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ABSTRACT
Files, classes, or methods have frequently been investigated in re-
cent research on co-change. In this paper, we present a first study at
the level of lines. To identify line changes across several versions,
we define the annotation graph which captures how lines evolve
over time. The annotation graph provides more fine-grained soft-
ware evolution information such as life cycles of each line and re-
lated changes: “Whenever a developer changed line 1 of version.txt
she also changed line 25 of Library.java.”

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—corrections, version control; D.2.9
[Management]: Software configuration management

General Terms
Management, Measurement

1. INTRODUCTION
One of the most frequently used techniques for mining version
archives is co-change. The basic idea is that items that are changed
together, are related to each other. These items can be of any
granularity; in the past co-change has been applied to changes in
modules [7], files [2], classes [8], and methods [14]. All these ap-
proaches stopped at the granularity of methods. Applying them to
more fine-grained items such as blocks or lines seemed infeasible,
in particular since they are difficult to identify across versions.

Typically lines are identified by their line number. However,
since lines may be moved within files, e.g., when other lines are
inserted or deleted before, line numbers are not fixed across ver-
sions and thus not suitable as identifiers for co-change analysis.
We abstract line evolution from line numbers by representing each
line as several nodes in a graph (one node for each revision); edges
connect lines (nodes) that evolved from each other. We call this
graph an annotation graph (Section 2).

Today, many SCM systems such as CVS and Subversion come
with an annotation feature that returns for each line the last mod-
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Figure 1: Tracking lines with the annotation graph.

ification. Such information is not enough to track lines across re-
visions. In contrast, using the annotation graph we can build more
general annotation algorithms that return all past modifications in-
stead of just the last one (Section 3). Such annotations provide
information about the life cycle of lines (Section 4).

In recent research, data mining on co-change information was
used to recommend related locations such as files [13] and meth-
ods [16] after one initial change. In Section 5 we show that this
is also possible for lines: “Whenever a developer changed line 1
of version.txt she also changed line 25 of Library.java.” In Sec-
tion 6 we discuss related work and Section 7 closes the paper with
an outlook on future work.

2. TRACKING LINES
Tracking how lines evolve over time requires the identification of
lines across several versions of a file. Within one single version,
lines are typically identified by line numbers or in some cases by
their contents. However both cases do not work when applied to
several versions: line numbers may change when other lines are
deleted or inserted, and the content of lines may be modified.

2.1 What are Annotation Graphs?
To capture how lines evolve over time, we introduce the annotation
graph. The annotation graph is a multipartite graph where each part
corresponds to one version of a file. Within each part/version every
line is represented by a single node; edges between node indicate
that a line originates from another: either by modification or by
movement. Whether a line was changed in a revision is captured
by labels, e.g., bold nodes indicate changes lines.



As an example consider Figure 1 which represents several
changes in an annotation graph. Edges connect lines that relate
to each other across revisions, e.g., line 1 in revisions r1, r2, and
r3. Modifications such as from lines 16–20 in r1 to lines 19–23
in r2 result in a complete bipartite subgraph for that area. In other
words, every node from 16 to 20 in r1 is connected with every node
from 19 to 23 in r2.

Formally, an annotation graph G = (V, E) for a file with n revi-
sions r1, . . . , rn (sorted by their creation time) consists of nodes

V =
n[

i=1

{(ri, m) | m ∈ {1, . . . , number of lines(ri)}}

and edges e = ((ra, la), (rb, lb)) ∈ E for which

1. rb is a direct successor of ra and

2. lb originates from la—either by modification (contents dif-
fer) or by movement (contents and relative position are
equal)

Additionally, when lines were changed, we label the correspond-
ing nodes with a description of the change such as the author
who changed the lines, or the transaction in which the lines were
changed.

2.2 How to Read GNU’s diff
In order to construct an annotation graph, we need to compare all
subsequent revisions of a file. For computing textual differences,
we use the GNU diff tool. The diff tool returns a list of regions that
differ in the two files; each region is called a hunk. Basically, there
are three different kinds of changes:

Modifications. In an annotation graph, modifications result in a
complete bipartite subgraph like in Figure 1 between lines
16–20 in revision r1 and lines 19–23 in revision r2.

Additions. For the annotation graph, additions do not result in any
edges, only the positions of following lines are updated. In
Figure 1, the lines 10–12 are inserted in revision r2, thus line
10 of revision r1 corresponds to line 13 in r2.

Deletions. For the annotation graph, deletions do not result in any
edges, only the positions of following lines are updated.

When comparing two text files with diff, we specified the –text,
–minimal, and –strip-trailing-cr options. These options turned out
to be very effective to return a small set of differences and to ad-
dress the carriage return problem that diff and CVS suffer from.

2.3 How to Compute Annotation Graphs
Once we have computed the changeregions for all subsequent revi-
sions, we can use this information to build an annotation graph for
a file. When computing an annotation graph, one can either start
from the first revision computing forward (to the last revision), or
start from the last revision computing backward. We now describe
a forward-directed algorithm that starts with the first revision; fore
more details we refer to the extended version of this paper [15].

First the algorithm creates nodes for each revision and each
line with the method createNode. Next, it iterates over all pairs
(revL, revR) of subsequent revisions. For each pair it computes the
differences (hunks) between revL and revR which then are sorted
by their position R from in the later revision revR. These hunks are
then processed to create edges between nodes:

– for unchanged lines exactly one edge between the matching
lines posL and posR;

large modification ignore large modifications

42 42

Figure 2: Ignoring large modifications for annotation graphs.

– for modified lines all possible edges, which means
posL ∈ {L from . . . , L to} and posR ∈ {R from . . . , R to};

– for inserted and deleted lines no edges are created.

For modifications and additions, we label the nodes of the later
revision revR with information about the change, such as author and
transaction. These labels are later used to compute annotations that
are more general than the ones provided by existing SCM systems
(see Section 3).

2.4 How to Recognize Large Modifications
One problem for annotation graphs are changes that modify large
parts of a file, since they results in a large number of edges. As an
example consider the left part of Figure 2. When we investigate the
evolution of line 42 and go back in time, we come across a large
modification. If we take this modification into account, line 42
originates from every modified line. Such a result is not reasonable
for evolution analysis.

In order to reduce noise, we treat large modifications not as a
modifications but as combined deletions and additions. This means
that for large modifications, we do not create any edges in the an-
notation graph (see the sketch in the right part of Figure 2).

For recognizing large modifications we use a heuristic. Let
lengthL and lengthR be the lengths of the left (L) and right (R) re-
gion of a hunk fct, and file lengthL and file lengthR be the lengths
of the corresponding files. A hunk is a large modification if one of
the following conditions hold:

– Region lengths exceed a threshold

lengthL > max(α · file lengthL; β)
∨ lengthR > max(α · file lengthR; β)

– Ratio of region lengths exceeds a threshold

lengthL

lengthR

<
1

γ
∨ γ <

lengthL

lengthR

The first condition recognizes changes that affect large parts of a
file, in contrast, the second one recognizes changes that insert or
delete large portions to or from a region. For our experiments, we
used α = 0.10 and β = γ = 4.

3. ANNOTATING LINES
Most SCM systems come with an annotation feature that returns
for each line when it was inserted and by whom. For instance, the
CVS annotations in Figure 3 for revision 1.17 of file Foo.java, tell
us that line 39 was inserted by Mary in revision 1.10 and line 40
was inserted by Kate in revision 1.14. In this section, we briefly
show how to compute such annotations using the annotation graph.
While SCM systems typically return only information about the
last change, the annotation graph can provide more general anno-
tations that collect information about all past changes.



$ cvs annotate -r 1.17 Foo.java
. . .

19: 1.11 (john 12-Feb-03): public int a() {
20: 1.11 (john 12-Feb-03): return i/0;

. . .
39: 1.10 (mary 12-Jan-03): public int b() {
40: 1.14 (kate 23-May-03): return 42;

. . .
59: 1.10 (mary 17-Jan-03): public void c() {
60: 1.16 (mary 10-Jun-03): int i=0;

. . .

Figure 3: CVS annotations for Foo.java

Annotating with the last change. When computing annotations
for a revision rs, we perform for each line ls a backward-directed
breadth-first search in the annotation graph, starting from node
(rs, ls). The search stops when we visit a node (rx, lx) that is
labeled as a change (either the line was added or modified). We
then annotate the line ls with information from revision rx, such as
the revision identifier, the author, or the time of the change. Note
that for a line ls the last change is unique, thus lx and rx are unique
too. It may also hold that rs = rx in case (rs, ls) is already labeled
as a change.

Annotating with all changes. When annotating a revision rs with
all changes, we also perform for each line ls a backward-directed
breadth-first search in the annotation graph, starting from node
(rs, ls). However, we do not stop when visiting a changed node;
instead we collect for every visited node that is labeled as a change,
its information in (multi)sets. Once the breadth-first search is com-
pleted, we annotate the line ls with these sets.

4. LIFE CYCLE OF LINES
In order to investigate the life cycle of lines for the complete
ECLIPSE project (snapshot 2005-11-23) we annotated all text files
with information about all past changes. In particular, we collected
the revision identifiers and the authors. Additionally, we ignored
lines containing whitespace or single curly braces. Computing the
annotations took approximately 10 hours for 31,950 files.1Using
these annotations we provide answers to the following questions.

How frequently are lines changed? We computed for each line
the change count, that is the number of distinct revisions in its anno-
tation. Note that we also counted the addition of a line as a change.
Figure 4 shows the distribution of the change count broken down
to different file extensions. We observe that most lines are changed
only one time, in other words, they are inserted to a file and never
touched again. This is the case for almost every line in .dtd and
.txt files. In contrast, lines in .properties files are more
frequently modified (44% at least once). Such files are used to sep-
arate properties (e.g., text messages) from the actual ECLIPSE code.

How many developers change a line? see [15].

What are the most frequently changed lines? see [15].

5. FINDING RELATED LINES
In this section, we show how to compute related lines using fre-
quent pattern mining. In order to create the input for data mining,
we annotated all lines of ECLIPSE (snapshot 2005-11-23) with all
past changes. However, instead of revision ids that are only unique
per file, we used the corresponding transaction ids. As a result, we

1All experiments were run on an Opteron cluster using eight pro-
cessors, each with 2 Mhz and 2 GB memory.

Figure 4: How frequently are lines changed?

get for every line the set of transactions that changed this line is
the past. By using transactions instead of revisions, we are able to
recognize patterns that are spread across several files.

For our experiments with frequent pattern mining, we used the
Apriori algorithm [1]. In order to keep the complexity low, we
applied the following optimizations:

– ignore lines containing whitespace or just a single curly brace

– investigate only modifications (not additions)

– combine lines with exactly the same change history to blocks
and use blocks instead of lines as input for mining

Using the above optimizations, we could reduce the size of the in-
put for data mining from 4,493,244 changes on lines to 255,778
changes on blocks and the calculation time to 19 seconds. On the
new input we mined for all patterns that had a minimum support
count of 23. The support count tells us how frequently lines that
are part of a pattern have been changed together in the past. For
lower support thresholds the computation did either not finish or
ran out of memory (more than 16G). Improving the mining perfor-
mance will remain future work.

Because of the high support count threshold we found only
29 patterns and only two them were interesting. The first pattern
was found in file plugin.xml where several lines defining icons.
These lines were changed together 23 times.

line 666: icon=”$nl$/icons/full/obj16/package obj.gif”
676: icon=”$nl$/icons/full/elcl16/static co.gif”
686: icon=”$nl$/icons/full/elcl16/constant co.gif”
717: icon=”$nl$/icons/full/obj16/package obj.gif”
727: icon=”$nl$/icons/full/elcl16/static co.gif”
737: icon=”$nl$/icons/full/elcl16/constant co.gif”
750: hoverIcon=”$nl$/icons/full/elcl16/exc catch.gif”
752: disabledIcon=”$nl$/icons/full/dlcl16/exc catch.gif”
753: icon=”$nl$/icons/full/elcl16/exc catch.gif”
762: icon=”$nl$/icons/full/obj16/package obj.gif”
776: icon=”$nl$/icons/full/obj16/package obj.gif”
808: hoverIcon=”$nl$/icons/full/etool16/run sbook.gif”
810: disabledIcon=”$nl$/icons/full/dtool16/run sbook.gif”
812: icon=”$nl$/icons/full/etool16/run sbook.gif”

The second pattern was spread across three files: a text file ver-
sion.txt, and two Java files, both named Library.java, but within dif-
ferent directories. The lines contain the minor version of an SWT
component and were changed 171 times together.

version.txt line 1: version 3.215
j2me/. . . /Library.java, line 25: static int MINOR VERSION = 215;
j2se/. . . /Library.java, line 25: static int MINOR VERSION = 215;



Using the above pattern, we can infer association rules such as:
“Whenever a developer changed line 1 of version.txt she also
changed line 25 of Library.java.” Such a rule holds with a high
confidence of 87% (171 out of 196 changes).

6. RELATED WORK
In this section we discuss work that is related to annotation graphs.

Annotating revisions. Chen et al. developed the CVSSearch tool
that annotates source code with the log messages from the last code
change and uses this information to guide programmers using tex-
tual similarity [5]. Hassan and Holt annotated static dependency
graphs with sticky notes. A sticky note for a dependency contains
the developer who created it, including the time when it was created
and the log message that was provided with that change. In con-
trast to the work by Chen et al. and Hassan and Holt, the annotation
graph considers all changes and not only the last ones.

Related changes. Ying et al. [13] and Zimmermann et al. [16]
applied data mining on co-change information in order to recom-
mend related locations such as files or methods. We applied the
same data mining techniques, however, our focus was on lines and
not on coarse-grained items such as methods or files.

Origin analysis. Godfrey et al. [9] and Kim et al. [10] proposed
algorithms called origin analysis, which identify the same entities
over revisions by computing entity similarities—even when entity
name changes. Origin analysis is similar to our work in that origin
analysis tries to map entities over revisions, while the annotation
graph maps lines over revisions.

Small changes. Sliwerski et al. showed how to locate fix-induc-
ing changes in version archives [12]. A subset of fix-inducing
changes has been investigated under the name dependencies by Pu-
rushothaman and Perry [11] to measure the likelihood that small
changes introduce errors. Their dependency concept is similar to
the annotation graph, however our work focuses on the annotation
of line evolution in order to compute related changes.

7. CONCLUSION
In this paper we presented the annotation graph which captures the
evolution of lines. With this graph we carried out a first investiga-
tion of the life cycle of lines and pointed out that it is possible to
find related lines with co-change analysis. However, data mining
on co-changed lines is still expensive. Thus our future work will
focus on improving the mining performance and exploring other
mining techniques.

Origin analysis on lines. Modifications result in a complete bi-
partite subgraph, since we cannot figure out which lines are
changed to which lines (see Section 2.2). We will apply ori-
gin analysis [9, 10] in the line level to identify the origin of
each line. This will lead to more precise annotation graphs.

Large modifications. The parameters for recognizing large mod-
ifications (see Section 2.4) were selected after a manual in-
spection of several code changes. We are planning a sensi-
tivity analysis to determine how our results depend on the
selection of these parameters.

Increase mining performance. Frequent pattern mining on line
level turned out to be too extensive. As a first optimization
we combined lines that shared the same history to blocks.
This yielded first results, however only for patterns with high
support count values. Currently, we investigate other opti-
mizations to find interesting patterns that have a low support.

Visualize evolution of lines. Using the models and layout algo-
rithms implemented in EpoSee [4] and CCVisu [3] and frac-
tal figures [6], we plan to visualize line level co-changes to
identify related lines and to detect abnormalities.

Build tool support. We are currently developing plug-ins that will
integrate annotation graphs into the ECLIPSE development
environment. The user will be able to explore the evolution
of lines with an annotation graph browser and related lines
will be automatically displayed with tool tips.
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