-
tion in the design of Tanagra was the desire to focus on how the
mechanics of the game relate to designing levels, and being able
to reason about the gameplay that levels provide. This paper has
presented Tanagra’s level representation, how it integrates reac-
tive planning and numerical constraint solving, an evaluation of
its expressive range, and a detailed example of how it can be
used.
Tanagra is itself part of a larger intended system that will sup-

port more editing operations and different views on the level.
We envision a final design tool that provides an ability to directly
edit entire level paths, which are made up of linear sections built
with Tanagra, without needing to focus on fine-grained geom-
etry details. To reach this goal, there are a number of interesting
questions that must be addressed.
A major issue that must be addressed is that of how to handle

conflicting user constraints; for example, if the designer care-
fully crafts two different sections of a level that has no valid
connecting geometry, Tanagra currently merely informs the de-
signer there is no solution. However, a better solution may be

4http://users.soe.ucsc.edu/~gsmith/tanagra/v2_demo/demo.htm
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Fig. 13. These screenshots show Tanagra in different stages of a level being edited. (A) A purely procedurally generated level with the default beat timeline. (B)
The level designer has cleared the level and drawn in platforms; notice that the beat timeline has been automatically adjusted to reflect the drawn platforms. (C)
and (D) Two different levels are generated to fill between the drawn geometry. (E) The last platform has been moved up, with the rest of the level held as constant
as possible. (F) New beats have been added to the middle of the level; beats have been deleted from the beginning and end to slow the pacing. (G) Beat lengths are
changed to make the middle of the level slightly less tightly packed. (H) Geometry has been regenerated specifically for the third beat and the second to last beat.
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to suggest levels that incorporate each section in different lo-
cations, or relax constraints on one part of the level but not on
another part. It can also be difficult to determine the “correct”
action to take in certain situations; for example, when splitting
a beat in half, how should any existing geometry for that beat be
divided up? We propose to address these issues in future work,
which will examine ways to detect and present meaningfully
different design variants.
Related to this, there is plenty of further work to be done

in improving the expressivity of Tanagra and ways to measure
it. The current expressive range of Tanagra is fairly large with
only a few different geometry patterns; we hope to add more ge-
ometry patterns that correspond to different kinds of player ac-
tions. For example, in the canonical loop-de-loops from Sonic
the Hedgehog 2, gaps that require double-jumping, and obsta-
cles that involve wall jumping would be interesting components
to add and could greatly expand the number and variety of levels
that can be produced. Adding these patterns would require cre-
ating new ABL behaviors for pattern placement and responses
to geometry, and associated constraints that reflect a more so-
phisticated physics model. It would also be interesting to ex-
plore ways for designers to specify their own geometry patterns
and constraints without needing to edit ABL or Choco code di-
rectly.
There is also work to be done in determining additional met-

rics for levels to be used in expressivity analysis, and in pre-
senting that information to the designer. A designer’s interac-
tions with Tanagra can be visualized as iteratively sculpting the
generative space: for example, requiring that a level have more
enemies would shift the shape of the expressive range graph to-
wards the nonlenient end of the -axis. This information could
be useful feedback to novice designers, who may be unaware of
how their changes are impacting the experience the player will
have with the level.
Other future work with Tanagra involves running user studies

to study how people interact with an intelligent level design as-
sistant, and a more quantitative study to examine how Tanagra
assists designers in effectively and efficiently creating a variety
of levels.
Finally, we intend to explore how the combination of reactive

planning and constraint solving can apply to genres other than
side-scrolling platformers. We believe the technique of sepa-
rating abstract geometry patterns from physical, numerical con-
straints could work well in genres such as first-person shooters,
which employ common design patterns such as chokepoints and
arenas [40]. We expect that the representation for such levels
would differ quite substantially, however. The beat timeline of-
fers a powerful editing mechanism for controlling the pacing of
a 2-D platformer level, but is less appropriate for games that
rely more on tension, flow, and story. For example, an alterna-
tive representation for a role-playing game might be a graph de-
scribing the structure of quests. There are also additional com-
plexities arising from choices that the player could make, from
character ability customization to different paths taken through
a level.
This paper has presented Tanagra, a level design tool for 2-D

platformers that allows a human designer to interact seamlessly
with a procedural content generator. This mixed-initiative ap-

proach offers a way to reduce authorial burden in level design
while still allowing human designers to exercise their creativity
and aesthetic judgment.
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