Multiple Facets for Dynamic Information Flow with Exceptions

Thomas H. Austin, San José State University
Tommy Schmitz, University of California, Santa Cruz
Cormac Fla nagan, University of California, Santa Cruz

JavaScript is the source of many security problems, including cross-site scripting attacks and malicious
advertising code. Central to these problems is the fact that code from untrusted sources runs with full
privileges. Information flow controls help prevent violations of data confidentiality and integrity.

This paper explores faceted values, a mechanism for providing information flow security in a dynamic
manner that avoids the stuck executions of some prior approaches, such as the no-sensitive-upgrade tech-
nique. Faceted values simultaneously simulate multiple executions for different security levels in order to
guarantee termination-insensitive noninterference. We also explore the interaction of faceted values with
exceptions, declassification, and clearance.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs and Fea-
tures; D.4.6 [Operating Systems]|: Security and Protection—Information flow controls

General Terms: Languages, Security

Additional Key Words and Phrases: Information flow control, dynamic analysis, JavaScript, web security

1. INTRODUCTION

JavaScript has helped to usher in a new age of richly interactive web applications. With
minimal effort, a web developer can build an impressive site by composing code from multi-
ple sources. Unfortunately, there are few restrictions on the included code, and it operates
with the same authority as the web developer’s own code. Advertising has been a particular
source of malicious JavaScript. There are a wide array of security measures used to defend
against these problems, but the bulk of them tend to rely on competent web developers.
Given the mercurial nature of security challenges, even a conscientious web developer has
difficulty keeping up with the latest trends and best practices. Another option is to bake
security controls into the browser itself. This strategy has been part of browser design since
nearly the beginning, but the controls have tended to be fairly minimal.

Information flow analysis offers the promise of a systemic solution to many of these
security challenges. Dynamic information flow analysis is particularly challenging in the
presence of implicit flows. Proposed mechanisms for dealing with implicit flows include
the no-sensitive-upgrade semantics [Zdancewic 2002; Austin and Flanagan 2009] and the
permissive-upgrade semantics [Austin and Flanagan 2010; Bichhawat et al. 2014]. Both se-
mantics guarantee the key correctness property of termination-insensitive noninterference
(TINI), which states that private inputs do not influence public outputs. (Private informa-
tion can influence termination. In a sequential setting, this channel is limited to a brute

This work was supported by NSF grant CNS-0905650.

Author’s addresses: T. H. Austin, Computer Science Department, San José State University; T. Schmitz
and C. Flanagan, Computer Science Department, University of California at Santa Cruz.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and /or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.

© YYYY ACM 1539-9087/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.




A:2 T. H. Austin, T. Schmitz, and C. Flanagan

force attack [Askarov et al. 2008], though it can be a high-bandwidth channel in concurrent
systems [Moore et al. 2012]).

However, both of these semantics suffer from the same weakness: in the presence of subtle
implicit flows that are hard to track, the semantics halts execution in order to avoid any
(potential) information leak. Note that this fail-stop is not caused by the web application
violating its security policy; instead it is a mechanism failure caused by the inability of the
dynamic information flow analysis to track implicit flows. Thus, these dynamic analyses
reject valid programs that conform to the security policy. Alternately, a dynamic monitor
could ignore unsafe updates rather than terminating execution [Fenton 1974]; however, this
approach might return results that are inconsistent with the standard semantics of the
language.

An interesting solution to these mechanism failures is to simultaneously execute two copies
of the target program: a high-confidentiality (H) process that has access to secret data, and
a low-confidentiality (L) process that sees dummy default values instead of the actual secret
data [Capizzi et al. 2008; Devriese and Piessens 2010]. This multi-process execution cleanly
guarantees noninterference since no information flow is permitted between the two processes,
and it also avoids mechanism failures. Unfortunately, for a web page with n principals
(roughly, URL domains), we may require up to 2" processes, one for each element in the
powerset lattice for these principals.

In this paper, we take inspiration from multi-process execution to develop a single-process
semantics that avoids stuck states. The key technical novelty is the introduction of a faceted
value, which is a pair of two raw values that contain low and high confidentiality informa-
tion, respectively. By appropriately manipulating these faceted values, a single process can
simulate the two processes (L and H) of the multi-execution approach. The primary benefit
of this approach is that when the two raw values in a faceted value are identical, we collapse
the two simulated executions on identical data into a single execution to reduce overhead.

Faceted evaluation naturally extends to multiple principals and a complex security lattice,
whereby a faceted value can contain many raw values, rather than just two. Note that in
addition to avoiding stuck executions, multi-process execution also guarantees termination-
sensitive noninterference (TSNI), in part because the H and L processes proceed indepen-
dently. Under faceted evaluation, the H and L computations are coupled (and indeed often
identical), so faceted evaluation only guarantees TINT rather than TSNI.

This paper includes a formal description of the faceted value approach to dynamic infor-
mation flow analysis, and a proof that it achieves termination-insensitive noninterference.
We present a projection theorem showing that a computation over faceted values simulates
2™ non-faceted computations, one for each element in the powerset security lattice. We also
give a proof of termination-insensitive semantics preservation, showing that noninterfering
programs exhibit equivalent behavior under faceted and standard semantics, modulo termi-
nation. In order to validate the utility of faceted evaluation in a web browsing context, we
implement this mechanism inside the Firefox browser (using the Zaphod plug-in [Mozilla
Labs Zaphod 2010]) and use this implementation to compare the performance of faceted
values against multi-process execution.

This paper extends our original conference paper [Austin and Flanagan 2012] to sup-
port exceptions, which introduce additional subtleties. Additionally, we discuss semantics
preservation (Section 3.3), clearance using faceted values (Section 6), the introspection of
faceted values (Section 8), and a failure-oblivious information flow monitor (Section 4.3). We
also provide more in-depth discussion of our implementation (Section 9). Finally, this paper
simplifies our technical development, for example by eliminating the substitution argument
in our evaluation relation.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A:3

1.1. Overview of Faceted Evaluation

To motivate the utility of faceted values in dynamic information flow, we start by considering
the classic problem of implicit flows, such as those caused by a conditional assignment:

if (x) y = true

The central insight of our approach is that the correct value for y after this assignment
depends on the authority of the observer. For example, suppose initially that x = true and
y = false, and that x is secret whereas y is public. Then after this assignment:

— A private observer that can read x should see y = true.
— A public observer that cannot read x should see y = false, since it should not see any
influence from this conditional assignment.

Faceted values provide a means to represent this dual nature of y, which should simultane-
ously appear as true and false to different observers.

In more detail, a faceted value is a triple consisting of a principal k£ and two values Vjy
and V,, which we write as:

(k? Vi : Vi)

Intuitively, this faceted value appears as V; to private observers that can view k’s private
data, and as V;, to other public observers. We refer to V; and V;, as private and public
facets, respectively.

This faceted representation generalizes the public and private security labels used by prior
analyses. A public value V is represented in our setting simply as V itself, since V appears
the same to both public and private observers and so no facets are needed. Conversely, a
private value V is represented as the faceted value

(k?V.1)

where only private observers can see V', and where public or unauthorized observers instead
see L (roughly meaning undefined).

Although the notions of public and private data have been well explored, these two
security labels are insufficient to avoid stuck executions in the presence of implicit flows. As
illustrated by the conditional assignment above, correct handling of implicit flows requires
the introduction of the more general notion of faceted values (k 7 Vy : Vi), in which the
public facet V;, is a real value and not simply L. In particular, the post-assignment value
for y is represented as the faceted value (k ? true: false) that captures y’s appearance to
both public and private observers.

Based on this faceted value representation, this paper develops a dynamic analysis that
tracks information flow in a sound manner at runtime. Our analysis is formulated as an
evaluation semantics for the target program, where the semantics uses faceted values to
track security and dependency information.

This evaluation semantics avoids leaking information between public and private facets.
In particular, if Cfe] is any program context, then the computation C[(k ? V}; : V,)] appears
to behave like C[V4] from the perspective of a private observer, and behaves like C[V,] to
a public observer (under a termination-insensitive notion of equivalence). This projection
property means that a single faceted computation simulates multiple non-faceted computa-
tions, one for each element in the security lattice. This projection property also enables a
short proof of termination-insensitive noninterference, shown in Section 3.2.

Faceted values may be nested. Nested faceted values naturally arise during computations
with multiple principals. For example, if k; and ks denote different principals, then the
expression

(k1 ? true: 1) && (ko 7 false: 1)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 T. H. Austin, T. Schmitz, and C. Flanagan

Figure 1: A JavaScript Function with Implicit Flows
1

X = (k7 false : L) (k ? true: L
Function £ (x)|| All strategies Naive NSU PU FO Faceted Eval.
y = true; y = true y = true y = true y = true y = true y = true
z = true; z = true z = true z = true z = true z = true z = true
it () - pc={k}t |pc={k} ~pc={k} | pc={k} pe = {k}
y = false; - y= stuck |y = ignored |y =
(k 7 false : L) (k ? false : *) (k 7 false : true)
if (y) pe={} — stuck pc = {k}
z = false; z = false — z = false|z =
(k 7 true : false)
return z; — — — —
Return Value: false true false (k 7 true : false

evaluates to the nested faceted value
(k1 7 (ko ? false: L): 1)

since the result false is visible only to observers authorized to see private data from both
k1 and kg; any other observer instead sees the dummy value L.
As a second example, the expression

<I€1?20> + <I€2?10>
evaluates to the result

Thus, faceted values form binary trees with principals at interior nodes and raw (non-
faceted) values at the leaves. The part of this faceted value tree that is actually seen by
a particular observer depends on whose private data the observer can read. In particular,
we define the view of an observer as the set of principals whose private data that observer
can read. Thus, an observer with view {k1, k2} would see the result of 3 from this addition,
whereas an observer with view {ks} would see the result 1.

When a faceted value influences the control flow, in general we may need to explore the
behavior of the program under both facets'. For example, the evaluation of the conditional
expression:

if ( (k 7 true:false) ) then e; else e

evaluates both e; and es, and tracks the dependency of these computations on the principal
k. In particular, assignments performed during e; are visible only to views that include
k, while assignments performed during e are visible to views that exclude k. After the
evaluations of e; and es complete, their two results are combined into a single faceted value
that is returned to the continuation of this conditional expression. That is, the execution is
split only for the duration of this conditional expression, rather than for the remainder of
the entire program.

1.2. Handling Implicit Flows

The key challenge in dynamic information flow analysis lies in handling implicit flows. To
illustrate this difficulty, consider the code in the first column of Figure 1, which is adapted
from an example by Fenton [1974]. Here, the function f (x) returns the value of its boolean

I The semantics is optimized to avoid such split executions where possible.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A5

argument x, but it first attempts to “launder” this value by encoding it in the program
counter.

We consider the evaluation of £ on the two secret arguments (k ? false : 1) and
(k' ? true : 1) (analogous to the more traditional false” and true®) to determine if
the argument in any way influences any public component of the function’s result.

For the argument (k 7 false : L) shown in column 2, the local variables y and z are
initialized to true. The conditional branch on x when x = (k 7 false : 1) is split into
separate branches on false and L. The first test if (false) ... is clearly a no-op, and
so is the second test if (L) ... since if is strict in L. Since y remains true, the branch
on y is taken and so z is set to false. Thus, the function call £ ({(k ? false: 1)) returns
false.

We now consider the evaluation of £((k 7 true: 1)) under different dynamic informa-
tion flow semantics. While the prior semantics that we discuss here have no notion of facets,
explaining them in terms of faceted values is illuminating.

Naive. An intuitive strategy for handling the assignment y=false that is conditional
on the private input x is to simply set y to a private false value, traditionally written as
false”, in order to reflect that this value depends on private inputs. In faceted notation,
where false® is written as (k ? false: 1), the problem with the approach becomes clear,
as we lose the critical information that a public observer should still see y = true; instead a
public observer now sees L. The next conditional branch on y exploits this confusion. Since y
is (k 7 false: 1), the branch is not executed, so z remains true, and so £ ((k 7 true: 1))
returns true, as illustrated in column 3. Thus, this naive strategy fails to ensure TINI, since
the public output of £ leaks the contents of its private input.

Various prior approaches attempt to close this information leak without introducing full
faceted values, with mixed results.

No-Sensitive-Upgrade. With the no-sensitive-upgrade (NSU) check [Zdancewic 2002;
Austin and Flanagan 2009], execution halts on any attempt to update public variables
in code conditional on private data. Under this strategy, the assignment to the public vari-
able y from code conditional on a private variable x would get stuck, as shown in the NSU
column of Figure 1. This strategy guarantees TINI, but only at the expense of getting stuck
on some implicit flows.

Permissive-Upgrade. A more flexible approach is to permit the implicit flow caused by
the conditional assignment to y, but to record that the analysis has lost track of the correct
(original) public facet for y. The permissive-upgrade represents this lost information by
setting y to the faceted value (k 7 false: %), where “«” denotes that the public facet is an
unknown, non-_L value.?

This permissive-upgrade strategy accepts strictly more program executions than the no-
sensitive-upgrade approach, but it still resorts to stuck executions in some cases; if the
execution ever depends on that missing public facet, then the permissive-upgrade strategy
halts execution in order to avoid information leaks. In particular, when y is used in the

second conditional of Figure 1, the execution gets stuck as shown in the PU column.

Failure-Oblivious Information Flow Monitor. An alternate approach provides noninter-
ference by ignoring potentially unsafe updates rather than terminating execution [Fenton
1974]. We refer to this type of monitor as a failure-oblivious information flow monitor (FO),
drawing a parallel to failure-oblivious computing [Rinard et al. 2004]. As shown in the F'O
column of Figure 1, the update to the public variable y is ignored since this update is con-
ditional on the sensitive value of x. Therefore on the case where x=(k 7 false : L), the

2The original paper [Austin and Flanagan 2010] used false® to represent (k ? false : *), where the
superscript P denotes “partially leaked”.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 T. H. Austin, T. Schmitz, and C. Flanagan

Figure 2: Trade-offs Between Information Flow Control Mechanisms
1

Fail-Stop | Failure-Obliv. Secure Faceted

Monitor Monitor Multi-Execution | Evaluation
Runtime overhead low low high mid
Transparent controls yes no yes* yes™*
Straightforward declassification yes yes no yes
Independent from language no no yes no
Easy to parallelize no no yes no
Protects termination channel no no yes no
Protects timing channels no no yes+ no

*: Controls are transparent for authorized views/channels.
+: Defends timing channels with sequential SME for some views. See Kashyap et al. [2011] for
a more detailed discussion.

result does not match the standard semantics. Note that this approach is related to Fenton’s
original approach, except that labels on a value may be modified in some circumstances.

Faceted Fvaluation. As shown in the last column of Figure 1, faceted values cleanly
handle problematic implicit flows. At the conditional assignment to y, the faceted value
(k ? false : true) simultaneously represents the dual nature of y, which appears false to
private observers but true to public observers. Thus, the conditional branch if (y)
is taken only for public observers, and we record this information by setting the program
counter label pc to {k}. Consequently, the assignment z=false updates z from true to
(k 7 true : false). Critically, this assignment updates only the public facet of z, not its pri-
vate facet, which stays as true. The final result of the function call is then (k ? true : false).

Comparing the behavior of £ on the arguments (k ? false : 1) and (k 7 true : L), we see
that, from the perspective of a public observer, f always returns false, correctly reflecting
that £(L) returns false, and so there is no information leak on this example, despite its
problematic implicit flows. Conversely, from the perspective of a private observer authorized
to view f’s actual output, £ exhibits the correct behavior of returning its private boolean
argument.

1.3. Comparison of Information Flow Control Mechanisms

Figure 2 highlights trade-offs between various mechanisms for information flow.

One important consideration for any security control is its transparency; that is, if an
execution completes, is there any observable difference in its results compared to those
of an execution without any security controls. The no-sensitive-upgrade and permissive-
upgrade semantics (jointly listed as the fail-stop monitors) have this property, though the
failure-oblivious monitor does not. Faceted evaluation and secure multi-execution (SME)
both support transparency for authorized views or channels®. However, if sensitive informa-
tion would leak to an unauthorized view or channel, then transparency is broken in order
to guarantee noninterference without terminating execution. Transparency might also be
violated if an observer can view multiple channels, since the observed outputs might not be
in the expected order; Rafnsson and Sabelfeld [2013] and Zanarini et al. [2013] offer a more
in depth discussion on this point, and discuss how SME can address this issue.

30ur termination-insensitive semantics preservation theorem in Section 3.3 states this quality more formally
for faceted evaluation.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A7

Secure multi-execution is an approach that naturally lends itself to parallelization. Since
secure multi-execution uses separate processes, it also protects the termination channel (thus
providing termination-sensitive noninterference) and it offers some defense against timing
channels*. While these are strong advantages, they are not without a cost. Declassification
becomes difficult; the two processes must be coordinated, which reintroduces both the ter-
mination channel and timing channels. In contrast, a faceted value captures multiple views
of a single value. Therefore, declassification can be done by restructuring the faceted value
to reflect the change in the different views. Likewise, declassification in the monitor based
approaches is simply a matter of changing the security label.

Finally, ease of implementation is also an important concern. Unique among these mech-
anisms, secure multi-execution may be designed to be independent from the language im-
plementation. De Groef et al. [2012] do an excellent job of discussing the trade-offs between
using secure multi-execution on the whole web browser vs. applying it only on the web
scripts used in the browser. They note that integrating the web scripts is more efficient
and allows them to make more fine-grained decisions, though at the cost of implementation
complexity. These same arguments seem to apply within the language implementation as
well; controls integrated into the run-time environment make the language implementation
more difficult to maintain, but may allow for more fine-grained decisions.

1.4. Dynamic Information Flow Control for Exceptions

As outlined above, faceted execution provides one approach for correctly handling side-
effects and the associated implicit flows. A second challenging problem in dynamic informa-
tion flow systems is how to handle control flow effects such as exceptions, since the standard
propagation of exceptions up the evaluation stack can leak information [Stefan et al. 2011].

To illustrate this problem, consider the function g(x) shown in Figure 3. The figure also
shows the behavior of this function on two secret input arguments, false® and true”,
under a naive (that is, non-faceted and incorrect) semantics for exceptions®. For the input
x = falseF, the statement if (x) throw "" does not raise an exception, but then the
following code binds y to true, which leaks information about the secret value of x. In
particular, if x is true® (see right column), then an exception is thrown and caught, after
which y is bound to false®. Thus, the value of y (true or false”) reflects the original
argument x but the labels for y do not fully track this dependency. Repeating this code
pattern a second time result in the variable z containing a fully declassified copy of the input
argument x. Thus, under the naive semantics for exceptions, the function g(x) provides a
way to remove the privacy label from its boolean argument.

Various semantics have been proposed for tracking information flow through exceptions.
For example, in [Stefan et al. 2011], the toLabeled construct catches all exceptions and
converts them to normal values. [Hritcu et al. 2013] propagates exceptions along data-flow
paths (like NaNs) rather than on traditional control-flow paths. Both of these approaches
involve changing the conventional semantics of exceptions, and so are not entirely satisfac-
tory.

In contrast, faceted evaluation allows us to deal with the problems of both side-effects
(illustrated in Figure 1) and control-effects (illustrated in Figure 3) in a consistent manner.
In particular, faceted semantics propagates exceptions along control-flow paths, yet still
provides the desired noninterference guarantees, as we describe in Section 5.

4To protect against timing channels, the low-confidentiality process must be run to completion before the
high-confidentiality process begins execution. Note that sibling processes, where neither has strictly more
access to confidential data, do not gain this benefit. Kashyap et al. [2011] discuss this property in more
detail.

5This example uses a try-catch expression instead of the more conventional try-catch statement in order to
illustrate the problem of control-effects in code without side-effects.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 T. H. Austin, T. Schmitz, and C. Flanagan

Figure 3: Naive Semantics for Exceptions
I 1

Function g(x) x = false” x = true”

let y = try {
if (x) throw ""; || then branch not executed | exception thrown with pc = {H}
true; y bound to true

} catch(e) { exception caught, pc = {H}
false; y bound to false”

}

let z = try {
if (y) throw ""; || exception raised then branch not executed
true; true

} catch(e) { exception caught, pc = {}
false; z bound to false

}

return z; Returns public false Returns public true

2. A PROGRAMMING LANGUAGE WITH FACETS

We formalize faceted evaluation for dynamic information flow in terms of the idealized
language A%°°* shown in Figure 4. This language extends the A-calculus with mutable ref-
erence cells, reactive I/0, a special value L, and a mechanism for creating faceted values.
Despite its intentional minimality, this language captures the essential complexities of dy-
namic information flow in more realistic languages, since it includes key challenges such
as heap allocation, mutation, implicit flows, and higher-order function calls. In particular,
conditional tests can be Church-encoded in the usual fashion.

Expressions in M*°** include the standard features of the A-calculus, namely variables (z),
constants (¢), functions (Az.e), and function application (e es). The language also supports
mutable reference cells, with operations to create (ref e), dereference ('e), and update
(e1:=eq) a reference cell. To model JavaScript’s interactive nature, Af2¢* also supports
reading from (read(f)) and writing to (write(f,e)) external resources such as files.

The expression (k 7 e1 : eg) creates a faceted value where the value of ey is considered
secret to principal k; observers that cannot see k’s private data will instead see the public
facet produced by e;. We initially use the terms label and principal as synonyms and focus
primarily on confidentiality—Section 7 later introduces integrity labels in the context of
declassification.

The L value is used to represent “nothing”, mirroring Smalltalk’s nil and JavaScript’s
undefined. It is primarily used as the public facet in a faceted value (k ? V' : L), which
denotes a value V that is private to principal k, with no corresponding public value.

2.1. Standard Semantics of \fct

As a point of comparison for our later development, we first present a standard semantics for
Mecet that does not handle faceted expressions. In this semantics, values include constants,
addresses, closures, and |, as shown in Figure 5. Each reference cell is allocated at an
address a, and the store ¢ maps addresses to values. The store also maps each file f to a
sequence of values w. We use the syntax v.w and w.v to indicate a list of values with v as
the first or last value, respectively, and use ) to denote both the empty store and the empty
substitution.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A:9

Figure 4: The source language \facet
1 1

Syntax:
e = FExpression
T variable
c constant
Az.e abstraction
€1 e application
ref e reference allocation
le dereference
e:=e assignment
read(f) file read
write(f,e) file write
(k?7e:ea) faceted expression
1 bottom
T,Y, % Variable
c Constant
k,l Label (aka Principal)
f File handle
Standard encodings:
true AT \y.x
false AT AY.Y
if e; then ey else e5 = (e1 (Md.e2) (Md.e3)) (Az.x)
if e then ey def if e; then ey else 0
let = e; in ey def (Az.es) €1
e1; e f etz = e1 in eq,x & FV (e2)

We formalize the standard semantics via a big-step relation
o,el o v

that evaluates an expression e in the context of a store o and returns the resulting value v
and the (possibly modified) store ¢’. This relation is defined via the evaluation rules shown
in Figure 5, which are mostly straightforward. For example, the rule [s-apP| evaluates the
body of the called function, where the notation e[z := v] maps z to v wherever it occurs in
the expression e.

The only unusual aspect of this semantics concerns the value 1, which essentially means
“nothing” or “no information”. Operations such as function application, dereference, and
assignment are strict in L; if given a | argument they simply return L via the various [s-*-1]
rules. This semantics for | facilitates our later use of L in faceted values, since, for example,
dereferencing a faceted address (k 7 a : L) operates pointwise on the two facets to return a
faceted result (k 7 v: L) where v = o(a).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10 T. H. Austin, T. Schmitz, and C. Flanagan

Figure 5: Standard Semantics
I 1

Runtime Syntax

a € Address
o € store = (Address —, value U  File — value™)
v € walue == clal(A\re)]| L
w €  wvalue*
Evaluation Rules:
O',’U\I,O',’U [S-VAL} O',GJ,O'I,’U
a & dom(o’)
7 [S-REF]
o,e1 o1, (Azx.e) o, (ref e) | o'[a :=v],a
01,69 | 09,0
oo, efr =] o’ v o,el o a
o,(e1 e2) L o',v [s-APP] o, tel o’ o' (a) [s-DEREF]
o,e1l o1, L oelo, L
/ —_— S-DEREF-_L
01762\1,0',/’1} ls-APP-L] olelad L [ )
o,(e1 e2) Lo, L
g, €1 \I/ 01,0
o(f) =vw 01,62 | 02,0
= ., S-ASSIGN
o =olf = 17] [s-READ] o,e1:=ez | oaa = vl v [ }
o,read(f) o’ v
g, €1 \l/ 01, 1
0',8\1/0'1,’0 01582\1/0'251)
o' = o1|f == o (f)v)] [S-ASSIGN-_L]

g,€1:=€y \I,O'g,’U

- S-WRITE
o,write(f,e) o', v [ ]

3. FACETED EVALUATION

Having defined the standard semantics of the language, we now extend that semantics
with faceted values that dynamically track information flow and provide noninterference
guarantees.

Figure 6 shows the additional runtime syntax needed to support faceted values. We use
Initial Capitals to distinguish the new metavariable and domains of the faceted semantics
(V € Value, X € Store) from those of the standard semantics (v € value, o € store).

Values V now contain faceted values of the form

k?Viy: V)

which contain both a private facet V4 and a public facet V;,. For instance, the value (k 7 42 :
0) indicates that 42 is confidential to the principal k, and unauthorized viewers instead see

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow

Figure 6: Faceted Evaluation Semantics

1
Runtime Syntax

¥ €  Store = (Address —p, Value) U (File — value™)
R €  RawValue = cla|(Aze)| L
V€ Value = R|(k?Vi:Vy)
e € Expr = .|V
h €  Branch = k|k
pec c PC — 2anch
Evaluation Rules: Yelp X,V
kgpc e llpeopry X1, 1
_— REpe Buedpm oo b [F-SPLIT]
SRS AT [F-vAL] S (k7 ex s e2) tpe 22, (k2 Va2 V)
S e1 Upe B1, Vi ke€pe Nerdp X,V .
1, €3 dpe S2, Va S, (k7 er:ea) dpe O,V [F-LEFT]
Yp, (Vi Va) e B,V
F-APP -
3, (e1 e2) dhpe X, V7 [ ] kepe Ziexdlpe X,V [F-RIGHT]
Y, (k?er:en) dpe X,V
Yoedlpe XV
a & dom (%) S(f) =vaw L = view(f)
! i
V={(pc?V':1) [F-REF] pc visible to L pc’ = LU{k | k & L} [F-READ1]
E, (ref €) dpe X'[a:=V],a Y, read(f) dhpe S[f = w], {pc T v: L))
e dpe I,V - :
J ) pc not visible to view(f)
V' = deref (X', V, pc) [F-READ2)]
) ) 3, read e 2, L
S el S [F-DEREF] () Uy
Y e dpe X',V pc visible to view(f)
5761 ﬂtpc 2217“/} L = view(f) v=L(V) [F-WRITEL]
1,€2 pc 2, s . / — 3y -
Y = assign(Xs, pc, Vi, V') [F-ASSIGN] Brurite(f,e) lpe Xf = (0L V
Y,eri=en pe X,V Ye dpe X,V pe not visible to view(f) [F-WRITEZ)]
Y write(f,e) Upe X,V
Application Rules ‘27 (Vi Va) W32 5,V
Y= V] e X,V kepe S, (VuVa) P YV
= —7 FA-FUN ’ pe ) -
S (Oeo V) hEs, vy PN e pr Ly e
k& pe k¢pe kepe 3,(Vi Vo) I X,V
2, (Vi Vo) Uoet gy 1, Vi S, ((k? Vi Vo) Vo) LIPSV [FA-RIGHT]
Z:17 (VL VQ) u«:ipu{E 2/7 VI:
Vi= (k7 Via: Vi) [FA-SPLIT] [FA-L]

S,k ? Vi Vi) Vo) U V7

L (LV) I s L

the value 0. Often, the public facet is set to L to denote that there is no intended publicly
visible facet. Implicit flows introduce public facets other than 1.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 T. H. Austin, T. Schmitz, and C. Flanagan

Figure 7: Faceted Evaluation Auxiliary Functions
I 1

deref : Store x Value x PC" — Value

deref (X, a, pc) = Y(a)
deref (X, L, pc) = 1

deref (X, Vi, pc) if k € pe
deref (X, (k7 Va: Vo), pc) = < deref(X, Vi, pc) if k € pc

(k7 deref (X, Vu, pc) : deref (X, Vi, pc))) otherwise

assign : Store x PC' x Value x Value — Store

assign(X, pc, a, V') = Xfa:={pc?V:X(a))]
assign(X, pc, L, V) =X
assign(X, pe, (k7 Vi : Vo), V) =3 where X1 = assign(X, pcU{k}, Viu, V)

and ¥ = assign(X;, pcU{k}, Vi, V)

We introduce a program counter label called pc that records when the program counter
has been influenced by public or private facets. For example, consider the conditional test

if ((k ? true:false)) then e; else e

for which our semantics needs to evaluate both e; and es. During the evaluation of eq,
we add £ to pc to record that this computation depends on data private to k. Conversely,
during the evaluation of es, we add k to pc to record that this computation is dependent
on the corresponding public facet. Formalizing this idea, we say that a branch h is either
a principal k£ or its negation k, and that pc is a set of branches. Note that pc can never
include both k and k, since that would reflect a computation dependent on both private
and public facets.

The following operation {( pc ? Vi : Va)) creates new faceted values, where the resulting
value appears like V; to observers that can see the computation corresponding to pc, and
appears like V5 to all other observers.

(07 Ve: Vo) <y,
({k} Urest 2V, s Vo)) 2 (k2 (rest 2V i V) Vi)

(Y Urest 2V, : Vo) < (k2 V,: ((rest 2 Vi, 1 V, )

For example, ({k} 7 Vi : V1)) returns (k ? Vi : V), and this operation generalizes to more
complex program counter labels. We sometimes abbreviate ({k} ? Vi, : V. )) as (k7 Vy :
WL ).

We define the faceted value semantics via the big-step evaluation relation:

Yelp X,V

that evaluates an expression e in the context of a store ¥ and a program counter label pc,
and which returns the resulting value V' and the (possibly modified) store X'.

Rule [F-spriT] shows how evaluation of a faceted expression (k 7 e; : ea) evaluates both
e1 and ey to values Vi and Vs, with pe updated appropriately with k and & during these
two evaluations. The two values are then combined via the operation (k ? V1 : V3 )). As an
optimization, if the current computation already depends on k-sensitive data (i.e., k € pc),
then rule [F-LEFT] evaluates only e, thus preserving the invariant that pc never contains
both k and k. Conversely, if & € pc then [F-riGHT] evaluates only es.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A:13

Function application (e; e2) is somewhat tricky, since e; may evaluate to a faceted value
tree with closures (or L) at the leaves. To handle this situation, the rule [rF-aPpP] evaluates
each e; to a value V; and then delegates to the auxiliary judgement:

%, (Vi Vo) U2 XLV

This auxiliary judgement recursively traverses through any faceted values in V; to perform
the actual function applications. If V; is a closure, then rule [Fa-FUN] proceeds as normal. If
V1 is a facet (k 7 Vi : V), then the rule [Fa-spLiT] applies both Vi and V}, to the argument
V5, in a manner similar to the rule [F-spLiT] discussed above. Rules [FA-LEFT] and [FA-RIGHT]
are optimized versions of [Fa-spriT] for cases where k or k are already in pc. Finally, the
“undefined” value L can be applied as a function and returns L via [ra-L] (much like the
earlier [s-app-L] rule).

As an example, consider the function application (f 4) where f is a private function
represented as (k ? (Az.e) : L). The rules [F-apPP] and [ra-spLiT] decompose the application
(f 4) into two separate applications: ((Az.e) 4) and (L 4). The first application evaluates
normally via [FA-FUN] to a result, say V', and the second application evaluates to L via [Fa-L1],
so the result of the call is (k 7 V : L), thus marking the result of the call as private.

The operand of a dereference operation (!e) may also be a faceted value tree. In this
case, the rule [F-DEREF] uses the helper function deref(X,V,, pc), defined in Figure 7, to
decompose V, into appropriate addresses, retrieve the corresponding values from the store
3], and to combine these store values into a new faceted value. As an optimization, any
facets in the address V, that are not consistent with pc are ignored.

In a similar manner, the rule [F-assieN] uses the helper function assign(X, pc, V,, V)
to decompose V, into appropriate addresses and to update the store ¥ at those locations
with V', while ensuring that each update is only visible to appropriate principals that are
consistent with pc, to avoid information leaks via implicit flows. The assign function is also
defined in Figure 7.

The faceted semantics of I/O operations introduces some additional complexities since it
involves communication with external, non-faceted files. Each file f has an associated view
view(f) = {ki,...,kn} describing which observers may see the contents of that file. The
following section defines when a computation with program counter label pc is visible to a
view L, and also interprets L to project a faceted value V' to a non-faceted value v = L(V).
We use these two concepts to map between faceted computations and external non-faceted
values in files.

A read operation read(f) may be executed multiple times with different pc labels. Of
these multiple executions, only the single execution where pc is visible to view(f) actually
reads from the file via [F-rREAD1]; all other executions are no-ops via [F-rREAD2]. Note that
this semantics allows only wview(f) (and not higher views) to read from f, and so the value
v is converted into a faceted value (( pc’ 7 v : L)), where pc’ is a program counter label that
denotes exactly view(f) (and not higher views).

An output write(f,e) behaves in a similar manner, so only one execution writes to
the file via the rule [F-wriTE1]. This rule uses the projection operation v = L(V') where
L = view(f) to project the faceted value V produced by e into a corresponding non-faceted
value v written to the file.

For simplicity, we Church-encode conditional branches as function calls, and so the im-
plicit flows caused by conditional branches are a special case of those caused by function
calls and are appropriately handled by the various rules in Figure 6. To provide helpful in-
tuition, however, Figure 8 sketches alternative direct rules for evaluating a conditional test
if e; then eg else e3. In particular, if e; evaluates to a faceted value (k ? Vi : Vi), the if

6 Alternatively, we could also allow all views greater than view(f) to read the file, as in SME [Devriese and
Piessens 2010], by maintaining a per-view (that is, faceted) index into the contents of f.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14 T. H. Austin, T. Schmitz, and C. Flanagan

Figure 8: Faceted Evaluation Semantics for Derived Encodings
I 1

Y, e1 dpe X1, true
X1, e u/pc 2/7 |4

F-IF-TRUE
Y,if e then ey else ez Y, X',V [ ]
Y, e1 dpe X1, false
2163 dpe XLV [F-IF-FALSE]
Y,if e; then ey else ez |, X',V o
2,61 \u/pc Elu L [F IF L}
Y,if | then eg else ez |, X/, L
3, e1 Upe X1, (k7 Vi 2 V)
ey = if Vi then ey else e3
er, = if Vi, then ey else e3
217 <k ? eI{ : 8L> \u/PC 2/5 V [F-IF-SPLIT]

Y,if e then eg else ez Y, X',V

statement is evaluated potentially twice, using facets Vi and V, as the conditional test by
the [r-r-spriT] rule. (For simplicity, this rule only supports unnested faceted values.)

3.1. The Projection Property

Recall that a view is a set of principals L = {ki,...,k,}. This view defines what values
a particular observer is authorized to see. In particular, an observer with view L sees the
private facet V in a value (k ? V4 : V) only when k € L, and sees V;, otherwise. Thus,
each view L serves as a projection function that maps each faceted value V € Value into a
corresponding non-faceted value of the standard semantics:

L : Value — wvalue

L((k?Vi:Va)) = {%3 iﬁZéf
L(c) = ¢
L(a) = a
L(l) = L
L(Az.e) = Xx.L(e)

We extend L to also project faceted stores ¥ € Store into non-faceted stores of the standard
semantics. A file f is visible only to view(f), and appears empty (¢) to all other views.

L : Store — store
LX) = )a. L(E(a)). ‘
U A { S(f) if L = view(f)

€ otherwise

We also use a view L to operate on expressions, where this operation eliminates faceted
expressions and also performs access control on I/O operations by eliminating accesses to

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A:15

files that are not authorized under that view:
L : Expr (with facets) — FEaxpr (without facets)

L((k?ey:es)) = 5523 EIZ ;é

read(f) if L = view(f)

L(read(f)) = € otherwise
. _ Jwrite(f, L(e)) if L = view(f)
L(write(f,¢)) = L(e) otherwise
L(...) = compatible closure

Thus, views naturally serve as a projection from each domain of the faceted semantics into
a corresponding domain of the standard semantics. We now use these views-as-projections
to formalize the relationship between these two semantics.

Definition 3.1. A computation with program counter label pc is considered wvisible to a
view L only when the principals mentioned in pc are consistent with L, in the sense that:

Vk € pc,k € L
Vk € pe,k & L

We first show that the operation ((pc ? V1 : V2 ) has the expected behavior, in that from
the perspective of a view L, it appears to return V4 only when pc is visible to L, and appears
to return V5 otherwise.

LEMMA 3.2. IfV ={pc?Vy:Va)) then

| L(V1) if pc is visible to L
L(v) = { L(Va) otherwise

We next show that the auxiliary functions deref and assign exhibit the expected behavior
when projected under a view L. First, if deref (X, V, pc) returns V', then the projected
result L(V’) is a non-faceted value that is identical to dereferencing the projected store at
the projected address L(X)(L(V)).

LEMMA 3.3. If V' = deref(X, V,pc) then VL consistent with pc

N[ L FL(V) =L
L) = { L) (L(V)) ojthe(rw)ise

Next, from the perspective of any view L, if pc is visible to L then the operation
assign(X, pc, Vi, Vo) appears to update the address L(V;) appropriately. Conversely, if
pc is not visible to L, then this operation has no observable effect.

LEMMA 34. If Y = assign(X, pe, Vi, Va) then

/ L(X)[L(V1) := L(Va)] if pc is visible to L and L(V1) = a
L&) = { LEEg[ ") ) ot/{jerwise )

Crucially, views not consistent with the program counter will not observe any changes to
the store.

LEMMA 3.5.  Suppose pc is not visible to L and that
Yoedpe 2LV
Then L(X) = L(X').
PROOF. See Appendix. O

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 T. H. Austin, T. Schmitz, and C. Flanagan

We now prove our central projection theorem, which shows that an evaluation under the
faceted semantics of Figure 6 simulates many evaluations under the standard semantics,
one for each possible view for which pc is visible.

THEOREM 3.6 (PROJECTION THEOREM).  Suppose
Soedpe XLV
Then for any view L for which pc is visible,
L(X),L(e) L L(X'), L(V)
PROOF. See Appendix. O

Consequently, if pc is initially empty, then faceted evaluation simulates 2" standard evalu-
ations, one for each possible view L C Principal, where n is the number of principals.

3.2. Termination-Insensitive Noninterference

The projection property enables a simple proof of noninterference; it already captures the
idea that information from one view does not leak into an incompatible view, since the
projected computations are independent. To formalize this argument, we start by defining
two faceted values to be L-equivalent if they have identical standard values for view L. This
notion of L-equivalence naturally extends to stores (X7 ~, o) and expressions (e1 ~p, €3):

(Vi ~p Vo) iff L(V1) = L(Va)

(31 ~p o) iff L(Z1) = L(X2)

(61 ~I 62) iff L(el) = L(eg)
Together with the Projection Theorem, this notion of L-equivalence enables us to conve-
niently state and prove termination-insensitive noninterference.

THEOREM 3.7 (TERMINATION-INSENSITIVE NONINTERFERENCE). Let L be any view.

Suppose
X1 ~p Yo
215 € \U/(Z) 2]/17 ‘/1
22; € \U/(Z) 2/27 ‘/2
Then:
¥~ X
Vi~ Vo

PrOOF. By the Projection Theorem:

L(¥1), L(er) | L(XY), L(V1)
L(X%2), L(e2) | L(X%5), L(V2)

The L-equivalence assumptions imply that L(X;) = L(X3) and L(e;) = L(ez). Hence
L(¥}) = L(X) and L(Vi) = L(V%) since the standard semantics is deterministic’. 0O

This theorem can be generalized to computations with arbitrary program counter labels,
in which case noninterference holds only for views for which that pc is visible.

"Without loss of generality, we assume that any allocations of reference cells in the two executions use the
same addresses. We refer the interested reader to [Banerjee and Naumann 2002] for an alternative proof
technique that does not rely on this assumption, but which involves a more complicated compatibility
relation on stores.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A:17

3.3. Termination Insensitive Semantics Preservation

We next study the issue of semantics preservation; that is, how the faceted relation || relates
to the standard evaluation relation of |. For programs that leak information under standard
evaluation, clearly faceted evaluation needs to perturb that behavior in order to guarantee
noninterference. For programs are already noninterfering under standard evaluation, we
show that (modulo termination) faceted evaluation is essentially equivalent to standard
evaluation.

Intuitively, we say a non-faceted expression e is noninterfering if its evaluation never leaks
information from a secret file to a public file, or more generally from one file f; to a second
file fo where f; and fo are visible to different views, i.e. view(f1) # view(f2).

To help formalize this idea, we note that since store C Store, the relation ~j defined
above is applicable to (non-faceted) stores, and identifies stores that differ only in files that
are not visible to view L.

LEMMA 3.8. 01 ~p 02 iff Ya. o1(a) = 02(a) and Vf. view(f) = L = o1(f) = oa(f).

We define a (non-faceted) expression e to be noninterfering on a (non-faceted) store oy
if for any view L, whenever

01 ~L 02
01,€ J/ 0-17 U1
02,€ ] 09,2
we have that the resulting values are identical (v; = v3), and moreover all L-visible files
in the final stores agree, i.e. Vf with view(f) = L. o}(f) = o4(f). That is, the L-invisible
difference in the initial file system does not leak into the result or become L-visible in the
final file system.

Using this definition, we now show that (modulo termination) faceted evaluation behaves
the same as standard evaluation on noninterfering programs:

THEOREM 3.9 (TERMINATION-INSENSITIVE SEMANTICS PRESERVATION). Let e be a
non-faceted expression e that is noninterfering on o and suppose

o,el o v

oellg XV
Then Vf.o'(f) =% (f), and VL.v = L(V').
Proor. Pick any view L. By the projection theorem,
L(o),L(e) L L(X), L(V)

Clearly L(e) = e as e is non-faceted. Also, L is idempotent, so L(o) = L(L(o)), and hence
o ~p, L(o). Thus, by the noninterference of e on the two executions

o,el o v

L(o),e L L(Y), L(V)

we have that v' = L(V). Moreover, for any f with view(f) = L, o'(f) = L(X')(f) = X' (f).
Since the choice of L above was arbitrary, we have Vf.o/'(f) = X/(f), as required. O

3.4. Efficient Construction of Faceted Values

The definition of the operation {(pc ? V; : V4 )) presented above is optimized for clarity, but
may result in a suboptimal representation for faceted values. For instance, the operation
({k} ? (k7 1:0):2)) returns the faceted value tree (k ? (k7 1:0) : 2) containing a dead
facet 0 that is not visible in any view. We now present an optimized version of this operation
that avoids introducing dead facets.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 T. H. Austin, T. Schmitz, and C. Flanagan

Figure 9: Efficient Construction of Faceted Values
I 1
(o7 e:0)):PC x Value x Value — Value

« 0 ? Vo : Vo » = Va
({kYUrest 2(k? Vo : Vi) 1 (k?Ve:Va) ) = (k7?7 (rest?Vy:Ve)) Va )
({kYUrest 2 (k7 Vy: V) : (B?Ve:Vy) ) = (k7 Ve s ((rest 7V Vg )) )

« pc P2 (k?Va: V) i (k?Ve:Va) ) = (k7?7 {(pc?Va:Ve)) + (pc? Vy:Vy)) )where k < head(pc)
({kYUrest 2 (k? Vg : Vp) : Vo N o= (k7?7 {rest? Vg:V,)): Vo ) where k < head(V,)
({kYUrest 2 (k?Vy: V) : Vo y = (k7?7 Vo : ((rest 7V 1 Vo)) ) where k < head(V,)
(({k} Urest ? Vi (k7 Ve V) ) = (k7?7 {(rest? Vy:Vy)): 173 ) where k < head(Vy,)
({k} U rest 7 Vi (k?Ve: V) ) = (k7 Va : ((rest 7 Vi, : Vp ) ) where k < head(Vy,)
({k} Urest ? Vi : Vo N o= (k7?7 {rest? V,:V,): Vo ) where k < head(Vy,)

and k < head(Vs,)
({k} U rest ? Vi : Vo y = (k7?7 Vo : ((rest 7V, : Vo)) ) where k < head(Vy,)

and k < head(V,)
« pc 27 (k?Vy: V)t Vo N o= (k7?7 (pc?Va:Vo) : {(pc? Vy:V,)) )where k < head(V,)

and k < head(pc)
« pc ? Vi (k?Ve: V) ) = (kE? {(pc?Vu:Ve)) + (pc?Vy,:Vy)) )where k < head(V,,)

and k < head(pc)

The essential idea is to introduce a fixed total ordering on principals and to ensure that
in any faceted value tree, the path from the root to any leaf only mentions principals in a
strictly increasing order. In order to maintain this ordering, we introduce a head function
that returns the lowest label in a value or program counter, or a result co that is considered
higher than any label.

head : Value — Label U {oco}
head({k 7 V1 : Vo)) = k
head(R) = oo

head : PC — Label U {co}
head({k} U rest) = k  if VK’ or k/ € rest. k < k'
head ({k} U rest) = k if Vk' or k' € rest. k < k'
head({}) = oo

Figure 9 redefines the facet-construction operation to build values respecting the ordering of
labels. The definition is verbose but straightforward; it performs a case analysis to identify
the smallest possible label k to put at the root of the newly created value. The revised
definition still satisfies the specification provided by Lemma 3.2.

4. COMPARISON TO PRIOR SEMANTICS

Prior work presented the no-sensitive-upgrade (NSU) semantics [Zdancewic 2002; Austin
and Flanagan 2009] and the permissive-upgrade (PU) semantics [Austin and Flanagan 2010;
Bichhawat et al. 2014] for dynamic information flow. In this section, we adapt both of these
semantics to our notation to illustrate how faceted evaluation extends these prior techniques.
For clarity, in this section we assume that there is only a single principal k& and omit 1/0
operations, since these prior semantics were formalized under these assumptions. We also
use the optimized facet-construction operation from Figure 9 in order to avoid reasoning
about dead facets.

In order to better highlight the relation between information flow monitors and faceted
evaluation, we also include a failure-oblivious information flow monitor. Inspired by the
failure-oblivious computing work of Rinard et al. [2004], this monitor provides termination-

ACM Transactions on Embedded Computing Systems, Vol. V|, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A:19

Figure 10: No Sensitive Upgrade Semantics

NSU Evaluation Rules: elp ¥,V

e ‘U’pcu{k} 2/7 V

W [NSU-VAL] S k7 e: L) Upe 3, (R)P°V [NSU-LABEL]
Telpe X,V elp XV,
a & dom(X') V = deref(X", Va, pc) [NSU-DEREF]
V={_pc?V':L1) [NSU-REF] Solel, X,V
Y, (ref e) pe X'a:=V],a v
X, er ‘U’pc Y1,a
E, €1 U’pc 21, ()\1‘6) Ela €2 U’pc E V
Ela €2 ‘Upc 22, V/ p‘/: - label( ( ))
Sefr =Vl ¥V Vi={pc?V:L1) [NSU-ASSIGN]
2, (81 82) “pc 2/, Vv [NSU_APP] Ea €1:=€2 U’pc [ V/] v
Eael ‘U’pc ElaJ— gael ‘lﬁpc 2217J‘_/
21582& CZQ,V/ 1,62 4pc 242, : )
RO 62)1)%)0 ST [NSU-APP- 1] Sre1i=ea Upe 52,V [NSU-ASSIGN-_L]
Yer dpe 21, (k7 (Aze) 1 L) E,er Upe X1, (k 7 a: L)
E1162 ‘U’pc 227‘// E1162 ‘U’pc by V
Sela = V] peugry X,V pe U/ {k} C label(E (a))
X, (e1 e2) pe X, (K)PV au-are-x] Vi={pe?V:l) [NSU-ASSIGN-K]
2,61:=62U,pc [ : V],V

Figure 11: Permissive-Upgrade Semantics (extends Figure 10)
I 1

PU Evaluation Rules: Yelp X,V

2381 ‘Upc 21761/ EaeIXI‘U'pc EUl/, <]€2:? ‘GJ/: J_)
21582“62 V 1,€2 pc
pe # 1abel(S(a)) peU {1k} € Tabel (S (a)
V/i={pc?V:x) V' = pe ?/V %) RA—
27 €1:=¢6€2 ‘Upc [ =V ] |4 [PU_ASSIGN} 27 €1:=¢€2 ‘Upc X [ = ] 14

insensitive noninterference by ignoring unsafe operations. This strategy may produce inac-
curate results, but avoids stuck executions.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20 T. H. Austin, T. Schmitz, and C. Flanagan

4.1. Comparison to No-Sensitive-Upgrade Semantics
We formalize the NSU semantics via the evaluation relation

Soelp X,V

defined by the [Nsu-*] rules in Figure 10. These rules are somewhat analogous to the faceted
evaluation rules of Figure 6, but with some noticeable limitations and restrictions. In par-
ticular, the NSU semantics marks each raw value R as being either public or private:

V o= R public values
| (k7?7 R:1) private values

The NSU semantics cannot record any public facet other than L. The faceted value (k ? R :
1) is traditionally written simply as R* in prior semantics, denoting that R is private to
principal k, with no representation for a corresponding public facet. This restriction on
values means that the NSU semantics never needs to split the computation in the manner
performed by the earlier [F-sprLiT] and [FAa-spLIT] rules. Instead, applications of a private
closure (k ? (Az.e) : L) extend the program counter pc with the label &k during the call,
reflecting that this computation is dependent on k-sensitive data. Thus, under the NSU
semantics, the program counter label is simply a set of principals, and never contains negated
principals k.

pc € PC = o Label

After the callee returns a result V', the following operation (k)P°V creates a faceted value
semantically equivalent to (k 7 V : L), with the optimization that the label k is unnecessary
if it is subsumed by pc or if it is already in V:

(k)R v =V
kY R =(k?R:1)
()P (k?7R: 1) = (k?R: 1)

(This optimization corresponds to [FA-LEFT] [FA-RIGHT] of the faceted semantics.)

In order to preserve the NSU restriction on values, the NSU semantics carefully restricts
assignment statements, halts execution exactly when the faceted semantics would introduce
a non-trivial public facet. These rules use the following function to extract the principals in
a value:

label : Value — PC
label((k ? R: 1)) = {k}
label(R) =0

The rule [Nsu-assiaN] checks that pe is equal to the label on the original value ¥'(a) of the
target location a. If this condition holds, then the value ((pc ? V' : L)) stored by [NSU-ASSIGN]
is actually equal to the value {{ pc ? V : ¥'(a) )) that the faceted semantics would store. Thus,
this no-sensitive-upgrade check detects situations where the NSU semantics can avoid infor-
mation leaks without introducing non-_L public facets. The rule [Nsu-assiaN-k] handles as-
signments where the target address is private (k 7 @ : L) in a similar manner to [NSU-ASSIGN].

Because of these no-sensitive-upgrade checks, the NSU semantics will get stuck at precisely
the points where the faceted value semantics will create non-_L public facets. An example
of this stuck execution is shown in the NSU column of Figure 1. When the value for y
is updated in a context dependent on the confidential value of x, execution gets stuck to
prevent loss of information.

If the NSU semantics runs to completion on a given program, then the faceted semantics
will produce the same results.

THEOREM 4.1 (FACETED EVALUATION GENERALIZES NSU EVALUATION).
IfY,elp X,V then e Jpe X/, V.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A:21

PROOF. See Appendix. O

4.2. Permissive-Upgrades

The limitations of the NSU semantics motivated the development of a more expressive
permissive-upgrade (PU) semantics, which reduced (but did not eliminate) stuck execu-
tions [Austin and Flanagan 2010]. Essentially, the PU semantics works by tracking partially
leaked data, which we represent here as a faceted value (k ? R : %).®

Vo ou= R public values
| (k7 R:1) private values
| (k7 R:x) partially leaked values

Since the public facet is not actually stored, the PU semantics can never use partially leaked
values in situations where the public facet is needed, and so partially leaked values cannot be
assigned, invoked, or used as a conditional test. In particular, PU computations never need
to “split” executions, and so avoid the complexities and expressiveness of faceted evaluation.

We formalize the PU semantics by extending the NSU evaluation relation ¥, e |, ',V
with the two additional rules shown in Figure 11. The new assignment rules leverage faceted
values to handle the complexity involved in tracking partially leaked data. Specifically, if
values are stored to a public reference cell in a high-security context, the data is partially
leaked, and a new faceted value with a non-_L public facet is created.

Critically, there are no rules for applying partially leaked functions or assigning to par-
tially leaked addresses, and consequently execution gets stuck at these points, corresponding
to the explicit checks for partially leaked labels in the original PU semantics [Austin and
Flanagan 2010].

Faceted values subsume the permissive-upgrade strategy. The permissive-upgrade strat-
egy gets stuck at the points where a faceted value with a non-_L facet is either applied or
used in assignment.

THEOREM 4.2 (FACETED EVALUATION GENERALIZES PU EVALUATION).
IfS,elp XV, then E,e Jbpe X', V.

PROOF. See Appendix. O

Again, the converse to this theorem does not hold, since Figure 1 shows an execution that
gets stuck under the permissive-upgrade semantics but not under the faceted semantics.

4.3. Failure-Oblivious Information Flow Monitor

The monitor-based approaches discussed in this section so far use a fail-stop approach;
that is, they terminate execution in order to prevent the loss of sensitive information.
However, Rinard et al. [2004] have shown that applications often work quite well with minor
errors. Failure-oblivious computing exploits this quality to allow applications with memory
errors to continue operation. In a similar spirit, we develop a failure-oblivious information
flow monitor that does not terminate the application to guarantee termination-insensitive
noninterference.

Fenton [1974] makes use of a similar strategy, though labels? are fixed to be either public
or private and may not change.

The central idea of this approach is to ignore operations that might lead to a loss of
sensitive information. In that vein, we update the no-sensitive-upgrade semantics with the
following additional rules for assignment.

8Tn [Austin and Flanagan 2010], these partially leaked values were represented as R, with a superscript
P denoting partially leaked.
9“Data marks” in Fenton’s terminology.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 T. H. Austin, T. Schmitz, and C. Flanagan

2761 U,pc El,a 2761 lipc El,<k?a:J_>
2y, €2 ‘Upc E/;V 2, ez “pc E/,V
pc # label(X/(a)) pc U{k} & label (X' (a))
2,61:=62 U,pc E/,V 27612=€2 lipc E/,V

[FO-ASSIGN-IGNORE] [FO-ASSIGN-K-IGNORE]

In contrast with the other monitor-based approaches, the failure-oblivious strategy does
not get stuck on the example from Figure 1, and yet it still maintains noninterference.
However, for the case where « = (k ? true : L), this approach returns a value of false.
Therefore, this approach satisfies noninterference but does not guarantee transparency, and
so provides inaccurate results to both authorized viewers and unauthorized viewers.

In contrast, secure multi-execution and faceted evaluation only alter the semantics of
executions that violate noninterference. Observers with the proper permissions see results
that match the standard semantics, thereby guaranteeing transparency for those views.

The failure-oblivious information flow monitor strategy presents an additional option in
the design space of information flow controls. When the secure multi-execution and faceted
evaluation strategies are too heavyweight, and some inaccuracy is acceptable in trade for
increased availability, the failure-oblivious approach may be a good solution.

5. FACETED EVALUATION WITH EXCEPTIONS

We next extend the faceted semantics to support throwing and catching exceptions.
Languages such as JavaScript provide exceptions to facilitate error handling and non-
local control flow. Exceptions introduce additional complexities for our analysis, since some
projections of a faceted execution could terminate normally while others throw exceptions,
and we need to ensure that each view only sees the appropriate behavior.
We extend the syntax of \ec¢t as follows:

e:=..|raise | e; catchey

For the sake of simplicity, we do not add information to exceptions.

Figure 12 presents the additional rules for our standard semantics. Evaluation returns
a behavior (b), which may be either a value (v) or raise, indicating an exception. If, in
the expression e; catch es, e; is evaluated to raise, then ey is evaluated and the result
is returned, as indicated by the [s-TRy-carch] rule. Otherwise, the result of evaluating ey
is returned and ey is ignored, as shown by the [s-TRy] rule. The [s-APP-EXN1], [S-APP-EXN2],
[S-WRITE-EXN], [S-REF-EXN], [S-DEREF-EXN], [S-ASSIGN-EXN1], and [s-AssiGN-EX2] rules illustrate
different points where exceptions may be raised. The [s-AppP-0k] rule returns a behavior,
replacing the [s-aPp] rule from Figure 5. The other rules from Figure 5 remain unchanged,
and therefore are not repeated.

5.1. Faceted Exceptions

Figures 13 and 14 present the rules required to support exceptions with faceted evaluation.
As in the standard semantics, we modify evaluation to return a behavior (B). In our faceted
evaluation semantics, a behavior may be a raw value (R) or raise, or it may be a faceted
behavior ((k ? By : B2)). We extend the operator (k 7 V; : V3 )) to handle behaviors in a
straightforward manner:

(07 By:B,) B,

({k}Urest ? B, : B,) < (k? ((rest ? By : B,) : B,)

({F}Urest ? Bp :B,Y) < (k7 B,: ((rest ? Bn: B, )

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A:23

Figure 12: Standard Semantics
I 1

Runtime Syntax:

b € behavior ::= v | raise

Evaluation Rules:

o,e1 ) o1, raise
!
01, €2 J/ o 7b
o,e1 catches | 0/,b

- - [S-RAISE]
o,raise | o,raise

[S-TRY-CATCH]

o,e ] o raise

[S-WRITE-EXN]

o,e1dao’v / (s TRY] o,write(f,e) | o/, raise
o,e1 catch ey | o' v
o,e ] o raise (5 REF-EXN]
o,e1 | o/, raise (S APP_EXNI] o, (ref e) | 0/, raise

o,(e1 e2) | o/, raise
o,e ] o’ raise

o,e1lo1,v o,le ] o/, raise
01,62 |} 09, raise

o,(e1 e2) | oq,raise

[S-DEREF-EXN]

[S-APP-EXN2] .
o,e1 | oy, raise

- [S-ASSIGN-EXN1]
o,e1:=ey | 01, raise

o,e1 ) o1, (Az.e)
01,63 | o9,V o,e1 ) o1,v
oo,elx =], d',b 01,62 | 09, raise

[S-APP-OK]

S-ASSIGN-EXN2
o,(e1 ea) Lo'b o,e1:=e€y | 09, raise [ ]

Handling exceptions under faceted evaluation requires some care, since in an application
(e1 e2), if e; evaluates to raise for some view, then ey should not be evaluated for that
view. Similarly, exception handling code should only be executed for views that observe an
exception. We introduce two additional evaluation relations to handle exceptions properly.
The rules for these evaluation rules are included with updated application rules in Figure 14.

We introduce an additional evaluation relation

Y,ellB Y B

p

where superscript B controls evaluation of e, so that this relation evaluates e only for views
L for which L(B) # raise: see Figure 14.

With this relation, e is evaluated normally if B is a value, as specified by [FB-NORMAL].
If B is raise, e is not evaluated and raise is returned, as specified by [FB-RAISE]. The
[FB-sPLIT] rule ensures that this relation is called recursively on each facet when B is a
faceted behavior.

An important property of the conditional relation is that if an exception is not thrown
for a given view, that view will not observe any effects from code that was skipped over by
the exception.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24

T. H. Austin, T. Schmitz, and C. Flanagan

Figure 13: Core Rules for Faceted Evaluation with Exception Handling

Runtime Syntax

V e Value
B € Behavior

Evaluation Rules: Yellp X, B

m [FE-VAL]

k¢ pe.k & pe
PINC u/pcu{k} 1, By
217 €2 \U/pcu{z} 223 B2
2, <k ? [ 82> \u,pc EQ,B

[FE-SPLIT)]

k € pc Xe1 Ype X, B
E, </€ 7 €1 62) \u,pc EI,B

[FE-LEFT]

k€ pc X, e Ylpe X, B
E, </€ 7 €1 62) \u,pc EI,B

[FE-RIGHT]

Yellpe X, B
a & dom(X)
(B', V'Y = mkref (a, B)
V={pc?V':L1)
Y, (ref e) pe X'[a:=V], B’

[FE-REF]

Yellp X, B
B’ = deref (X', B, pc)
Sote e 5, B

[FE-DEREF]

X,e1 dbpe X1, B1
Yi,e2 Y51 By, B!
Y = assign(Xs, pe, By, B')
Y,eri=er Ylpe X, B

[FE-ASSIGN]

FE-RAISE
Y, raise ||, ¥, raise [ ]

s= RI|(k?V:VR)

(k7?7 By : Bs) | raise

Ea €1 \u/pc El,B
Y1, B catch e iL;itCh Y, B

FE-TRY
Y, e catch ey [y X, B’ [ ]

X,e1 dbpe X1, B1
Y1,z it B, By
225 (Bl BQ) \LJ/Z}EP 2/7 B/
>, (61 62) \u/pc 217 B’

[FE-APP]

S(f) =vaw
L = view(f)
pc visible to L
pd =LU{k|k¢&L}
V={(pd ?7v:L1)
Y, read(f) dpe Z[f :=w],V

[FE-READ]]

pe not visible to view(f)
Y, read(f) dpe Z, L

[FE-READ2]

27 € inc 217 B
pe visible to view(f)
L = view(f)
v = L(B)
X =5[f = ¥(f)v]
Y write(f,e) dpc ¥, B

[FE-WRITE1]

Se e X, B
L = view(f)
pc not visible to L
or L(B) = raise
Y urite(f,e) pc ¥, B

[FE-WRITE2]

ACM Transactions on Embedded Computing Systems, Vol. V|, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A:25
Figure 14: Faceted Evaluation Rules for Application and Exceptions
I 1
Application Rules: |X,(B; Bg) L3 X/, B’
Yelr :=V]lp X, B
S ea VF s F P Sraies B I Sratee
S (L V)P s, L [FA-L] S, (R raise) I %, raise [FA-RAISE2]
k& pCvE ¢ pc k € pc ¥, (Bu Ba) {lpe ¥, B [FA-LEFT1]
%, (B Ba) dyilyy Z1, B (k7 Bu: Bu) B2) b7 ¥, B
S, (B, Bs) u;PP " B } .
a /
=(k?B.:BY ke pc E,(By B) dlpe ¥\ B
SF7 Ba: B Bo) TP .8 [pa-sPLITL] T ((k 7 By : By) Ba) WX 3, B [FA-RIGHT1]
raise € (k ? By : By) raise € (k 7 By : ?L)
k¢ pek ¢}11)c ’ k€ pe z, (R Bx) u;: >,B [FA—LEFT2]
? 3PP 57
2, (R By) up%%{’“} %1, B, Y, (R {k? By : By.)) UpF 3,
a] !/ !/
ol B;é;i %;LZE/J{’“B?» b raise € (k ? By : By)
= (k7 ) Fepe S,(RB.)UZPY.B
ST By Do) B .8 P R R s )
Exception Handling Rules: ¥, B catch e [J52*" X, B
raise € (k ? By : By)
SV catche [ s v NORRRL 5 B caten e o2 8, B
¥1,By catche u;ifj% ¥ B
E,eu,CE/,B/ — 2 R . R
; [Fx-caToH] (k7 By:By) [FX-SPLIT]

Y, raise catche iL;itCh Y, B

Conditional Evaluation Rules:

S,e lpe X, B
S,e Wy ¥, B

Y,e uralse Y, raise

¥,(k? By : Bg) catche u;itd‘ Y, B’

Se B 5 B
raise€ (k ? By : By)

FB-NORMAL

[ ] Y,e ufcu{k} ¥, By
Ela € iL cu{k} 227 B£

[FB-RAISE] B={k?B,:B)

e u’“BHB”Ez,B

[FB-SPLIT]

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:26 T. H. Austin, T. Schmitz, and C. Flanagan

Figure 15: Faceted Evaluation Auxiliary Functions with Exceptions
1 1

mkref : Address x Behavior —  Behavior x Value
mkref (a, V) = (a,V)
mkref (a,raise) = (raise, l)
mref (o, (k ? By - By)) = {(k? Bl BL), (k2 Vic: VL))

where raise € (k ? By : Br)

and (Bj;, Vi) = mkref(a, Bu)

and (B] ,Vi,) = mkref (a, Br)
deref : Store x Behavior x PC — Behavior
deref (X, a, pc) = X(a)
deref (X, L, pc) = 1
deref (X, raise, pc) = raise

deref (X, Bu, pc) if k € pc
deref (X, (k ? Bu : Bu), pc) = deref (X, By, pc) if k € pc
(k7 deref (X, Bu, pc) : deref (X, Br, pc))) otherwise
assign : Store X PC' x Behavior X Behavior — Store
assign(X, pc, a, V) = X[a:={pc?V:X(a))]
assign(X, pe, L, B) =X
assign(X, pc, raise, B) =X
assign(X, pe,(k 7 Bu : BL), B) =X where X1 = assign(X, pcU{k}, Bu, B)
and Y = assign(X;,pcU{k}, B., B)

assign(X, pc, a, raise) =X
assign(X, pe, a, (k ? Bu : BL)) = ¥ where raise € (k ? Bu : BL)

and ¥y = assign(¥, pcU{k},a, Bn)
and ¥/ = assign(Xy, pc U {k}, a, BL)

LEmMMA 5.1. If Xe i.,LfcI Y. B and L(B') = raise, then L(X) = L(¥') and L(B) =
raise.

The [FE-APP] rule replaces the [F-app| rule. It is similar to the [F-apP] rule, except that
it accounts for the possibility that e; evaluates to raise by the use of the conditional
evaluation relation. The [FA-RAISE1] rule returns raise when raise is applied, and the
[FA-RAISE2] rule returns raise when raise is passed as an argument to a function. Critically,
the application rules have the invariant that if evaluating either the function or its argument
results in raise for a given view L, then L will observe raise as the result and will not
observe any change to the store.

LEMMA 5.2. If %, (B By) 3% ¥, B and either L(B1) = raise or L(Bs2) = raise,
then L(X) = L(X') and L(B) = raise.

The rule [FE-TRY] for e; catch ey first evaluates e; to a behavior B, and then dispatches
to the helper relation

Y, B catche u;itd‘ ¥, B

which evaluates ey for any view L for which L(B) = raise.

The [Fx-NOERR] rule ignores exception handling code when there is no exception. The
[FX-cATCH] executes exception handling code and returns the result along with an updated
store. Finally, the [Fx-spriT] rule calls the exception handling rule recursively for faceted
behaviors.

An important property of this relation is that effects of exceptions are visible only to
views that should observe the exception.

ACM Transactions on Embedded Computing Systems, Vol. V|, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A:27

LEMMA 5.3. If ¥, B catch e [|53*" ¥/, B" and L(B) # raise, then L(X) = L(¥') and
L(B) = L(B)).

The [FE-wRrITE2] rule replaces the [F-wWRITE2] rule to ensure exceptions are not communi-
cated across the channel.

Handling reference cells requires some additional care in the context of faceted evaluation.
The [FE-REF| rule replaces the [F-rREF] rule. The mkref function, defined in Figure 15, takes
an address and behavior, and returns a behavior (representing an address) and a value. If
evaluating e in the [FE-REF] rule results in raise, 1 will be entered into the resulting store
for address a. Similarly, storing a faceted behavior containing raise will result in L being
stored in place of all raise facets!?. The behavior returned from the [FE-REF] rule will be
the address of the new reference cell, raise if the behavior to store is raise, or a faceted
value containing either a or raise for all facets.

Assignment and dereferencing are not quite as complex. The new rules [FE-AssieN] and
[FE-DEREF] rule use new versions of the assign and deref functions, defined in Figure 15, that
account for the possibility of raise.

The [Fa-sPLIT1], [FA-LEFT1], [FA-RIGHT1] rules replace [FA-SPLIT], [FA-LEFT], and [FA-RIGHT].
They differ only in that they handle faceted behaviors instead of faceted values. The
[FA-sPLIT2], [FA-LEFT2], and [FA-RIGHT2] rules handle faceted behaviors on the right hand
side of the application. The [FE-vAL] and [Fa- 1] rules remains unchanged from the equiva-
lent rules in Figure 6. The [FE-SPLIT], [FE-LEFT], [FE-RIGHT], [FA-FUN1], [FE-READ1], [FE-READ2],
and [FE-WRITE1] rules are modified only in that they return behaviors instead of values.

5.2. Projection Theorem for Faceted Evaluation with Exceptions

In order to prove that the projection property holds with the introduction of exceptions,
we extend our views-as-projections to behavior interpretations.

L : Behavior — behavior

L((k? By : By)) = { §E§;§ ﬁ Z ;é

L(raise) = raise

We extend Lemmas 3.2, 3.3, 3.4, and 3.5 to handle faceted behaviors and to account for
the presence of raise.

LEMMA 54. If B={pc? By: By)) then

| L(B1) if pc is visible to L
L(B) = { L(B3) otherwise

LEMMA 5.5. If B’ = deref(X, B, pc) then VL consistent with pc

raise if L(B) = raise
L(B') = { 1 if L(B) = L
L(X)(L(B)) otherwise

LEMMA 5.6. If ¥ = assign(X, pc, By, Bs) then

() — L(X)[L(By) := L(Bs)] if pc is visible to L, L(B1) = a, and L(B2) # raise
(¥) = L(Y) otherwise

0raise € B indicates that either B = raise, or that B = (k 7 By : Br), where either raise € By or
raise € Br,.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:28 T. H. Austin, T. Schmitz, and C. Flanagan

LEMMA 5.7.  Suppose pc is not visible to L and that
S,ellp X\ B
Then L(X) = L(X').
PROOF. See Appendix. O

The new mkref function will return the address and value for any view that does not
witness an exception. Other views will see raise and L instead of the address and the
value. Lemma 5.8 formalizes this property.

LEMMA 5.8. If mkref(a, B) = (B’, V) then

S 7

As a result, the projection theorem still holds with faceted evaluation.
THEOREM 5.9 (PROJECTION THEOREM WITH EXCEPTIONS).  Suppose
Y,ellp X\ B
Then for any view L for which pc is visible,
L(%), L(e) L L(X'), L(B)
PROOF. See Appendix. O

Consequently, termination-insensitive noninterference therefore still holds in the presence
of exceptions.

THEOREM 5.10 (TERMINATION-INSENSITIVE NONINTERFERENCE WITH EXCEPTIONS).
Let L be any view.

Suppose
Yy ~p Y2
Elu € *U/@ Ella Bl
22; € \U/@ 2/27 B2
Then
) ~p B
By ~p, By

ProoF. Holds by a similar argument as in the proof for Theorem 3.7. O

6. FACET EVALUATION WITH CLEARANCE

One limitation of dynamic information flow is that untrusted code operating on private
data could use timing or termination effects to leak some information about that data, as
in the following code, which diverges when secret is true:

while (secret) {};

To limit this problem, Stefan et al. [2011] introduce the promising notion of clearance, where
low clearance code is not even permitted to access private data. Thus, the following code
snippet would fail at the read of secret in a low-clearance context, independent of the
value of that secret data.

function leak () {
while (secret) {};

}

lowerClearance (L) ;

leak ();

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A:29

One limitation of this notion of clearance is that it only applies to code executed within
a particular dynamic scope. Consequently, in a language with unrestricted side-effects like
JavaScript, adversarial code can escape clearance constraints by registering callbacks, as in

function leak () {
while (secret) {};

}

lowerClearance (L) ;

setTimeout (leak, 0);

The lower clearance applies when setTimeout is called, but not when leak is called by
JavaScript’s event loop, so this code can still use divergence to leak information about
secret.

We now show how faceted evaluation naturally supports a somewhat richer notion of
clearance. We use the idiom (k ? skip : leak()) to execute the function leak with low
clearance pc = {k}; this idiom is analogous to the lowerClearance(L) call above. Thus
the function leak is executed with pc = {k}, and so that computation only sees the public
false facet of secret.

let secret = <k?true:false>;
function leak () {
while (secret) {};
}
<k7skip:leak () >;

Moreover, if a computation stores a callback somewhere, then that callback is tainted
with label {k}, and if the callback is later called from an unconstrained context (with
pc = {}), the tainted callback is still unable to access k-sensitive data. Thus, in the following
example, faceted evaluation still prevents low-clearance code from leaking the secrete value
true via termination; instead the low-clearance code still always sees the public facet false
of secret.

let secret = <k?true:false>;
let callback = function (){};
function leak() {
callback = function() {
while (secret) {};

}
}
<k?skip:leak () >;
callback();

7. FACET DECLASSIFICATION

For many real systems, noninterference is too restrictive. Often a certain amount of informa-
tion leakage is acceptable, and even desirable. Password checking is the canonical example;
while one bit of information about the password may leak, the system may still be deemed
secure. Declassification is this process of making confidential data public in a controlled
manner.

In the context of multi-process execution [Devriese and Piessens 2010], declassification
is rather challenging. The L and H processes must be coordinated in a careful manner,
with the attendant problems involved in sharing data between multiple processes. Addi-
tionally, declassification may re-introduce the termination channel, losing some benefits of
the multi-execution approach. In contrast, faceted evaluation makes declassification fairly
straightforward. The public and confidential facets are tied together in a single faceted

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:30 T. H. Austin, T. Schmitz, and C. Flanagan

Figure 16: Declassification of Faceted Values

IDeclassiﬁcation Rule
Yellp X,V
Uu? ¢ pc
V'’ = downgradep (V)
Y, declassifyp e Jpc X, V/

[F-DECLASSIFY]

Downgrade Function

1

downgrade ,, : Value Value

downgrade (R ) = R

downgrade ,((S” 7 V4 : V2)) Ul 272V Ve) i A

downgrade , ((U” 7 V4 : Va)) (U® 7 Vi : downgrade ,(V2) )
downgradep(<l 7V Vo)) (I 7 downgrade (V1) : downgrade (V2))

value, so declassification simply requires restructuring the faceted value to migrate infor-
mation from one facet to another.

Providing a declassification operation with no restrictions invalidates most security guar-
antees. For instance, an attacker could declassify a user’s password, or overwrite data that
would be declassified later by legitimate code. In this manner, valid code intending to declas-
sify the result of a password check might instead be duped into declassifying the password
itself.

To provide more reliable security guarantees in the presence of declassification with
faceted values, we pattern our approach after robust declassification [Zdancewic 2003; Myers
et al. 2004], which guarantees that an active attacker, able to introduce code, is no more
powerful than a passive attacker, who can only observe the results. An important topic
for future work is to explore extending declassification to other policies, such as stateful
declassification [Vanhoef et al. 2014].

This technique depends on a notion of integrity, which in turn requires that we distinguish
between the terms label and principal. In particular, we introduce a separate notion of
principals (P) into our formalism. A label & then marks data as being secret (S¥) or as
belilng low-integrity or untrusted (U’), both from the perspective of a particular principal
P

P € Principal
k € Label n= 8P secret to P
| uf untrusted by P

In the context of a principal P, we now have four possible views or projections of a compu-
tation, ordered by the subset relation.

e )
“sel {} -~

11 This security lattice could be further refined to indicate which other principal was distrusted by P, which
would permit more fine-grained decisions.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A:31

To help reason about multiple principals, we introduce the notation Lp to abbreviate
L N {s?,uf}, so that Lp is one of the four views from the above combined confiden-
tiality /integrity lattice. Note that in the absence of declassification, the projection theorem
guarantees that each of these views of the computation are independent; there is no way
for values produced in one view’s computation to influence another view’s computation.

We introduce an additional expression form declassify, e for declassifying values with
respect to a principal P. The rule [F-DEcLASSIFY] in Figure 16 performs the appropriate
declassification. Declassification cannot be performed by arbitrary unauthorized code, or
else attackers could declassify all confidential data. Moreover, it is insufficient to allow
code “owned” by P to perform declassification, since attackers could leverage that code to
declassify data on their behalf. Hence, the rule [F-pECLASSIFY] checks that the control path
tc;g this declassification operation has not been influenced by untrusted data, via the check
U" & pc.

Robust declassification allows data to move from the {S'} view to the {} view, but never
from the {S,U”} view to the {UP} view. That is, secret data can be declassified only
if it is trusted. The downgradep function shown in Figure 16 performs the appropriate
manipulation to declassify values. The following lemma clarifies that this function migrates
values from the trusted secret view {ST} to the trusted public view {}, but not into any
other view.

LEMMA 7.1.  For any value V and view L:

L(V) if Lp # {}
L(downgradep(V)) = { L'V) if L = {}, where I' = LU {57}

PROOF. See Appendix. O

In the presence of declassification, the projection theorem does not hold for the public
trusted view {} since that view’s computation may be influenced by declassified data. How-
ever, the projection theorem still holds for other views. To prove this relaxed version of
the projection theorem, we extend the standard semantics to treat declassification as the
identity operation:

[S-DECLASSIFY]|
o,el o,V
o,declassifyp e ] o/, V

THEOREM 7.2 (PROJECTION THEOREM WITH DECLASSIFICATION).  Suppose
Yellp X,V

For any view L for which pc is visible, and where Lp # {} for each P used in a declassifi-
cation operation, we have:

L(%), L(e) L L(X), L(V)
PRrROOF. See Appendix. O

As a result, noninterference also holds for these same views.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:32 T. H. Austin, T. Schmitz, and C. Flanagan

THEOREM 7.3 (TERMINATION INSENSITIVE NONINTERFERENCE WITH DECLASSIFICATION).

Suppose Lp # {} for each P used in a declassification operation and

Yy ~p Yo

Elu € u(b E117 ‘/1

227 (& u(b 2127 ‘/2
Then:

X ~p B

Vi~ Vo

Proof. Follows from Theorem 7.2 via a proof similar to Theorem 3.7.

8. INTROSPECTION OF FACETED VALUES

Determining whether a value is faceted might be a useful tool for a developer troubleshoot-
ing an application. One might consider introducing an isFaceted primitive in order to
determine whether a value v is a faceted or a raw value.

isFaceted <k742:0>; // evaluates to true
isFaceted 17 // evaluates to false

Correctly implementing introspection of faceted values is surprisingly complex and rife
with pitfalls. Therefore, in this section we review a proposed solution, as well as some
obvious approaches that do not work.

The rule for introspection of raw values is straightforward, as shown in the following rule
[F-INTROSPECT-RAW]:

E, € u/pc Elu R
Y, isFaceted e ||, ¥/, false

[F-INTROSPECT-RAW]

However, much more subtle issues arise when the result is faceted. A logical approach is
to return true, as demonstrated in the following (broken) rule:

2,6 \u/pc 217 <k 7V V2>
Y, isFaceted e ||, ¥/, true

[F-INTROSPECT-BROKEN1]

While this approach seems reasonable, noninterference is not guaranteed. Though
(k ? true : false) should be indistinguishable from false to an unauthorized viewer of
k-sensitive data, isFaceted (k ? true : false) is distinguishable from isFaceted false.

Another (broken) approach would return true only to authorized viewers of k-sensitive
data, as illustrated in the following rule:

2,6 \u/pc 217 <k 7V V2>
Y, isFaceted e |, ¥/, (k 7 true: false)

[F-INTROSPECT-BROKEN?2]

This rule works when only a single principal is involved, but fails for more complex
lattices. With this strategy, isFaceted (k7 1:(l ? 2: 3)) evaluates to (k ? true : false).
However isFaceted (I 7 2: 3) evaluates to (I ? true : false), permitting an [-authorized
viewer to distinguish between the two values and thereby learn k-sensitive information.

The correct approach must permit an observer to learn if a value is faceted on any of the
principals the observer can see. The rule [F-INTROSPECT-FACETED] gives the proper solution.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A:33

Eﬂiipc Elu<k ? Vi ‘/2>
Y,,isFaceted Vo Jl,c &/, V’ [
Y, isFaceted e [}, X/, (k 7 true: V')

F-INTROSPECT-FACETED}

Following this approach, isFaceted (k ? 1: (I 7 2: 3)) evaluates to
(k ? true : (I ? true: false)) and isFaceted (I 7 2: 3) evaluates to (I ? true : false),
preventing k-sensitive information from leaking to [-authorized observers.

9. JAVASCRIPT IMPLEMENTATION IN FIREFOX

We incorporate our ideas for faceted evaluation into Firefox through the Narcissus
JavaScript engine [Eich 2004] and the Zaphod Firefox plugin [Mozilla Labs Zaphod 2010].
The ZaphodFacets implementation [Austin 2011] extends the faceted semantics to handle
the additional complexities of JavaScript. Our implementation is available online with some
examples [Austin 2011], including the code from Figure 1. For ease of implementation, we
do not include support for exception handling in this implementation. Instead, we halt
execution if an exception might leak data.

We added two new primitives to the language. The makeFacetedValue(k,v1,v2) creates
a new faceted value for the principal represented by the string k where v1 is the facet for
authorized viewers of k and v2 is the facet observable to unauthorized viewers. For example,
the following code sets x to a faceted value of (k ? 42 : 0).

var x = makeFacetedValue("k", 42, 0);

The second primitive is a getPublic function that extracts the public value of its input.
For example, with the above code defining x, getPublic(x) returns 0. We use these two
functions on all input/output boundaries of the system in order to appropriately label data
as it comes in and to appropriately monitor data as it goes out. Section 9.1 details how we
identify private data and Section 9.2 discusses which scripts we identify as untrusted.

9.1. Identifying Private Data

A major challenge of information flow analysis lies in identifying which data should be
treated as confidential. A policy that is too inclusive is likely to give rise to a high number
of false positives.

Our policy treats password fields as private, leveraging application-specific work that the
web developer has done to identify data that we should protect. Furthermore, any form
element with a class of confidential is also treated as private, allowing developers to
protect additional fields like credit card numbers or account numbers. Of course, removing
this class value cannot be allowed or an attacker could declassify the marked fields.

Another option would be to treat all form data as private. While this strategy protects
more information and requires no additional work from web developers, it might be overly
restrictive and, perhaps more importantly, could slow down performance significantly.

9.2. Identifying Untrusted Scripts

An advantage of information flow techniques is that, while they are generally focused on
enforcing confidentiality, they can also enforce integrity. In this section, we show how we use
faceted values to track the influences of untrusted scripts; in this way, we can allow them
to run but ensure that they will not modify sensitive fields.

Our policy treats only scripts coming from the same origin as the page to be trusted. This
policy is not fool-proof; if the hosting site is constructed so that, for instance, JavaScript
files are dynamically built with PHP code, an attacker potentially could create a trusted
script.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:34 T. H. Austin, T. Schmitz, and C. Flanagan

A trickier question lies in handling scripts embedded within an HTML page. Any embed-
ded script could be the result of a cross-site scripting attack, so a reasonable policy might
treat all embedded scripts as untrusted. However, for the sake of usability our policy treats
embedded scripts as trusted. Even so, information flow analysis still offers some protection
against XSS attacks, as we discuss in Section 9.4.

Any scripts loaded from a different origin are treated as untrusted, which we represent
with a label of "Untrusted". Effectively, each script is transformed into the following code:

var untrustedCode = makeFacetedValue("Untrusted",
function() { /* original code here */ },
function(){});

untrustedCode () ;

The untrusted code is wrapped in a function that is made into a faceted value. The trusted
facet is set to a no-op function, and then the faceted function is invoked. As a result, any side
effects induced by the code will only be visible to views including the untrusted principal.

9.3. Faceted Values and the Document Object Model

The Document Object Model (DOM) presents interesting challenges for information flow
analysis in general, and for faceted evaluation in particular.

The DOM is typically implemented in C or C++ code. As a result, the JavaScript engine
may lose its ability to track a sensitive value once it has been written to the DOM without
additional facilities in place. To illustrate the challenge, consider the following code:

var secret = makeFacetedValue("Confidential", 42, 0);

var titlel = document.getElementById("titlel");

titlel.setAttribute("class", secret);

var newVal = document.getElementsByTagName ("h1") [0]
.getAttribute("class");

Assuming no other private information has been written to the DOM, is it safe to release
newVal to an external third party? It is not possible to tell without knowledge of the
underlying structure of the webpage. If the first h1 element on the page has an id attribute
of titlel, then newVal = secret and the value must be protected; otherwise the data may
be released safely.

Without a more fine-grained knowledge of the DOM, monitor-based information flow
systems must resort to more restrictive solutions such as forbidding any private data from
being written to the DOM.

To resolve this issue, our implementation uses dom. js [Gal et al. 2011}, an implementation
of the DOM written in JavaScript. Because dom. js is written in JavaScript, we are able to
persist faceted values in the DOM and correctly track the flow of private information. The
underlying copy of the DOM is kept in sync with dom. js through the use of listeners and
special hooks built into dom. js.

However, only a single facet will be rendered for the user to view. When a faceted value is
written to the DOM, we must choose which facet to render. Our policy assumes that the user
has the right to access all private data; therefore, the private facet is rendered to the DOM
unless doing so would trigger network activity that could leak sensitive information. For
instance, setting the src attribute of an img tag to www.evil.com/4111111111111111. jpg
might leak the value of a user’s credit card to evil.com’s server. ZaphodFacets uses the
following policy:

(1) If a request is made for a resource from the hosting server, the private facet is used. (A
more sophisticated policy might allow for certain origins to be whitelisted, and therefore
permitted to see private facets as well.)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A:35

Figure 17: Illustration of Faceted Values and the DOM

| SpiderMonkey DOM Dom.js |

Local file: use
private facet.

imgl.src=<k?

< = mm me .- ‘ = mfm m "custl234.jpg":
"default.jpg">;

cust1234.9pg { )

/

img2.src = "evil.com/"
‘------- ‘--l-- + imgl.src;
Remote file: use
public facet.

evil.com/default.jpg

(2) Otherwise, if the program counter is high, then the request for an image is suppressed.
(3) Finally, if the program counter is low, but the location of the resource is a faceted value,
the low facet is selected.

Figure 17 shows the process in more detail. In this example, following a prac-
tice used by some banks to defend against phishing attacks, a user selected picture
is displayed. An image is requested from a location determined by the faceted value
(confidential ? 7cust1234.jpg” : “default.jpg”). Since the image is locally hosted,
the image cust1234.jpg is loaded. However, malicious advertising code attempts to
steal the image by requesting the same image from evil.com, which results in an
image request for the faceted value (confidential ? ”www.evil.com/cust1234.jpg”
"www.evil.com/default.jpg”). But since the private facet refers to a different origin than
the hosting website, the default image is rendered, and the attacker learns no information
about the user’s security picture.

Mashups present some interesting challenges, since we may wish to limit different libraries
to different portions of the DOM. The policy we outline here does not currently address this
issue; scripts loaded from different origins may modify the whole of the DOM. However,
we note that the barrier between dom.js and the SpiderMonkey DOM provide us with an
excellent place to apply policy-agnostic programming techniques [Yang et al. 2012], which
would allow a developer to specify separate policy code to define these policies. Prelimi-
nary work [Austin et al. 2013] shows that faceted values combine well with policy-agnostic
programming.

9.4. Cross-Site Scripting (XSS) Example

To illustrate how our controls can be useful for enforcing practical defenses, we consider an
example of a webpage with an XSS vulnerability. Our controls do not prevent XSS attacks.
Rather, they provide an additional layer of defense, reducing an attack’s power.

In our example, the web developer uses a library function hex md5 for hashing passwords
on the client side. The library is benign, but an attacker uses an XSS vulnerability in the
page to wrap the hashing library and export the password to a server evil.com, controlled
by the attacker.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:36 T. H. Austin, T. Schmitz, and C. Flanagan

The injected code is given below:

var oldHex = hex_md5;

hex_md5 = function(secret) {
var baseURL = "http://evil.com/";
var img = document.getElementById("spock");
var titlel = document.getElementById("titlel");
titlel.setAttribute("class", secret);
var newVal = document.getElementsByTagName ("h1") [0]

.getAttribute("class");

img.setAttribute("src", baseURL + newVal + ".jpg");
return oldHex(secret);

}

The attack attempts to leak the password by loading an image from evil.com, encoding
the password into the name of the requested image. However, incorporating the evasion
technique mentioned in Section 9.3, it first writes the password to the class attribute of
the titlel element and then rereads it from the first hi element.

By our policy, the value of all password elements should be treated as confidential. Fur-
thermore, any attempts to load files from a different origin should use the public facet;
the server hosting the website, however, should see the private facet. Since we persist the
different facets of secret to the DOM using dom.js, no security information is lost, and we
do not lost track of the private code.

With this example, evil.com sees only the public facet of secret, not the true password.
Trusted same-origin sources do see the true value, and therefore work correctly with the
page.

While our example policy is far from complete, we use it to illustrate how our mechanism
can enforce different information flow policies. A richer policy could specify a variety of
fields and potential output channels. Furthermore, we imagine that browsers would wish to
allow web developers to specify application-specific sensitive fields, such as credit card num-
bers, and allow users to protect information that they considered confidential (for instance,
restricting the release of geolocation information).

9.5. Performance Results

Our approach is similar to prior work on secure multi-execution [Devriese and Piessens
2010]. To understand the performance tradeoff between these two approaches, we imple-
mented both sequential and concurrent versions of secure multi-execution in Narcissus, and
compared their performance to faceted execution.

Our tests were performed on a MacBook Pro running OS X version 10.11.6. The machine
had a 2.7 GHz Intel Core i7 processor with 4 cores and 16 GB of memory. For our bench-
marks, we selected test cases from the SunSpider [Webkit.org 2011] benchmark suite. In all
test cases, the default value used for SME is the same as the value used for the public facet
in faceted evaluation.

— The string-tagcloud test case involves parsing JavaScript Object Notation (JSON). We
modified this test to create 8 separate tag clouds from JSON-formatted strings. Our test
cases involve 0 through 8 principals. In each case, every principal marks one element
as confidential; additional inputs are public. For example, test 1 generates a tag cloud
from 1 confidential input and 7 public inputs. Test 8 takes 8 confidential inputs, each
marked as confidential by a distinct principal, and has no public inputs. The public facet
of confidential data is set to a JSON string representing an empty array.

— The md5-sparse test case uses the crypto-md5 benchmark test from SunSpider. We
modified this program to include 8 hashing operations with some inputs marked as con-

ACM Transactions on Embedded Computing Systems, Vol. V|, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow

Figure 18: Faceted Evaluation vs. Secure Multi-Execution

A:37

Times in seconds

Secure multi-execution

Faceted execution

Test case # principals | sequential concurrent

0 43 43 56

1 80 41 56

2 149 45 57

3 278 7 56

string-tagcloud 4 512 143 58
5 934 255 56

6 1,694 444 56

7 2,999 934 55

8 * 2,097 58

0 88 86 113

1 166 86 117

2 311 100 120

3 566 151 126

mdb-sparse 4 985 274 130
5 1,806 508 134

6 3,385 959 139

7 * 1,883 142

8 * * 147

0 2 2 3

1 4 2 9

2 9 2 22

3 18 4 52

mdb-interwoven 4 36 9 117
5 72 17 257

6 145 36 562

7 289 79 1,214

8 574 184 2,591

A result of “*” indicates a test that ran for more than one hour.

fidential. As with the string-tagcloud test, O to 8 of the inputs are marked as confidential
to a different principal. Each hash input is the 15,824 character length sting used in the
SunSpider test. When the data is marked as confidential, the public facet is set to an

empty string.

— The md5-interwoven test case shows how the different evaluation strategies compare
when the principals interact more heavily. In this case, the password ‘secret’ is hashed 50
times, and all hash inputs are marked as confidential to all principals. The public facets
are set to ‘[redacted]’, so that equal work is required for both the public and private
facets. As in the previous tests, we increase the number of principals from 0 to 8.

The results in Figure 18 highlight the tradeoffs between the different approaches. The

sequential variant of secure multi-execution has the most lightweight infrastructure of the
three approaches, reflected in its good performance when there are 0 principals. However, it
can neither take advantage of multiple processors nor avoid unnecessary work. Consequently,
the time required roughly doubles with each additional principal in all of our test cases.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:38 T. H. Austin, T. Schmitz, and C. Flanagan

In the string-tagcloud test case, faceted evaluation’s performance remains essentially flat
as the number of principals increases. In part, this quality reflects our choice of public facets,
which tend to require few computations. For instance, parsing a JSON string representing
an empty array is trivial compared to parsing a large JSON string representing a tag cloud.
While this setup favors faceted evaluation, we believe that public defaults are likely to be
simple and hence easy to process.

The md5 cases illustrate the trade-offs between concurrent secure multi-execution and
faceted evaluation. In both sets of tests, concurrent secure multi-execution outperforms
faceted evaluation when the number of principals is small. However, in the md5-sparse case,
SME must re-execute the same hash operations for different sets of principals, even if the
operation involves no sensitive data. As a result, as the number of principals increases,
faceted evaluation begins to outperform concurrent SME.

In contrast, the md5-interwoven set of tests represents the worst case for faceted evalua-
tion. Faceted evaluation is not able to avoid any redundant work, since all hashes involve
all principals. It has a more complex implementation and it is not able to run processes
concurrently, so it is outperformed by both concurrent and sequential SME, regardless of
the number of principals.

Our results suggest that faceted evaluation performs best when there is a more complex
lattice of principals and when significant portions of the code are not security critical.
Concurrent SME seems to be the better choice when the number of principals is small and
when there is more interaction between different security principals.

10. RELATED WORK

Several researchers have discussed performing multiple executions to guarantee security
properties. Capizzi et al. [2008] develop shadow executions, an approach similar to faceted
values for use in securing information for desktop applications. They run both a public and
a private copy of the application. The public copy can communicate with the outside world,
but has no access to private data. The private copy has access to all private information
but does not transmit any information over the network. With this elegant solution, confi-
dentiality is maintained. Devriese and Piessens [2010] extend this idea to JavaScript code
with their secure multi-execution strategy, using a high and a low process to protect confi-
dentiality in a similar manner. Our approach is similar in spirit, though we avoid overhead
when code does not depend on confidential data.

Zanarini et al. [2013] note that secure multi-execution alters the behavior of programs
violating noninterference, potentially introducing bugs that are difficult to analyze. Fur-
thermore, the multiple processes might produce outputs to different channels in a different
order than expected. They address these challenges through a multi-execution monitor. In
essence, their approach executes the original program without modification and compares
its results to the results of the SME processes; if output of secure multi-execution differs
from the original at any point, a warning can be raised to note that the semantics have
been altered.

De Groef et al. [2012] implement secure multi-execution in FlowFox, a fork of the Fire-
fox web browser. They report a relatively modest performance overhead of 20% for their
controls for a simple high/low lattice, and show the effectiveness of secure multi-execution
in preventing many practical attacks. In addition, they apply their browser to the Alexa
top-500 sites, showing that the secure multi-execution approach runs effectively on many
major websites. Their work also does an excellent job of highlighting subtle implementa-
tion challenges involved in bringing secure multi-execution to the web browser. Rafnsson
and Sabelfeld [2013] highlight some of the interesting challenges in making secure multi-
execution a practical solution. Furthermore, they show how to handle declassification and
to guarantee transparency.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A:39

Our semantics are closely related to work by Pottier and Simonet [2003]. While they
prove noninterference statically for Core ML, their proof approach involves a Core ML?
language that has expression pairs and value pairs, analogous to our faceted expressions
and faceted values. Their work does provide evaluation rules for Core ML?; while they are
not intended as a dynamic enforcement mechanism, there is no reason that they could not
be. Their evaluation rules are formatted in a small step semantics, which can supplement
understanding of how faceted evaluation works.

Faceted evaluation is somewhat similar to symbolic execution [King 1976]. Symbolic ex-
ecution uses special symbolic values, which represent multiple possible values in a manner
similar to faceted values. The primary distinction is that faceted values represent a finite
set of concrete values, whereas symbolic values represent a possibly unbounded range of
values. Traditionally, symbolic execution works over several runs of a program, but there
are some exceptions [Yang et al. 2012; Kolbitsch et al. 2011].

Despite the similarities, there are subtle differences between faceted evaluation and sym-
bolic execution. Consider the following code in JavaScript syntax:

if (x < 0) print('x is negative');
else print('x is a non-negative number');

If x is symbolic, both paths of this code will be explored, unless the tool can detect that
one branch is not logically possible. If x is instead a faceted value, the if/else statement will
be executed multiple times, but might execute the same branch many times. For instance,
if . = (k 7 2: 3), the true branch will be executed twice, and the false branch will never be
executed.

Yang et al. [2012] use symbolic execution as a runtime mechanism to guarantee noninter-
ference (among other properties) in a manner similar to faceted evaluation. When symbolic
values leave the system, they are concretized into a normal value consistent with the path
conditions established to reach that output. A particularly interesting aspect of their ap-
proach is that rich policies may be specified for different values. Any resulting output will
respect the policies of all values involved in the computation. This strategy has been com-
bined with faceted values [Austin et al. 2013], allowing for more sophisticated policies to be
specified without relying on a declassification primitive.

Kolbitsch et al. [2011] use a similar technique in Rozzle, a JavaScript virtual machine
for symbolic execution designed to detect malware. Rozzle uses multi-ezecution (not to
be confused with secure multi-execution) to explore multiple paths in a single execution,
similar to faceted evaluation. Their technique treats environment-specific data as symbolic,
and explores both paths whenever a value branches on a symbolic value. The principal
difference, besides the application, is that faceted values represent a lattice of different
views of data, while Rozzle’s symbolic heap values represent a range of possible values for
different environments.

Several publications have explored exceptions in the context of information flow. In their
study of information flow analysis for JavaScript, Hedin and Sabelfeld [2012] discuss safe
exception handling for a dynamic information flow monitor. Their approach introduces a
dynamic security label for exceptions. If this label is public, they forbid throwing exceptions
in a secret context. In order to permit exceptions within a certain context (usually defined
by a try-catch block), they extend the language to allow developers to raise the security
label for exceptions.

Stefan et al. [2011] use a labeled IO (LIO) monad to guarantee information flow analysis.
LIO tracks the current label of the execution, which serves as an upper bound on the
labels of all data in lexical scope. It combines this notion with the concept of a current
clearance that limits the maximum privileges allowed for an execution, thereby eliminating
the termination channel. When an exception is thrown, LIO labels it with the label at the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:40 T. H. Austin, T. Schmitz, and C. Flanagan

point where the current exception is thrown. These exceptions can be caught provided that
the label of the exception does not exceed the current clearance of the execution; otherwise
the exception is re-thrown. Interestingly, the authors use this mechanism to recover from
mechanism failures of their information flow monitor.

Hritcu et al. [2013] introduce delayed exceptions as a way to safely handle exceptions
without violating noninterference. Delayed exceptions can be rethrown in a manner similar
to LIO, but an alternative approach explored by the paper uses special not-a-values (NaVs)
that behave in a manner similar to JavaScript’s not-a-numbers (NaNs); any operations
performed on a NaV return the original NaV. The authors further develop a prototype
implementation using the NaV approach.

From the static analysis perspective, Myers [1999] includes a discussion on exceptions
that was the basis for Jif’s design. Likewise, Pottier and Simonet [2003] show how to handle
exceptions for ML; their work became the basis for FlowCaml’s exception handling. King et
al. [2008] study false alarms caused by implicit flows. They argue that the bulk of these result
from exceptions, and that safe handling of exceptions is not worth the hassle to developers.
Askarov and Sabelfeld [2009a] argue uncaught exceptions are safe, as long as they cannot
be caught during any execution of the program. Gampe and von Ronne [2011] provide
noninterference in the context of method-not-found errors. Their type system guarantees
that method-not-found errors can only happen if the error will not reveal any details about
private data.

Yip et al. [2009] develop Resin, a server-side language runtime designed to enforce so-
phisticated security policies. Resin includes filter objects, which define boundaries of the
system, and policy objects, which specify security policies for specific data. Together, these
mechanisms allow for a rich, flexible system for specifying security policies. Resin tracks
explicit flows of information and protects data integrity. Without support for implicit flows,
its ability to protect confidentiality is more limited.

Other research has previously studied information flow analysis for JavaScript. Vogt et
al. [2007], one of the first papers to apply information flow analysis to JavaScript, track in-
formation flow in Firefox to defend against XSS attacks. Their research also discusses many
legitimate transfers of information that were flagged by their analysis. Just et al. [2011] im-
prove on this approach to better handle implicit flows through a hybrid dynamic and static
analysis. Russo and Sabelfeld [2009] study timeout mechanisms and the channels that they
enable. Russo et al. [2009] discuss dynamic tree structures, with obvious applications to
the DOM. Bohannon et al. [2009] consider noninterference in JavaScript’s reactive environ-
ment. Chugh et al. [2009] create a framework for information flow analysis with “holes” for
analyzing dynamically evaluated code included by an external party, such as a malicious ad-
vertiser. Dhawan and Ganapathy [2009] discuss JavaScript-based browser extensions (JSEs)
and the risks these tools present. In particular, they observe that JSEs often have enhanced
priviliges, thereby increasing the security risk of using these tools. The authors modify
Firefox to track information flows from GreaseMonkey scripts in a purely dynamic manner.
Jang et al. [2010] give an excellent overview of how JavaScript is used to circumvent privacy
defense. Hedin and Sabelfeld [2012] develop dynamic information flow controls for a core
of JavaScript that includes objects, higher-order functions, exceptions, and dynamic code
evaluation; Hedin et al. [2015] extend this approach with static checks to provide a hybrid
information flow control system for JavaScript. Kerschbaumer et al. [2013b] address many
of the practical issues in making information flow analysis practical for JavaScript in a web
browser, including outlining a variety of attacks where information flow analysis would be
useful, and reviewing how their implementation is optimized to minimize the overhead of
their controls. Further work by the same authors [Kerschbaumer et al. 2013a] shows how
information flow analysis interacts with a JIT compiler, and offers a thorough overview of
the performance overhead of different information flow controls. Rajani et al. [2015] imple-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A:41

ment information flow controls in the WebKit JavaScript engine, with careful coverage of
both the DOM and event handling.

Information flow analysis largely traces its roots back to Denning [1976]. After her work,
static systems dominated for a while, and type systems in particular. Volpano et al. [1996]
codify Denning’s approach as a type system, and also offer a proof of its soundness. Heintze
and Riecke [1998] design a type system for their purely functional SLam Calculus (short
for Secure Lambda Calculus). They then extend the SLam Calculus to include mutable
reference cells, concurrency, and integrity guarantees. Sabelfeld and Myers [2003] offer an
extensive survey of other research on information flow.

The principal benefit of static analyses is that they can (generally) be performed before
run time. In addition, they are generally superior than dynamic analyses in reasoning about
alternate paths of execution. Type-based approaches to information flow analysis have a no-
ticeable benefit in both speed and familiarity to developers, and have become the dominant
approach. Myers [1999] discusses JFlow, a variant of Java with security types to provide
strong information flow guarantees. JFlow was the basis for Jif [Jif 2010], a production-
worthy language with information flow controls. No proof of JFlow’s soundness was offered,
largely due to the complexity of the language. Birgisson et al. [2011] show how capabilities
can guarantee information flow policies. Flow-sensitive information flow analysis attempts
to improve the precision of static analysis. Hunt and Sands [2006] describe a flow-sensitive
type system. Hammer and Snelting [2009] use program dependence graphs to analyze JVM
bytecode and guarantee TINI. Russo and Sabelfeld [2010] discuss the trade-offs between
static and dynamic analyses in some depth.

Le Guernic et al. [2006] examine code from branches not taken, increasing precision at
the expense of run-time performance overhead. Shroff et al. [2007] use a purely-dynamic
analysis to track variable dependencies and reject more insecure programs over time.

Declassification is an important area of research for information flow analysis.
Zdancewic [2003] uses integrity labels to provide robust declassification, permitting only
high-integrity declassification decisions. Askarov and Myers [2010] consider a similar ap-
proach for endorsement, arguing that checked endorsements are needed to prevent an
attacker from endorsing an unauthorized declassification. Chong and Myers [2004] use a
framework for application-specific declassification policies. Askarov and Sabelfeld [2009b]
study a declassification framework specifying what and where data is released. Vaughan
and Chong [2011] infer declassification policies for Java programs. Declassification for secure
multi-execution has been a subject of particular interest, due to the challenges of coordinat-
ing the high and low processes, with some solutions provided Rafnsson and Sabelfeld [2013]
and by Vanhoef et al. [2014].

The termination channel is another area of particular concern for information flow anal-
ysis. Askarov et al. [2008] highlight complications of intermediary output channels, which
allow an attacker to observe the output of a program during its execution. Rafnnson et
al. [2011] buffer output to reduce data lost from intermediary output channels and termi-
nation behavior.

11. DISCUSSION

Information flow noninterference is a tricky security property to enforce via dynamic mon-
itoring, since it is a two-safety property: noninterference can be refuted only by observing
two executions (cmp. Theorem 3.7). Conversely, a one-safety property can be refuted by
observing a single execution, and so one-safety properties are more amenable to dynamic
enforcement. From this perspective, various prior techniques [Austin and Flanagan 2009;
2010] dynamically enforce a one-safety property that conservatively approximates the de-
sired two-safety property of noninterference, but this conservative approximation introduces
false alarms (that is, stuck executions even on some noninterfering implicit flows.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:42 T. H. Austin, T. Schmitz, and C. Flanagan

In contrast, faceted execution satisfies (termination-insensitive) semantics preservation
for noninterfering programs (Theorem 3.9, and it also yields a projection property (Theo-
rem 3.6), which is a one-safety property that suffices to prove the two-safety property of
noninterference (Theorem 3.7).

ACKNOWLEDGMENTS

We thank the anonymous TOPLAS reviewers for their constructive feedback on this paper. We would also
like to thank Martin Abadi for his feedback on an earlier draft of this paper, and Brendan Eich, Andreas
Gal, and Dave Herman for valuable discussions on information flow analysis. Finally, we would like to
thank David Flanagan and Donovan Preston for their help working with the dom.js project. This work was
supported by NSF grant CNS-0905650.

REFERENCES

ASKAROV, A., HUNT, S., SABELFELD, A., AND SANDS, D. 2008. Termination-insensitive noninterference leaks
more than just a bit. In ESORICS ’08. Springer-Verlag, 333-348.

ASKAROV, A. AND MYERS, A. 2010. A semantic framework for declassification and endorsement. In ESOP.
64-84.

ASKAROV, A. AND SABELFELD, A. 2009a. Catch me if you can: permissive yet secure error handling. In PLAS
’09: Proceedings of the ACM SIGPLAN Fourth Workshop on Programming Languages and Analysis
for Security. ACM, New York, NY, USA, 45-57.

ASKAROV, A. AND SABELFELD, A. 2009b. Tight enforcement of information-release policies for dynamic
languages. In IEEE Computer Security Foundations Symposium. IEEE Computer Society, Washington,
DC, USA, 43-59.

AusTiIN, T. H. 2011. ZaphodFacetes github page. https://github.com/taustin/ZaphodFacets.

AusTiN, T. H. AND FLANAGAN, C. 2009. Efficient purely-dynamic information flow analysis. In Workshop
on Programming Languages and Analysis for Security.

AusTiN, T. H. AND FLANAGAN, C. 2010. Permissive dynamic information flow analysis. In Proceedings of
the 5th ACM SIGPLAN Workshop on Programming Languages and Analysis for Security. ACM, 1-12.

AusTIN, T. H. AND FLANAGAN, C. 2012. Multiple facets for dynamic information flow. See Field and Hicks
[2012], 165-178.

AusTIN, T. H., YANG, J., FLANAGAN, C., AND SOLAR-LEZAMA, A. 2013. Faceted execution of policy-agnostic
programs. In Workshop on Programming Languages and Analysis for Security.

BANERJEE, A. AND NAUMANN, D. A. 2002. Secure information flow and pointer confinement in a Java-like
language. In IEEE Computer Security Foundations Workshop. 253-267.

BicHHAWAT, A., RAJANI, V., GARG, D., AND HAMMER, C. 2014. Generalizing permissive-upgrade in dynamic
information flow analysis. In Workshop on Programming Languages and Analysis for Security.

BIRGISSON, A., RUSsO, A., AND SABELFELD, A. 2011. Capabilities for information flow. In PLAS ’11: Proceed-
ings of the ACM SIGPLAN Fourth Workshop on Programming Languages and Analysis for Security.
ACM.

BoHANNON, A., PIERCE, B. C., SIOBERG, V., WEIRICH, S., AND ZDANCEWIC, S. 2009. Reactive noninterfer-
ence. In ACM Conference on Computer and Communications Security. 79-90.

Capizzl, R., LONGO, A., VENKATAKRISHNAN, V., AND SISTLA, A. 2008. Preventing information leaks through
shadow executions. In ACSAC. 322 -331.

CHONG, S. AND MYERS, A. C. 2004. Security policies for downgrading. In CCS ’04: Proceedings of the 11th
ACM conference on Computer and communications security. ACM, New York, NY, USA, 198-209.

CuucH, R., MEISTER, J. A., JHALA, R., AND LERNER, S. 2009. Staged information flow for JavaScript. In
Conference on Programming Language Design and Implementation.

DE GROEF, W., DEVRIESE, D., NIKIFORAKIS, N., AND PIESSENS, F. 2012. Flowfox: a web browser with
flexible and precise information flow control. See Yu et al. [2012], 748-759.

DENNING, D. E. 1976. A lattice model of secure information flow. Communications of the ACM 19, 5,
236-243.

DEVRIESE, D. AND PIESSENS, F. 2010. Noninterference through secure multi-execution. Security and Privacy,
IEEE Symposium on 0, 109-124.

DuAwAN, M. AND GANAPATHY, V. 2009. Analyzing information flow in JavaScript-based browser extensions.
In Annual Computer Security Applications Conference.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A:43

Eich, B. 2004. Narcissus—JS implemented in JS. Available on the web at https://github.com/mozilla/
narcissus/.

FENTON, J. S. 1974. Memoryless subsystems. The Computer Journal 17, 2, 143-147.

FieLD, J. aAND Hicks, M., Eds. 2012. Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22-
28, 2012. ACM.

GAL, A., FLANAGAN, D.,; AND PRESTON, D. 2011. dom.js github page. https://github.com/andreasgal/
dom. js, accessed October 2011.

GAMPE, A. AND VON RONNE, J. 2011. information flow control with errors.

GUERNIC, G. L., BANERJEE, A., JENSEN, T. P., AND ScHMIDT, D. A. 2006. Automata-based confidentiality
monitoring. In Asian Computing Science Conference on Secure Software.

HAMMER, C. AND SNELTING, G. 2009. Flow-sensitive, context-sensitive, and object-sensitive information
flow control based on program dependence graphs. International Journal of Information Security.
HEeDIN, D., BELLO, L., AND SABELFELD, A. 2015. Value-sensitive hybrid information flow control for a
javascript-like language. In IEEE 28th Computer Security Foundations Symposium, CSF 2015, Verona,

Italy, 13-17 July, 2015. IEEE, 351-365.

HEDIN, D. AND SABELFELD, A. 2012. Information-flow security for a core of JavaScript. In Computer Security
Foundations Symposium.

HEeINTZE, N. AND RIECKE, J. G. 1998. The SLam calculus: Programming with secrecy and integrity. In
Symposium on Principles of Programming Languages.

HriTcu, C., GREENBERG, M., KAREL, B., PIERCE, B. C., AND MORRISETT, G. 2013. All your ifcexception
are belong to us. In IEEE Symposium on Security and Privacy. 3-17.

HuNT, S. AND SANDS, D. 2006. On flow-sensitive security types. In POPL. 79-90.

JaNg, D., JHALA, R., LERNER, S., AND SHACHAM, H. 2010. An empirical study of privacy-violating infor-
mation flows in javascript web applications. In ACM Conference on Computer and Communications
Security. 270-283.

Jif 2010. Jif homepage. http://www.cs.cornell.edu/jif/, accessed October 2010.

Just, S., CLEARY, A., SHIRLEY, B., AND HAMMER, C. 2011. Information flow analysis for javascript. In
Programming language and systems technologies for internet clients. ACM, New York, NY, USA, 9—
18.

KasHvapr, V., WIEDERMANN, B.; AND HARDEKOPF, B. 2011. Timing- and termination-sensitive secure in-
formation flow: Exploring a new approach. In IEEE Security and Privacy.

KERSCHBAUMER, C., HENNIGAN, E.; LARSEN, P., BRUNTHALER, S., AND FrRANZ, M. 2013a. Information flow
tracking meets just-in-time compilation. under submission.

KERSCHBAUMER, C., HENNIGAN, E., LARSEN, P., BRUNTHALER, S., AND FRANZ, M. 2013b. Towards precise
and efficient information flow control in web browsers. In Trust and Trustworthy Computing. 187-195.

KiNg, D., Hicks, B., Hicks, M., AND JAEGER, T. 2008. Implicit flows: Can’t live with ’em, can’t live without
’em. In International Conference on Information Systems Security. 56-70.

King, J. C. 1976. Symbolic execution and program testing. Commun. ACM 19, 7, 385-394.

KoLBiTscH, C., LivsHITS, B., ZORN, B., AND SEIFERT, C. 2011. Rozzle: De-cloaking internet malware. Tech.
Rep. MSR-TR-2011-94, Microsoft Research Technical Report.

MOORE, S., ASKAROV, A., AND CHONG, S. 2012. Precise enforcement of progress-sensitive security. In the
ACM Conference on Computer and Communications Security, CCS’12, Raleigh, NC, USA, October
16-18, 2012. ACM, 881-893.

Mozilla Labs Zaphod 2010. Mozilla labs: Zaphod add-on for the firefox browser. http://mozillalabs.com/
zaphod, accessed October 2010.

MyYERS, A. C. 1999. JFlow: Practical mostly-static information flow control. In Symposium on Principles
of Programming Languages.

MYERS, A. C., SABELFELD, A., AND ZDANCEWIC, S. 2004. Enforcing robust declassification. In IEEE Com-
puter Security Foundations Workshop. 172—186.

POTTIER, F. AND SIMONET, V. 2003. Information flow inference for ML. Transactions on Programming
Languages and Systems 25, 1, 117-158.

RAFNSSON, W. AND SABELFELD, A. 2011. Limiting information leakage in event-based communication. In
PLAS ’11: Proceedings of the ACM SIGPLAN Fourth Workshop on Programming Languages and
Analysis for Security. ACM.

RAFNSSON, W. AND SABELFELD, A. 2013. Secure multi-execution: Fine-grained, declassification-aware, and
transparent. In IEEE Computer Security Foundations Symposium. IEEE Computer Society.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:44 T. H. Austin, T. Schmitz, and C. Flanagan

RAJANI, V., BICHHAWAT, A., GARG, D., AND HAMMER, C. 2015. Information flow control for event handling
and the dom in web browsers. In Computer Security Foundations Symposium (CSF), 2015 IEEE 28th.
366-379.

RINARD, M., CADAR, C., DUMITRAN, D., Roy, D. M., LEu, T., AND BEEBEE, W. S. 2004. Enhancing server
availability and security through failure-oblivious computing. In Symposium on Operating Systems
Design and Implementation (OSDI). 303-316.

RUSSO, A. AND SABELFELD, A. 2009. Securing timeout instructions in web applications. In IEEE Computer
Security Foundations Symposium.

Russo, A. AND SABELFELD, A. 2010. Dynamic vs. static flow-sensitive security analysis. In I[EEE Computer
Security Foundations Symposium. IEEE Computer Society.

Russo, A., SABELFELD, A., AND CHUDNOV, A. 2009. Tracking information flow in dynamic tree structures.
In ESORICS. 86-103.

SABELFELD, A. AND MYERS, A. C. 2003. Language-based information-flow security. Journal on Selected
Areas in Communications 21, 1, 5-19.

SHROFF, P., SMITH, S. F., AND THOBER, M. 2007. Dynamic dependency monitoring to secure information
flow. In Computer Security Foundations Symposium.

STEFAN, D., RUsso, A., MITCHELL, J. C., AND MAZIERES, D. 2011. Flexible dynamic information flow control
in haskell. In Proceedings of the 4th ACM Symposium on Haskell. Haskell ’11. ACM, New York, NY,
USA, 95-106.

VANHOEF, M., DE GROEF, W., DEVRIESE, D., PIESSENS, F., AND REzK, T. 2014. Stateful declassification
policies for event-driven programs. In Computer Security Foundations Symposium (CSF), 2014 IEEE
27th. 293-307.

VAUGHAN, J. AND CHONG, S. 2011. Inference of expressive declassification policies. In IEEE Security and
Privacy.

Vogart, P., NENTWICH, F., Jovanovic, N., KiIRpA, E., KRUGEL, C., AND VIGNA, G. 2007. Cross-site scripting
prevention with dynamic data tainting and static analysis.

VorpranoO, D., IRVINE, C., AND SMITH, G. 1996. A sound type system for secure flow analysis. Journal of
Computer Security 4, 2-3, 167—187.

WEBKIT.ORG. 2011. SunSpider JavaScript benchmark. http://wuw.webkit.org/perf/sunspider/
sunspider.html, accessed October 2011.

YANG, J., YESSENOV, K., AND SOLAR-LEzAMA, A. 2012. A language for automatically enforcing privacy
policies. See Field and Hicks [2012], 85-96.

Yip, A., WANG, X., ZELDOVICH, N.; AND KAASHOEK, M. F. 2009. Improving application security with data
flow assertions. In SOSP, J. N. Matthews and T. E. Anderson, Eds. ACM, 291-304.

Yu, T., DANEzIS, G., AND GLIGOR, V. D.; Eds. 2012. the ACM Conference on Computer and Communica-
tions Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012. ACM.

ZANARINI, D., JASKELIOFF, M., AND RuUssO, A. 2013. Precise enforcement of confidentiality for reactive
systems. In Computer Security Foundations Symposium.

ZDANCEWIC, S. 2003. A type system for robust declassification. In 19th Mathematical Foundations of Pro-
gramming Semantics Conference.

ZDANCEWIC, S. A. 2002. Programming languages for information security. Ph.D. thesis, Cornell University.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A:45

APPENDIX
A. PROOFS

Lemma 3.5. Suppose pc is not visible to L and that
Siedlp XV
Then L(X) = L(X').

PRrROOF. We prove a stronger inductive hypothesis, namely that if pc is not visible to L
and

(1) Z,edbpe ¥,V or

(2) Z,(Vi V) Upe* XV

then L(X) = L(E').
The proof is by induction on the derivation of X,e |}, X',V and the derivation of
¥, (Vi Vo) U? 37V, and by case analysis on the final rule used in that derivation.

— For cases [r-vaL], [F-READ2], and [FA- L], 3 = X'. Therefore, L(X) = L(X').
— Cases [F-DEREF], [F-APP], [F-LEFT], [F-RIGHT], [F-WRITE2], [FA-FUN], [FA-LEFT], and [FA-RIGHT]

hold by induction.
— For cases [F-spLiT] and [FA-SPLIT], we note that since pc is not visible to L, neither pcU{k}

nor pc U {k} are visible to L. Therefore these cases also hold by induction.
— For case [r-rEF|, e = ref ¢’. By the antecedents of this rule:

e Ype X,V
a & dom(X")
V"={pc?V": L)
E/ — E//[a — V//]
By induction, L(E) L(X"). Therefore, Ya' where @’ # a, L(X)(a’) = L
Lemma 3.2, L( "(a)) = L. Since a & dom(X), X(a) = L. Therefore LX) =
— For case [r- ASSIGN] e = eq:=¢ep. By the antecedents of the [F-assian] rule:

E, €a inc Elu Vl
El, €p »Lch 227 V
Y = assign(Xsg, pc, Vi, V)
By induction, L(X) = L(X1) = L(X3). Therefore by Lemma 3.4, L(X) = L(¥/).
— For case [F-READ1], e = read(f). By the antecedents of this rule:
S(f)=vw
pe visible to view(f)
= X[f == w]
Since pc is not visible to L, L # view(f). Therefore, L(X)(f) = L(X')(f) = e.
— For case [r-wRITEL], e = write(f,e’). By the antecedents of this rule:
D€ dpe OV
pe visible to view(f)
L' = view(f)
v=L(V)
Y =3"f=2"(f)]
By induction, L(X)(f) = L(X")(f). Since pc is not visible to L, L # L’. Therefore,
L)) = L) () = LE =

). B

(X)(a
L(%).

a

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:46 T. H. Austin, T. Schmitz, and C. Flanagan

Theorem 3.6 (Projection Theorem). Suppose
e dpe XLV
Then for any view L for which pc is visible,
L(%), L(e) L L(X'), L(V)

PRrOOF. We prove a stronger inductive hypothesis, namely that for any view L for which
pc is visible:

(1) I3, e Ype X',V then L(S), L(e) L LX), L(V).
(2) IE S, (Vy Va) 2P 5/, V then L(X), ¢/ = L(V3)] L L(X), L(V') where L(V;) = (Az.¢').

The proof is by induction on the derivation of ¥,e J,. X',V and the derivation of
¥, (Vi Vo) U? 3.V, and by case analysis on the final rule used in that derivation.

— For case [F-vaL], e = V. Since £,V [, 8,V and L(X),L(V) | L(X),L(V), this case
holds.
— For case [r-rEF], e = ref ¢’. Then by the antecedents of the [F-rEF] rule:

¥, e \u/pc EN, V!
a & dom(X")
V"={pc?V' L)
Y =¥"a:=V"]
V=a

By induction, L(X),L(e’) | L(Z"),L(V’). Since a ¢ dom(X"), a & dom(L(X")).
Lemma 3.2, L(V") = L(V'). Since ¥/ = X'[a := V"], L(Y) =
Therefore, by the [s-reF] rule, L(X),ref L(e') | L(X'), L(V).

— For case [r-DEREF], ¢ = !'¢’. Then by the antecedents of the [F-DEREF] rule:

e Ype XV
V = deref (X', V', pc)

By induction, L(X), L(e’) | L(X'), L(V’). Since V' must be an address, the bottom value,

or a faceted value where all the nodes are addresses or the bottom value, it must be the

case that L(V’) is an address or the bottom value.

—1If a = L(V'), then by Lemma 3.3 L(V) = L(X')(a). Therefore, by the [s-DEREF] rule,
L), L{te') | L), L(V).

—1If L = L(V’), then by Lemma 3.3 L(V) = L. Therefore, by the [s-DEREF] rule,
L), L(1e") L L(), L(V).

— For case [r-AssieN], e = (e, :=¢p). By the antecedents of the [F-Assian] rule:

E, €a iipc Elu Vl
El, €p »Lch 227 |4
¥ = assign(Xe, pc, Vi, V)

By induction

L(%), L(eq) | L(Z1), L(VA)
L(El)v L(eb) \I/ L(EQ)v L(V)

Since V1 must either be an address, L, or a faceted value where all the nodes are addresses
or L, it must be the case that L(V}) is an address or L.

—If a = L(V4), then by Lemma 3.4, Va' # a, L(X')(a') = L(Z2)(a"). Also by Lemma 3.4
L(¥)(a) = L(V). Therefore, by the [s-assiaN] rule, L(X), L(eg:=ep) | L(X), L(V).
—1If L = L(V1), then by Lemma 3.4 L(X') = L(33). Therefore, this case holds by the

[s-assiaN-_L] rule.

ACM Transactions on Embedded Computing Systems, Vol. V|, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A:47

— For case [F-APP], e = (e, €p). By the antecedents of the [F-app] rule:

X eq lec X1, 1
El, €b \u/pc 227 ‘/2
227 (Vl ‘/2) \u/;%p Elu Vv

By induction

L(E)v L(ea) J/ L(El)v L(Vl)
L(%1), L(ep) L L(X2), L(V2)

V1 must be a function, the bottom value (L), or a faceted value where all the nodes are
functions or L.
—1If (Az.e’) = L(V1), then it holds by induction that L(Xs), e[z := V3] | L(X'), L(V).
Therefore, by the [s-app] rule, L(X), L(e, ep) 4 L(X), L(V).
— Otherwise, L = L(V}). By Lemma 3.5 and the [r-app-_1] rule, it follows that L(X') =
L(X2) and L(V) = L. Therefore L(33), L(eq €p) 4 L(X'), L(V) by the [s-app-1] rule.
— For case [r-LEFT], ¢ = (k ? e, : e;). By the antecedents of this rule

k € pc
2, eq \u/pc E/,V

Therefore L({k ? e, : ep)) = L(e,), and this case holds by induction.
— Case [F-ricHT] holds by a similar argument as [F-LEFT].
— For case [r-spLiT], e = (k ? e, : €p). By the antecedents of the [F-spriT] rule:

Eu €a \ufpcu{k} Ela |41
217 €b ‘u/ch{E} 2/7 Vo
V=(k7V: V)

— Suppose k € L. Then pc U {k} is visible to L, and VL where L is consistent with
pc U {k}, we know that L(e) = L(e,) and L(Vy) = L(V). By induction we know that
L(X), L(eq) 4 L(31), L(V). Lemma 3.5 implies L(X%;) = L(X’), so this case holds.

— Conversely suppose k ¢ L. Then pc U {k} is visible to L and L(e) = L(e;) and
L(V,) = L(V). By Lemma 3.5 we know that L(X) = L(X;). Therefore, L(X1), L(ep) |
L(X'), L(V) by induction.

— For [F-READ1], ¢ = read(f). By the antecedents of this rule,

S(f)=vw
L' = view(f)
pe visible to L’
pd =L'U{k|k¢gL'}
Y =3[f = w]
V={(pd ?v:L1)

—1If L = view(f), then L(V) = v. This case holds since L(X), read(f) | L(X'),v.
— Otherwise, L # view(f). Therefore L(X) = L(X') since L(3(f)) = e. Also, L(e) = L
and L(V) = L. Therefore, this case holds since L(X), L | L(X), L.
— For [F-rREAD2]|, ¢ = read(f). By the antecedent of this rule, pc not visible to view(f).
Therefore, L(e) = L. Since ¥, read(f) pc &, L and L(X), L | L(X), L, this case holds.
— For [F-wriTEL], ¢ = write(f,¢’). By the antecedents of this rule,

e Upe XV
pe visible to view(f)
L' = view(f)
v=L(V)
X = [ = X (f)a

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:48 T. H. Austin, T. Schmitz, and C. Flanagan

By induction, L(X),e’ | L(X"), L(V).

—1If L = I/, then L(V) = v. Since L(X') = L(X"[f := L(Z"(f).v)]), it follows that
L(S),write(f,e) | L), L(V).

— Otherwise, L # L’. Therefore L(X') = L(X"), since L(X"(f)) = e. Also, it must
be the case that L(write(f,e’)) = e’. Therefore this case holds, since by induction
L(S),e | L(Z"), L(V).

— For [r-wrITE2], e = write(f,€’). By the antecedents of this rule,
S,e e 2V
pc not visible to view(f)
Therefore, L(e) = L(e’) By induction, L(X),e" | L(X), L(V).
— Both cases [Fa-LEFT] and [Fa-rIGHT| hold by induction.
— For case [Fa-FUN], we have (by the antecedent of this rule) X, e[z := V3] [, ¥, V.
Therefore, it holds by induction that L(X), L(e'[z := V3]) L L(Z'), L(V).
— For case [ra-spLiT], we know that V4 = (k 7 V, : V},). By the antecedents of the rule:

k & pe,k & pe
app /
Ea (Va Vv2) upfp%{k} El/a Va[
Si, (Vs Vo) U2 2 5,V

We consider three separate cases.
—1If L(V1) = L, this case holds vacuously.
— Suppose k € L and L(V,) = (Az.¢/). Then pc U {k} is visible to L and L(V) = L(V).
Then L(X),e’ | L(X1), L(V) by induction. By Lemma 3.5, L(X;) = L(X').
— Suppose k € L and L(V;) = (Az.¢’). Then pc U {k} is visible to L and L(V) = L(V}).
By Lemma 3.5, L(X) = L(X;). By induction, L(%4),e¢’ L L(X'), L(V).
— For case [Fa- L], V4 = L. Since L(L) # (Az.e’), this case vacuously holds.

O
Theorem 4.1 (Faceted Evaluation Generalizes NSU Evaluation).
IfY,elp X,V then e e X/, V.

PROOF. The proofis by induction on the derivation of ¥, e |}, ¥/, V and by case analysis
on the final rule used in that derivation.

— For case [Nsu-vaL], e = V. This case then holds since 3,V |, X,V and X,V ||, X, V.
— case [NsU-APP]. Then e = (e, €p). By the antecedents of this rule:

Y, eq dpe 1, (Az.€)
E17 €b U’pc 227 Vv’
Yo, e[z =V {p X,V
By induction:

X, eq dpe 21, (Az.€)
X, ep lec Yo, V'

Therefore, by the [F-app] rule it is sufficient to show that o, ((Az.e’) V') [ ¥ ¥/, V.
Since ¥, €'[x := V'] [y ¥/, V by induction, this case holds by the [Fa-ruN] rule.
— case [NsU-APP-L]. Then e = (e, €p). By the antecedents of this rule:

Eaea ‘upc ElaJ-
Y1, ep ‘Upc EI,V/
=1

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A:49

By induction:

Eaea iipc ElaJ—
X, €p u/pc E/,V/

Therefore, by the [F-app] rule it is sufficient to show that X/, (L V') |l ¥/, L, which
holds by the [Fa-L] rule.
— case [Nsu-apP-k]. Then e = (e, ep). By the antecedents of this rule:

Y, eq Upe 21, (k7 ()\xe) 1)
217€b ‘Upc EQaV
2276[ ]U’pcu k}E,V”
V _ <k>pcvl/

By induction:

Y eq dpe 21, (k7 (Aze’) : L)
Y1, ep lec Yo, Vv’

Therefore, by the [r-app] rule it will suffice to show that 3o, ((k 7 (Az.¢’) V' : L)) (32

SV

—1If k € pe, then o, ((k 7 (Az.e’) V' : L)) ¥ £7, V" by the [ra-LEFT] Tule. By the
[FA-FUN] rule, Xo, €[z := V'] |l,c £”, V", By induction, £ = ¥/ and V' = V". Since
V = (£°(k ? V" : 1) = V", it holds that V" = V.

— Otherwise, by the [Fa-sprIT| rule:

E2a(( ) V/) upc E37V3
E37( V) E47‘/4

=k t Vi)
By induction, ¥3 = ¥/ and V3 = V”. By the [Fa-1] rule, ¥4y = ¥/ and V; = L
Therefore, Vs = (k7 V" : L) = (k)P°V" =V.
— case [NsU-LABEL]. Then e = (k 7 ¢/ : L). By the antecedent of this rule:

X, e U’ku{pc} Elu v’
V= (kyPev

By induction, ¥, ¢’ [l X, V"
—1If k € pc, then pc U {k} = pc and V = V’. Therefore, by the [r-LerT] rule,
S(kte L) Up X,V
— Otherwise, k& € pc and k ¢ pc. Therefore V.= (k ? V' : L). By the [F-vaL] rule,
¥ \u’ch{E} ¥/, L. Therefore, ¥,(k 7 €’ : L) U peuqry ¥,V by the [F-spriT] rule.
— case [NsU-REF]. Then e = ref ¢’. By the antecedents of this rule:

E, 6/ U’pc Ela VI
a & dom(%y)
Y =%1la:=(pc? V' :L)]
By induction, X, €’ |pc X1, a. Without loss of generality, we assume that both executions

allocate the same address a. Therefore, 3, ref e ||, ¥, a by the [F-rREF] rule.
— Case [NsU-DEREF]. Then e = !¢/. By the antecedents of this rule:

276/ ‘U’pc E/;Va
V = deref (X', a,pc) = X'(a)

By induction, ¥, e’ ||, £/, a. Therefore 3, e’ ||, £/, V by the [DEREF] rule.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:50 T. H. Austin, T. Schmitz, and C. Flanagan

— case [NsU-AssIGN]. Then e = e, :=¢;,. By the antecedents of this rule:

3, eq ‘Upc Y,a
E17 €b U’pc 227 V
pc = label(Xa(a))
Vi={pc?V:L1)
S = Yol = V]

By induction:

Y, eq inc Yi,a
X, ep lec 3,V

—1If pc = {}, then since assign(Xz,{},a, V) = Xo[a := V] it follows that X, e,:=¢p |
1pe ',V by the [F-assian] rule.
— Otherwise, pc = {k} and Xa(a) = (k7 V" : L). Since assign(Xz,{k}, a, V) = Xsla :=
V'], it holds that X, e, :=¢ep {lpe ',V by the [F-assian] rule.
— case [NSU-ASSIGN-L]. Then e = ¢, :=¢;,. By the antecedents of this rule:

>, eq ‘upc >, L
X1, ep ‘Upc Ela |4

By induction:

Eaea iipc Elaj—
X1, €p u/pc E/,V

Since X' = assign(X’, pc, L, V), this case holds by the [F-assicN] rule.
— case [NSU-ASSIGN-K]. Then e = e, :=¢;,. By the antecedents of this rule:

Yeqdpe 21, (k?a: L)
E17 €b U’pc 227 V

pe U {k} = label(Xa(a))

Vi={(pcU{k}?V:L1)
Y = Sola = V]

By induction:

Y, eq dpe B, (kT a: L)
X, ep lec 3,V

Let X" = assign(Xz, pe,(k ? a: L), V) = Xs[a:= V"] where V" = ( {k} PV 3a(a) ).
Since it must be the case that Yo(a) = (k 7 Vyq @ L), V" = (k7 V : L). Therefore,
Y, eq:=€p Yhpe X',V by the [F-assieN] rule.

O

Theorem 4.2 (Faceted Evaluation Generalizes PU Evaluation).
IfS, el XV, then e JLpe X,V

PROOF. The proofis by induction on the derivation of ¥, e |}, ¥’, V" and by case analysis
on the final rule used in that derivation.

— Cases [NSU-VAL] [NSU-APP], [NSU-APP-Ll], [NSU-APP-K|, [NSU-LABEL], [NSU-REF], and
[NsU-DEREF], hold by the same argument as in the proof for Theorem 4.1.
— Case [pu-assieN]. Then e = e, :=¢;,. By the antecedents of this rule:

X, €q ‘Upc 1,a
X, €p ‘Upc 29,V

Vi={(pc?V:5s(a))
2 22[& —V]

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A:51

By induction:

X, eq iipc Y1,a
X, ep lec 9,V

Since assign(Xz, pe,a, V) = Xgla := V"] where V' = ((pc 7V : 33(a))) = V', it follows
that 3, eq:=ep dbpe X',V by the [F-assicN] rule.
— case [PU-ASSIGN-K]. Then e = e, :=¢;,. By the antecedents of this rule:

Yeqlpe X1,k 7a: L)
El,eb U’pc 227V
Vi={pc?V:%(a))
¥ =3sa:=V]

By induction:

Y, eq dpe B, (kT a: L)
X, ep lec 9,V

Since assign(Xg, pe,(k ? a : L), V) = Ysla := V"] where V' = ((pc 7V : Xa(a))), it
follows that X, eq:=e€p Lpe X',V by the [F-assian] rule.

|

Lemma 5.7. Suppose pc is not visible to L and that
Y,ellpe X\ B
Then L(X) = L(X).

PROOF. We prove a stronger inductive hypothesis, namely that if pc is not visible to L
and

(1) 2,6 lec E/,B or
(2) %, (B1 Ba) iy X', B or
(3) X,e ufc/ ', B or

(4) ¥,B' catche [52*" ¥, B

then L(X) = L(Y/).

The proof is by induction on the derivation of ¥, e |, ¥, B, the derivation of 3, (By Bz) |
12?3, B, the derivation of ¥, e @fc/ ¥/, B, the derivation of ¥, B’ catch e [|$3*" ¥/, B,
and by case analysis on the final rule used in the derivation.

— For cases [FE-VAL|] [FE-READ2], [FA-L], [FE-RAISE], [FB-RAISE|, [FA-RAISE1], [FA-RAISE2], and
[FX-NOERR] ¥ = 3. Therefore, L(X) = L(X').

— Cases [FE-LEFT|, [FE-RIGHT]|, [FA-FUN], [FA-LEFT1], [FA-LEFT2], [FA-RIGHT1], [FA-RIGHT2],
[FE-DEREF], [FE-APP|, [FE-TRY]|, [FE-WRITE2|, [FB-NORMAL], and [FXx-cAaTcH] hold by induc-
tion.

— For cases [FE-SPLIT], [FA-SPLIT1], [FA-SPLIT2], [FB-SPLIT], and [FX-SPLIT] we note that since
pc is not visible to L, neither pcU{k} nor pcU{k} are visible to L. Therefore these cases
also hold by induction.

— For case [rFE-REF], ¢ = ref ¢’. By the antecedents of this rule:

E, e/ .l‘LpC E//, B//

a & dom(X")
(B,V') = mkref (a, B")
V={_pc?V':L1)
Y =¥a:=V

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:52 T. H. Austin, T. Schmitz, and C. Flanagan
By induction, L(X) = L(X"). Therefore, Va' where o/ # a, L(X)(a') = L(X)(a’). B
Lemma 5.4, L(X'(a)) = L. Since a & dom(X), X(a) = L. Therefore L(X) = L(X’

— For case [FE-ASSIGN], e = e, :=¢p. By the antecedents of the [FE-AssiaN] rule:

X eq lec X1, V1
El, €p »Lch 227 |4
¥ = assign(Xe, pc, Vi, V)
By induction, L(X) = L(X1) = L(X3). Therefore by Lemma 5.6, L(X) = L(X').
— For case [FE-READ1], e = read(f). By the antecedents of this rule:
S(f) =vw
pe visible to view(f)
=3[f = w]

Since pc is not visible to L, L # view(f). Therefore, L(X)(f) = L(X)(f) = .
— For case [FE-WRITEL], e = write(f,e’). By the antecedents of this rule:

e Up X' B
pe visible to view(f)
L' = view(f)
v=L'(B)
% = S[f = X ()
By induction, L(¥X)(f) = L(X”)(f). Since pc is not visible to L, L # L’. Therefore,
L)(f) = LE")(f) = LE)(f) = e

)-

O

Theorem 5.9 (Projection Theorem with Exceptions). Suppose
Y,ellpe X B
Then for any view L for which pc is visible,
L(%), L(e) L L(X'), L(B)
PRrROOF. We prove a stronger inductive hypothesis, namely that for any view L for which
pc is visible:
(1) If ¥, e Y pe X', B then L(X), L(e) | L(X'), L(B).
(2) If
¥, (B1 B2) Up? ¥, B
L(Bl) (Ax.e’)
L(Bs) # raise
then L(S).¢/[x = L(By)] L L(X). L(B).
(3) If Z,e uB Y/ B and L(B’) # raise, then L(X), L(e) | L(X), L(B).
(4) If ¥, B’ catch e [}52*" ¥/, B and L(B’) = raise, then L(X), L(e) | L(X'), L(B).

The proof is by induction on the derivation of ¥,e J,. X',V and the derivation of
¥, (Vi Vo) U? 37V, and by case analysis on the final rule used in that derivation.

— Cases [FE-VAL|, [FE-LEFT|, [FE-RIGHT|, [FE-SPLIT| [FE-READI], [FE-READ2], [FE-WRITE1],
[FA-LEFT1], [FA-RIGHT1], [FA-FUN1], [FA-SPLIT1], and [FA-L] hold by similar arguments as in
the proof for Theorem 3.6.

— Cases [FB-sPLIT], [FX-SPLIT], and [FA-sPLIT2] hold by a similar argument as the one used
for [Fa-spriT] in Theorem 3.6.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A:53

— For case [FE-REF], ¢ = ref ¢’. Then by the antecedents of the [FE-REF] rule:

E, e/ \u/pc E//, B//
a & dom(X")
(B, V") = mkref (a, B")
V={_pc?V':L1)
Y = Sa = V]

By induction
L(%), L(¢') L L(X"), L(B")

Since a € dom(X"), a & dom(L(X")).

—If L(B") = raise, then by Lemma 5.8 L(B) = L and L(V') = raise. By Lemma 5.4,
L(V) = L(V'). VYa’ where o’ # a, L(¥')(a’) = L(¥")(a’). By Lemma 5.4, L(¥/(a)) =
L. Since a € dom(X), X(a) = L. This case therefore holds by the [s-REF-EXN] rule.

— Otherwise, L(B) = a and L(V') = L(B"). By Lemma 5.4, L(V) = L(V'). Since ¥/ =
¥'a :=V],L(X) = L(¥)[a := L(V’)]. Therefore, by the [s-reF] rule, L(X),ref ¢’ |
L(2), L(V).

— For case [rE-DEREF], ¢ = !¢’. Then by the antecedents of the [FE-DEREF] rule:

e pe ¥, B
B = deref (X', B’, pc)

By induction, L(X), L(¢) | L(X'), L(B’). Since B’ must be an address, raise, the bottom

value, or a faceted value where all the nodes are addresses, raise, or the bottom value,

it must be the case that L(B’) is an address, raise, or the bottom value.

—1If a = L(B'), then by Lemma 5.5 L(B) = L(X')(a). Therefore, by the [s-DEREF] rule,
L(®), L(1e) | L(), L(B).

—1If L = L(V'), then by Lemma 5.5 L(V) = L. Therefore, by the [s-DEREF] rule,
L(), L(1e) | L(%), L(B).

—If raise = L(V'), then by Lemma 5.5 L(V') = raise. Therefore, by the [s-DEREF-EXN]
rule, L(X), L('e’) L L(X'), L(B).

— For case [FE-ASSIGN], € = (e, :=¢p). By the antecedents of the [FE-assiaN] rule:

E, €a inc Ela Bl
S1e 5 00, B
Y = assign(Xs, pc, By, B)

By induction
L(X¥), L(ea) L L(%1), L(B1)
—1If L(By) # raise, then by induction
L(%1), L(ey) L L(32), L(B)

B must be an address, L, or a faceted value where all the nodes are addresses, raise,

or L.

—If L(By) is an address and L(B) # raise, then a = L(Bj). By Lemma 5.6, Va' #
a, L(X)(a") = L(X3)(a’). Also by Lemma 5.6, L(X')(a) = L(B). Therefore, by the
[s-assiaN] rule, L(X), L(eq:=ep) | L(X'), L(B).

—1If L(By) is an address and L(B) = raise, then by Lemma 5.6 L(X') = L(3s).
Therefore, this case holds by the [s-assieN-EXN2] rule.

—1If L(By) = L, then by Lemma 5.6 L(X') = L(X3). Therefore, this case holds by
the [s-assiaN-L] rule.

— Otherwise L(B;) = raise. By Lemma 5.1, L(X2) = L(X;) and B = raise. By

Lemma 5.6, L(X') = L(X3). This case therefore holds by the [s-assiaN-ExN1] rule.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:54 T. H. Austin, T. Schmitz, and C. Flanagan

— For case [FE-APP], € = (e, €p). By the antecedents of the [FE-aPP] rule:

3, eq lec Y1, By
Y1, ep dpe X2, B2
227 (Bl B?) *LL;I;P Ela B
By induction
L(X), L(ea) | L(X1), L(B1)
—1If L(B1) = Az.¢/ and L(By) # raise, then by induction:
L(31), L(es) | L(X2), L(Ba)
L(X2), e[z := L(B2)] | L(X'), L(B)
Therefore this case holds by the [s-app-0K] rule.
—1If L(B;) = Az.e’ and L(Bz) = raise, then by induction:
L(%1), L(ep) | L(X2), L(B2)
By Lemma 5.2, L(X5) = L(X') and L(B) = raise. Therefore this case holds by the
[s-aPP-EXN2] rule.

—1If L(By) = raise, then by Lemma 5.1, L(X;) = L(X2) and L(Bs) = raise. By
Lemma 5.2, L(X2) = L(¥') and L(B) = raise. Therefore this case holds by the
[s-aPP-EXN1] rule.

—If L(By) = L, then by induction:

L(%1), L(ep) | L(X2), L(Bz)
By Lemma 5.7 and the [FE-apP- 1] rule, it follows that L(X') = L(X2) and L(B) = L.
Therefore L(X3), L(eq €p) 4 L(X), L(B) by the [s-app-1] rule.
— For case [FE-TRY], e = €7 catch es. By the antecedents of this rule

Ea €1 \u/pc E17 Bl

31, By catch es lLZitCh Y. B
By induction

L(%), L(ex) | L(%1), L(B1)
—If L(B1) = raise, then by induction

L(%1), L(e2) L L(X'), L(B)
Therefore this case holds by the [s-TRy-caTcH] rule.

— Otherwise, by Lemma 5.3, L(X') = L(XZ1) and L(B) = L(B;). Therefore this case

holds by the [s-TryY] rule.
— For [FE-wRITE2], e = write(f,€’). By the antecedents of this rule,

e ¥, B
L = view(f)
pc not visible to L or L(B) = raise

— 1If pc not visible to L, then L(e) = L(¢’). By induction, L(X),e’ | L(X'), L(B).
—1If L(B) = raise, then by induction:

L(X),L(e") | L(¥Y'), raise

Therefore this case holds by the [s-WRITE-EXN] rule.
— For [FE-RAISE], e = raise. Since

L(X),raise) | L(X),raise
This case holds by the [s-rRaISE] rule.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Multiple Facets for Dynamic Information Flow A:55

— Cases [FB-NORMAL], [FX-CATCH], [FA-LEFT2], and [FA-RIGHT2] hold by induction.
— Cases [FB-RAISE|, [FA-RAISE]L], [FA-RAISE2], and [FX-NOERR] are vacuosly true.

a

Lemma 7.1. For any value V and view L:

L(V) if Lp #{}
L(downgrade(V)) = { LV) if Lp = {}, where I = LU {87}

PROOF. The proof is by induction and case analysis on V.

— Case V' = r holds since downgradep(r) = .

— Case V = (3P 7 V4 : V3). Let V' = downgradep(V) = (UF 7 (sF 2 V1 : Vo) : A).
—IfSP € L, then L(V) = L(Vy) = L(V").
—IfUP € L and 8P & L, then L(V) = L(V) = L(V").
— Otherwise U¥ ¢ L and S¥ ¢ L. Then L'(V) = L(V;) = L(V').

— Case V = (UP 7 V; : Va). Let V' = downgradep (V) = (U” ? V; : downgrade,(V2) ).
—IfUP € L, then L(V) = L(Vy) = L(V").
— Otherwise, L(V) = L(V3). Then this case holds by induction.

— Case V = (I ? V1 : V3) holds by induction.

a

Theorem 7.2 (Projection Theorem with Declassification). Suppose
Yellpe X,V

For any view L for which pc is visible, and where Lp # {} for each P used in a declassifi-
cation operation, we have:

L(%), L(e) L L(X'), L(V)

PROOF. The proof is by induction on the derivation of X, e |, X',V and case analysis
on the last rule used in that derivation.

— Cases [F-VAL], [F-REF], [F-DEREF]|, [F-ASSIGN]|, [F-APP], [F-LEFT|, [F-RIGHT|, [F-SPLIT],
[F-READ1], [F-READ2], [F-WRITE1], [F-WRITE2], hold by a similar argument as in the proof
for Theorem 3.6.

— For case [DECLASSIFY], e = declassifyp ¢’. Then by the antecedents of this rule:

e Ype XV
uf & pe
V = downgradep (V')
By induction:
L(%), L(¢") | L(X'), L(V")

By Lemma 7.1, L(downgrade, (V")) = L(V') = L(V).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



