
RICE UNIVERSITY

E�ective Static Debugging

via

Componential Set�Based Analysis

by

Cormac Flanagan

A Thesis Submitted

in Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Approved� Thesis Committee�

Matthias Felleisen
Professor of Computer Science

Robert S� Cartwright
Professor of Computer Science

J� E� Dennis
Noah Harding Professor of Computational
and Applied Mathematics

Houston� Texas

May� ����

Abstract

E�ective Static Debugging

via

Componential Set�Based Analysis

by Cormac Flanagan

Sophisticated software systems are inherently complex� Understanding� debug�

ging and maintaining such systems requires inferring high�level characteristics of the

system�s behavior from a myriad of low�level details� For large systems� this quickly

becomes an extremely di�cult task�

MrSpidey is a static debugger that augments the programmers ability to deal

with such complex systems� It statically analyzes the program and uses the results

of the analysis to identify and highlight any program operation may cause a run�time

fault� The programmer can then investigate each potential fault site and� using the

graphical explanation facilities of MrSpidey� determine if the fault will really happen

or whether the corresponding correctness proof is beyond the analysis�s capabilities�

In practice� MrSpidey has proven to be an e�ective tool for debugging program under

development and understanding existing programs�

The key technology underlying MrSpidey is componential set�based analysis� This

is a constraint�based� whole�program analysis for object�oriented and functional pro�

grams� The analysis �rst processes each program component �eg� module or package�

independently� generating and simplifying a constraint system describing the data

	ow behavior of that component� The analysis then combines and solves these sim�

pli�ed constraint systems to yield invariants characterizing the run�time behavior of

the entire program� This component�wise approach yields an analysis that handles

signi�cantly larger programs than previous analyses of comparable accuracy�

The simpli�cation of constraint systems raises a number of questions� In par�

ticular� we need to ensure that simpli�cation preserves the observable behavior� or

solution space� of a constraint system� This dissertation provides a complete proof�

theoretic and algorithmic characterization of the observable behavior of constraint

iii

systems� and establishes a close connection between the observable equivalence of

constraint systems and the equivalence of regular tree grammars� We exploit this

connection to develop a complete algorithm for deciding the observable equivalence

of constraint systems� and to adapt a variety of algorithms for simplifying regular

tree grammars to the problem of simplifying constraint systems� The resulting con�

straint simpli�cation algorithms yield an order of magnitude reduction in the size of

constraint systems for typical program expressions�

Acknowledgments

Many people have contributed to making my graduate career rewarding and enjoyable�

First� and foremost� I would like to thank my advisor� Matthias Felleisen� He got me

started in research� taught me a great deal about programming language semantics

and pragmatics �with the occasional detour into philosophy or economics�� spent hours

giving me feedback on research ideas and papers� and inspired much of MrSpidey�s

user interface� I would also like to thank my other committee members
 Robert

�Corky� Cartwright� for valuable feedback on this and other research� and for the

class he taught on fully abstract denotational semantics� which led to some of the key

ideas of this thesis� and John Dennis� for taking time o� his already busy schedule to

serve on my committee�

My research environment at Rice was valuably enriched by my collogues in the

programming languages theory group� I would like to thank all the members for

their various contributions� including Matthew� Shriram� and Robby� who provided

the DrScheme infrastructure without which the development of MrSpidey would have

been impossible� and Amr� Andrew� Bruce� Mike and John� who helped me get started

on research when I arrived at Rice�

Outside the programming languages group there are many other people at Rice

whose valuable support and friendship helped me see this thesis through to comple�

tion� and who made my time at Rice more enjoyable�

Finally� this research would not have been possible with the support of Rice

University� the Professional Activities Committee of the Association for Computing

Machinery�s Special Interest Group on Programming Languages� and the National

Science Foundation�

I gratefully acknowledge all this help�

Contents

Abstract ii

Acknowledgments iv

� The Need for Static Debugging �

��� Reliability and Safety �

��
 MrSpidey �

��� Componential Set�Based Analysis �

����� Set�Based Analysis �

����
 Constraint Simpli�cation �

����� Componential Set�Based Analysis � � � � � � � � � � � � � � � � �

��� Thesis Overview �

� Set�Based Analysis ��

�� The Source Language ��

���� Syntax ��

���
 Semantics �

�
 The Constraint Language �

�� The Meaning of Set Constraints ��

���� The Semantic Domain ��

���
 The Semantics of Constraints � � � � � � � � � � � � � � � � � � ��

�� Deriving Constraints ��

�� Soundness of the Derived Constraints � � � � � � � � � � � � � � � � � � ��

�� Solving Set Constraints �
�

���� Computing the Least Solution � � � � � � � � � � � � � � � � � �
�

�� An Implementation of Set�Based Analysis � � � � � � � � � � � � � � �
�

���� Representation of constraint systems � � � � � � � � � � � � � �
�

���
 Closing constraint systems �
�

���� Deriving constraints �
�

vi

� Extending Set�Based Analysis ��

��� Additional Selectors �
�

��
 Analysis of Pairs ��

��
�� Semantics ��

��
�
 Analysis ��

��� Analysis of First�Class Continuations � � � � � � � � � � � � � � � � � � ��

����� Semantics ��

����
 Analysis ��

��� Analysis of Assignable Variables ��

����� Semantics ��

����
 Analysis ��

��� Analysis of Assignable Boxes ��

����� Semantics ��

����
 Analysis ��

��� Analysis of Units �

����� Semantics ��

����
 Analysis ��

��� Analysis of Classes ��

����� Semantics ��

����
 Analysis ��

� Using Set�Based Analysis for Static Debugging ��

��� The Type Language ��

��
 Computing Type Information ��

��� Identifying Unsafe Operations ��

� User Interface to the Static Debugger ��

��� Displaying Unsafe Operations ��

��
 Pop�Up Menu ��

��� Presenting Type Information ��

��� The Value Flow Browser ��

��� A Sample Debugging Session ��

� Constraint Simpli	cation ��

��� Conditions for Constraint Simpli�cation � � � � � � � � � � � � � � � � �

vii

��
 The Proof Theory of Observable Equivalence � � � � � � � � � � � � � � ��

��� Deciding Observable Equivalence ��

����� Regular Grammars ��

����
 Regular Tree Grammars ��

����� Staging ��

����� The Entailment Algorithm �

��� Practical Constraint System Simpli�cation � � � � � � � � � � � � � � � ��

����� Empty Constraint Simpli�cation � � � � � � � � � � � � � � � � � ��

����
 Unreachable Constraint Simpli�cation � � � � � � � � � � � � � ��

����� Removing ��Constraints ��

����� Hopcroft�s Algorithm ��

��� Simpli�cation Benchmarks ��

 Componential Set�Based Analysis ��

��� Componential Set�Based Analysis ��

��
 Experimental Results ��

��� User Interface for Multi�File Programs � � � � � � � � � � � � � � � � � �

��� E�cient Polymorphic Analysis ��

� Evaluation of MrSpidey ��

��� Verifying a Web Server ��

��
 Verifying gunzip ��

��� Verifying an Extended Direct Semantics Interpreter � � � � � � � � � � ��

��� Statically Debugging HHL ��

� Related Work ��

��� Static Debuggers ��

��
 Constraint Simpli�cation ��

��Limitations and Future Work ��

���� Size of Types ��

���
 Accuracy of the Analysis ��

���� State in the User Interface ��

���� Signatures ��

viii

A Proofs for Chapter � ��

A�� Subject Reduction Proof ��

A�
 Proofs for Computing Set�Based Analysis � � � � � � � � � � � � � � � � ���

B Proofs for Chapter � ���

B�� Correctness of MkType ��

C Proofs for Chapter � ���

C�� Proofs for Conditions for Constraint Simpli�cation � � � � � � � � � � ���

C�
 Proofs for Proof Theory of Observable Equivalence � � � � � � � � � � ���

C�� Proofs for Deciding Observable Equivalence � � � � � � � � � � � � � � �

C�� Correctness of the Entailment Algorithm � � � � � � � � � � � � � � � � �
�

C�� Correctness of the Hopcroft Algorithm � � � � � � � � � � � � � � � � � �
�

D MrSpidey Reference Manual ���

D�� Using MrSpidey ��

D���� The Program Window ���

D���
 The Summary Window ���

D�
 Preferences ���

D�
�� MrSpidey Analysis Preferences Window � � � � � � � � � � � � � ���

D�
�
 MrSpidey Type Display Preferences Window � � � � � � � � � � � ���

D�� Analysis of Large Programs ��

D���� Inter�File Arrows ���

D�� The Type Language ���

D���� Accurate Numeric Operations � � � � � � � � � � � � � � � � � � ���

D�� Extensions to DrScheme ���

D���� Type Assertions ���

D���
 Polymorphic Annotations ���

D���� Declaring New Primitives ���

D���� Declaring Constructors ���

D���� Declaring New Types ���

D�� Restrictions on Source Programs ���

E Implementation Details ���

E�� Zodiac ���

ix

E�
 MrEd ���

E�� Multiple�Arity Functions ���

E�� Multiple Values ���

E�� Checking Scheme Primitives ��

E���� Type Schemas ���

E���
 New Constraint Classes ���

E���� Converting Type Schemas to Constraints � � � � � � � � � � � � ���

F Notations ��

Bibliography ���

�

Chapter �

The Need for Static Debugging

Sophisticated software systems are inherently complex� A typical program such as

a compiler or a word processor contains an enormous amount of detail� Developing�

maintaining� or debugging this kind of system requires inferring high�level charac�

teristic of the system�s behavior from a large number of low�level details� For large

systems� this quickly becomes an extremely di�cult task� particularly since program�

mers� being human� have �nite limits in the amount of complexity they can manage�

MrSpidey is a static debugger for Scheme that augments the programmers ability

to deal with such complex systems� It statically analyzes the program and uses

the results of the analysis to identify and highlight any program operation that may

cause a run�time error� The programmer can then investigate each potential fault site

and� using the graphical explanation facilities of MrSpidey� determine if the fault will

really happen or whether the corresponding correctness proof is beyond the analysis�s

capabilities� In practice� MrSpidey has proven to be an e�ective tool for debugging a

variety of programs� including a staged interpreter� a hardware veri�er� and portions

of Rice�s Scheme program development environment�

The following section describes the kinds of program errors that MrSpidey helps

identify� the next section shows how MrSpidey presents information concerning these

potential errors to the programmer� and section ��� describes the underlying analysis

that MrSpidey uses to infer that information� The last section provides an overview

of the rest of the thesis�

��� Reliability and Safety

A reliable program does not mis�apply program operations� Addition always operates

on numbers� not strings� Concatenation works with strings� not numbers� To avoid

the abuse of program operations� most languages impose a restrictive type system�

which forbids the syntactic formation of certain faulty program phrases� However�

type systems are too coarse to solve the general problem� which includes indexing an

array outside of its proper bounds� division by zero� dereferencing of null pointers�

and jumping to non�function pointers� These problems are beyond the capabilities

of standard type systems� and di�erent languages deal with such run�time errors in

di�erent ways�

Unsafe languages like C ���� ignore the problem and leave it to the programmer

to insert checks where appropriate� As a result C programs are notoriously prone to

inexplicable crashes ����� or� worse� inexplicable� correct�looking results� In contrast�

safe languages such as SML ����� Scheme ���� and Java �

� equip program operations

with appropriate run�time checks where necessary� These checks guarantee that a

misapplied program operation immediately raises an error signal� instead of returning

a random bit�pattern� Although this solution ensures that programs don�t produce

random results� it is unsatisfactory because certain errors are not signaled until run�

time�

A better approach is to verify the pre�conditions of each program operation stat�

ically� If we can prove that that a particular program operation is only applied to

appropriate arguments� we say that that operation is safe� In the absence of such

a proof� we have to consider that operation unsafe� since it may be applied to in�

appropriate arguments� Verifying the safety of program operations requires inferring

invariants describing the sets of values that may occur at di�erent points in the pro�

gram� These invariants could be inferred manually� but for large systems this quickly

becomes an extremely di�cult and error�prone task� What is needed instead is a

static analysis tool that assists the programmer in inferring invariants and reasoning

about the safety of program operations� We call this kind of tool a static debugger �

Past research on static debuggers mainly focused on the synthesis of the invari�

ants ��� ��� However� the presentation and� in particular� the explanation of these

invariants were neglected� We believe that synthesizing invariants is not enough�

Instead� a programmer must be able to inspect the invariants and browse their un�

derlying proof� Then� if some invariant contains an unexpected element� the pro�

grammer can determine whether the element results from a 	aw in the program or

approximations introduced by the proof system�

��� MrSpidey

MrSpidey is a static debugger for Scheme that allows the programmer to browse pro�

gram invariants and their derivations� On demand� MrSpidey statically analyzes the

�

program and uses the resulting invariants to identify and highlight program opera�

tions that are not provably safe �according to MrSpidey�s underlying proof system��

Associated pop�up menus provide access to additional information� including

� a value�set invariant for each expression and variable� and

� a graphical explanation for each invariant�

The programmer can investigate each unsafe operation and determine whether �a�

the fault will really happen� or �b� the corresponding correctness proof is beyond

MrSpidey�s capabilities� MrSpidey�s graphical explanation facilities make it easy to

distinguish these two situations�

As an illustration of MrSpidey�s explanatory capabilities� consider the program

sum�ss shown in �gure ���� The program de�nes a function that sums binary trees�

A tree is either a leaf node� represented as a number� or an internal node� represented

as a cons�cell containing two subtrees�

Figure ��� The program sum�ss

The mark�ups in in �gure ��� indicate that the operation � is provably safe� since it

is not underlined� Conversely� car� which is underlined� is unsafe� That is� MrSpidey�s

�

proof system is unable to verify that this operation is only applied to appropriate

arguments� Indeed� the proof system yields an invariant for car�s argument tree that

contains values that are inappropriate arguments for car� Clicking on the argument

variable tree displays that invariant� as shown in �gure ��
� The invariant shows

that tree may be bound to the value nil� which is outside the domain of car�

Using MrSpidey�s explanatory facilities to investigate the source of this erroneous

value results in the display shown in �gure ���� The displayed arrows show how

nil originated in the argument to sum� Since the argument is not actually a correct

binary tree� we have identi�ed the original source of the problem� and can now �x

the program by providing a correct tree as the argument to sum�

Figure ��� The value set invariant for tree

Although sum�ss is a trivial program� MrSpidey also works reasonably well on

substantially larger programs� The key problem in developing a static debugger for

large programs is developing an underlying proof system that can infer accurate invari�

ants for such programs� MrSpidey is based on a componential�� or component�wise�

analysis that can e�ective handle programs of up to tens of thousands of lines of code�

�componential a� of or pertaining to components� spec� �Ling�� designating the analysis of
distinctive sound units or grammatical elements into phonetic or semantic components �New Shorter

Oxford English Dictionary� Clarendon Press� �����

�

Figure ��� The 	ow of nil

��� Componential Set�Based Analysis

The key technology underlying MrSpidey is componential set�based analysis� This

analysis is a derivative of Heintze�s set�based analysis of ML programs �
��� We begin

with a discussion of Heintze�s analysis and its limitations� and then describe how

we can develop a componential variant of Heintze�s analysis that overcomes those

limitations�

����� Set�Based Analysis

Heintze�s original set�based analysis is a constraint�based� whole�program analysis for

functional and object�oriented programming languages� It consists of two co�mingled

phases
 a speci�cation phase and a solution phase� During the speci�cation phase� the

analysis tool derives constraints on the sets of values that program expressions may

assume� These constraints describe the data�	ow relationships amongst the expres�

sions in the analyzed program� During the solution phase� the analysis produces �nite

descriptions of the potentially in�nite sets of values that satisfy these constraints� The

result provides an approximate set of values for each expression in the program�

We initially used set�based analysis as the underlying proof system for MrSpidey�

for the following three reasons

�

� Set�based analysis produces accurate program invariants for Scheme�like lan�

guages� even in the presence of complex control�	ow and data�	ow patterns�

� Set�based analysis is intuitive to the programmer� The analysis interprets pro�

gram operations as na��ve set�theoretic operations on sets of run�time values�

and propagates these sets of values along the program�s data�	ow paths� in a

manner that is easily understood by the programmer�

� By exploiting the set�based analysis algorithm� we can provide a supporting

explanation for each invariant produced by the analysis�

In practice� set�based analysis has proven highly e�ective for debugging pedagogic

programming� which includes programs of several hundreds to
���� lines of code�

However� it becomes less useful for debugging larger programs for three reasons

� Set�based analysis has an O�n�� worst�case time bound� Although the con�

stant on the cubic element in the polynomial is small� it becomes noticeable for

programs of several thousand lines�

� Large programming projects tend to re�use functions in a polymorphic fashion�

To avoid merging information between unrelated calls to such functions� the

analysis must duplicate the constraints for each call site� This duplication is

expensive because the size of the constraint system is at best linear� and possibly

quadratic� in the size of the function�

� MrSpidey presents value set invariants to the programmer that are computed

from the information produced by the analysis� and as the constraints get larger

these invariants become extremely verbose�

A closer look at these three obstacles quickly reveals that the major limitation

of set�based analysis is the size of the constraint system describing the data�	ow re�

lationships of a program� If we could develop an algorithm for reducing the size of

a constraint system without a�ecting the solution space that it denotes� we could

simplify constraint systems at intermediate stages and thus reduce the analysis time�

In particular� simplifying the constraint system for each module would substantially

reduce the cost of solving the combined system of constraints for a modularized pro�

gram� similarly� simplifying the constraint system of a polymorphic function would

substantially reduce the cost of duplicating that constraint system at each polymor�

phic reference�

�

����� Constraint Simpli�cation

The simpli�cation of constraint systems raises both interesting theoretical and practi�

cal questions� On the theoretical side� we need to ensure that simpli�cation preserves

the observable behavior� or solution space� of a constraint system� In this disserta�

tion� we provide a complete proof�theoretic and algorithmic characterization of the

observable behavior of constraint systems� In the course of this development� we es�

tablish a close connection between the observable equivalence of constraint systems

and the equivalence of regular tree grammars �RTGs��y Exploiting this connection�

we develop a complete algorithm for deciding the observable equivalence of constraint

systems� Unfortunately� the problem is PSPACE�hard� and hence the algorithm takes

exponential time�

Fortunately� a minimized constraint system is not necessary for our purposes� The

practical question concerns �nding algorithms for simplifying� though not necessarily

minimizing� constraint systems� To answer this question� we exploit the correspon�

dence between the minimization problems for RTGs and constraint systems to adapt

a variety of algorithms for simplifying RTGs to the problem of simplifying constraint

systems� The resulting constraint simpli�cation algorithms yield an order of magni�

tude reduction in the size of constraint systems for typical program expressions�

����� Componential Set�Based Analysis

We exploit these simpli�cation algorithms to develop a componential set�based anal�

ysis algorithms� The componential analysis �rst processes each program component

independently� deriving and simplifying the constraint system for that component and

saves the simpli�ed system in a constraint �le� for use in later runs of the analysis�

This step can be skipped for each program component that has not changed since the

last run of the analysis� since the component�s constraint �le can be used instead�

The analysis then combines and solves these simpli�ed constraint systems� thus

propagating data�	ow information between the constraint systems for the various

program components� The resulting solution yields invariants characterizing the run�

time behavior of the entire program�

yA number of researchers� including Reynolds ����� Jones and Muchnick �	��� Heintze �	
�� Aiken �	��
and Cousot and Cousot ��� previously exploited the relationship between RTGs and the least solution
of a constraint system� We present an additional result� namely a connection between RTGs and
the observable behavior �i�e�� the entire solution space� of constraint systems�

�

This component�wise approach yields an analysis that can handle signi�cantly

larger programs than previous analyses of comparable accuracy� The new analysis

also performs extremely well in an interactive setting because it exploits the saved

constraint �les where possible and thus avoids re�processing many program compo�

nents unnecessarily�

��� Thesis Overview

This dissertation establishes that the results of set�based analysis can be e�ectively

used to statically debug real programs� In the course of this investigation we present a

new derivation of set�based analysis that is signi�cantly more extensible that Heintze�s

original derivation� we show how to present the invariants and derivations of the

analysis to the programmer in a natural and easily�accessible manner� and we evaluate

the e�ectiveness of the resulting static debugging system on a variety of programs�

including a staged interpreter and a hardware veri�er�

Since real programs also tend to be large� we develop a componential variant of set�

based analysis that performs signi�cantly better on large programs� The development

of this analysis requires an investigation of the observable equivalence of constraint

systems� We provide a complete proof�theoretic and algorithmic characterization of

the observable behavior of constraint systems and establish a close connection be�

tween the observable equivalence of constraint systems and the equivalence of RTGs�

We then exploit this connection to develop a complete algorithm for deciding the

observable equivalence of constraint systems� and to adapt a variety of algorithms for

simplifying RTGs to the problem of simplifying constraint systems�

The next chapter describes set�based analysis in the context of an idealized ��

calculus�like language� This analysis is extended in chapter � to a number of ad�

ditional features typically found in real program languages� such as pairs �or other

compound data structures�� �rst�class continuations� assignable variables� mutable

data structures� modules and classes�

Chapter � explains how MrSpidey uses the analysis results to compute useful static

debugging information� and chapter � describes how this information is presented to

the programmer in a natural and intuitive manner�

Chapters � and � introduce componential set�based analysis� Chapter � describes

our investigation of the observable equivalence of constraint systems and the devel�

opment of the constraint simpli�cation algorithms� Chapter � shows how to exploit

�

these simpli�cation algorithms in a componential analysis� These two chapters also

contain experimental results describing the behavior of both the simpli�cation algo�

rithms and the componential analysis�

Chapter � evaluates the e�ectiveness of MrSpidey on a variety of programs� in�

cluding a staged interpreter and a hardware veri�er� Chapter � describes related

work on static debugging� constraint simpli�cation and program analysis� The �nal

chapter examines of some of the problems and limitations of MrSpidey� and suggests

directions for future work�

The thesis includes six appendices� The �rst three appendices present proofs for

chapters
� �� and �� respectively� The fourth appendix is a reference manual for

MrSpidey� The �fth appendix describes a number of details concerning the imple�

mentation of MrSpidey� and the sixth appendix contains a list of the mathematical

notations and symbols used in this dissertation�

��

Chapter �

Set�Based Analysis

MrSpidey�s underlying analysis is derived from Heintze�s set�based analysis of ML

programs �
��
��� The analysis is a constraint�based� whole�program analysis for

functional and object�oriented programming languages� It consists of two co�mingled

phases
 a speci�cation phase and a solution phase�� During the speci�cation phase�

the analysis tool derives constraints on the sets of values that program expressions

may assume� These constraints describe the data 	ow relationships amongst the ex�

pressions in the analyzed program� During the solution phase� the analysis produces

�nite descriptions of the potentially in�nite sets of values that satisfy these con�

straints� The result provides an approximate set of values for each labeled expression

in the program�

In this chapter� we provide a formal description of set�based analysis for a ideal�

ized� ��calculus�like language with constants� The following chapter extends the anal�

ysis to realistic language features including pairs� �rst�class continuations� assignable

variables� mutable data structures� modules and classes� Since it is di�cult to extend

Heintze�s development of set�based analysis beyond a functional core language� we

develop Heintze�s ideas using an alternative formulation and semantics� Speci�cally�

whereas Heintze�s development is based on �natural� semantics� which cannot easily

accommodate non�local control operators and destructive data structure manipula�

tions� our alternative formulation is based on an extensible reduction semantics� This

change of framework also simpli�es the derivation of the constraint simpli�cation

algorithms�

Section
�� introduces our idealized� ��calculus�like language� Section
�
 intro�

duces the constraint language� and section
�� de�nes the meaning of those con�

straints� Section
�� describes how we derive appropriate constraints for a program�

and section
�� proves the correctness of the derived constraints� Section
�� shows

�Cousot and Cousot showed that set
based analysis can alternatively be formulated as an abstract
interpretation computed by chaotic iteration ����

��

how to solve the derived constraints to yield information about the program�s run�

time behavior� Section
�� contains an outline implementation of set�based analysis�

��� The Source Language

We develop the analysis for an idealized� ��calculus�like language � with constants

and labeled expressions� This section introduces the syntax and semantics of ��

����� Syntax

Syntax

M � � � x j V j �M M� j �let �x V � M� j M l �Expressions�
V � Value � b j ��tx�M� �Values�
x � Var � fx� y� z� � � �g �Variables�
b � BasicConst �Basic Constants�
t � FnTag �Function Tags�
l � Label �Expression Labels�

Figure ��� The source language �

Expressions in the language are either variables� values� applications� let�expressions�

or labeled expressions
 see �gure
��� Values include basic constants and functions�

Each function has an identifying tag so that MrSpidey can reconstruct the textual

source of function values from the results of the analysis� We use let�expressions

to introduce polymorphic bindings� and hence restrict these bindings to syntactic

values ����� We use labels to identify those program expressions whose values we wish

to predict�

We work with the usual conventions and terminology of the �v�calculus when dis�

cussing syntactic issues� In particular� the substitution operation M �x� V � replaces

all free occurrences of x within M by V � and �� denotes the set of closed terms� also

called programs�

�

����� Semantics

We specify the meaning of programs based upon three notions of reduction

���tx�M� V � �� M �x �� V � ��v�

�let �x V � M� �� M �x �� V � ��let �

V l �� V �unlabel �

The �v and �let rules are the conventional rules for the ��calculus� The unlabel rule

simply removes the label from an expression once its value is needed�

An evaluation context E is an expression containing a hole � � in place of the next

sub�term to be evaluated

E � � � j �E M� j �V E� j E l

For example� in the term �N M�� the next expression to be evaluated lies within

N � and thus the de�nition of evaluation contexts includes the clause �E M�� An

evaluation context always contains a single hole � �� and we use the notation E� M �

to denote term produced by �lling the hole in E with the term M �

The standard reduction relation ��� is the compatible closure of �� with respect

to evaluation contexts

E� M � ��� E� N � i� M �� N

The relation ���� is the re	exive� transitive closure of ���� The semantics of the

language is de�ned via the partial function eval on programs

eval
 �� ��p Value

eval �M� � V if M ���� V

��� The Constraint Language

To simplify the later derivation of the constraint simpli�cation algorithms �see chap�

ter ��� we express the constraint language in terms of selectors� instead of the more

usual constructors� Speci�cally� a set expression � is either a set variable� a constant�

or one of the �selector� expressions dom�� � or rng�� �

� � SetExp � � j c j dom�� � j rng�� �

�� � � SetVar � Label

c � Const � BasicConst � FnTag

��

By using selector expressions� we can specify each �quantum� of the program�s

data�	ow behavior independently� using constructors would combine several of these

quanta into one constraint� For example� we specify a function�s behavior via the

two constraints fdom��� � ��� �� � rng���g instead of the combined constraint

f��� � ��� � �g�

The meta�variables �� �� � range over set variables� and we include program labels

in the collection of set variables� Constants include both basic constants and function

tags� A constraint C � Constraint is an inequality �� � �� relating two set expressions�

C � Constraint � �� � ��

We sometimes enclose constraints inside square brackets for clarity
 ��� � ���� A

constraint system S � ConstraintSystem is a collection of constraints�

S � ConstraintSystem � P�n�Constraint�

We use SetVar �S� to denote the collection of set variables in a constraint system S�

In some cases� the relevant constraints in a constraint system are those that only

mention certain set variables� The restriction of a constraint system to a collection

of set variables E is

S jE � fC � S j C only mentions set variables in Eg

��� The Meaning of Set Constraints

Intuitively� each set expression � denotes a set of run�time values� and each constraint

�� � �� denotes a corresponding set containment relationship� We formalize the

meaning of set constraints by mapping syntactic set expressions onto a semantic

domain� The next subsection describes the precise structure of the semantic domain�

and the second subsection describes the mapping from set expressions to that domain�

����� The Semantic Domain

A set expression denotes a collection of values� For our sample language� the collection

consists of basic constants and functions and is therefore best represented as a triple

X � hC�D�Ri� The �rst component C � P�Const�y is a set of basic constants and

yP denotes the power
set constructor�

��

function tags� The second and third components of X denote the possible arguments

and results of functions in X� respectively� Since these two components also denote

value sets� the appropriate model for set expressions is the solution of the equation

D � P�Const�	D 	D

The solution D is equivalent to the set of all in�nite binary treesz with each node

labeled with an element of P�Const�� This set can be formally de�ned as the set of

total functions f
 fdom� rngg� �� P�Const�� and the rest of the development can

be adapted mutandis mutatis ����� For clarity� we present our results using the more

intuitive equational de�nition instead�

We use the functions const � dom� and rng to extract the respective components

of an element in D

const
 D �� P�Const�

const �hC�D�Ri� � C

dom
 D �� D

dom �hC�D�Ri� � D

rng
 D �� D

rng �hC�D�Ri� � R

Each element of D represents a set of run�time values �relative to a given program�

according to the set of basic constants and function tags in its �rst component� The

set of values represented by an elementX � D is de�ned through the relation V in X

b in hC�D�Ri i� b � C

��tx�M� in hC�D�Ri i� t � C

We order the elements of D according to a relation that is anti�monotonic in the

domain position

hC��D�� R�i v hC��D�� R�i i� C�
 C��D� v D�� R� v R�

This ordering is anti�monotonic in the domain position because information about

argument values at an application needs to 	ow backward along data�	ow paths to

zIn order to analyze languages with additional data structures� we later extend D to in�nite n�ary
trees� where n is the number of selectors �e�g�� dom� rng� corresponding to the extended language�

��

the formal parameter of the corresponding function de�nitions� To illustrate this idea�

consider a program that binds a function f to a program variable g� This behavior

is described in the semantic domain as the inequality Xf v Xg� where Xf and Xg

describe the values sets for f and g respectively� Since the possible argument set for

f must contain all values to which g is applied� the inequality dom �Xg� v dom �Xf �

must also hold� Thus the domain D should satisfy the inference rule

Xf v Xg

dom �Xg� v dom �Xf �

which is why the ordering v needs to be anti�monotonic in the domain element�

Under the de�ned ordering� the setD forms a complete lattice� the top and bottom

elements are the solutions to the equations

� � hConst ����i

� � h
����i

respectively� The least upper bound and greatest lower bound operations are recur�

sively de�ned as

hC��D�� R�i t hC��D�� R�i � hC� � C��D� uD�� R� tR�i

hC��D�� R�i u hC��D�� R�i � hC� � C��D� tD�� R� uR�i

����� The Semantics of Constraints

The semantics of constraints is de�ned with respect to a set environment �� which

speci�es an element of D for each set variable in a constraint

� � SetEnv � SetVar �� D

The collection of set environments forms a complete lattice SetEnv under the point�

wise extension of the ordering relation v on D�

For each set environment �� we de�ne the following unique extension �� that

speci�es a meaning for set expressions

��
 SetExp �� D

����� � ����

���c� � hfcg����i

���dom�� �� � dom ����� ��

���rng�� �� � rng ����� ��

��

Where there is no confusion� we remove the asterisk and simply use � to denote ���

A set environment � satis�es a constraint C � ��� � ��� �written � j� C� if

����� v ������ Similarly� � satis�es S� or � is a solution of S �written � j� S� if � j� C

for each C � S� The relation j� is obviously re	exive and transitive� The solution

space of a constraint system S is

Soln�S� � f� j � j� Sg

A constraints set S� entails S� �written S� j� S�� i� Soln�S��
 Soln�S��� and S� is

observably equivalent to S� �written S� �� S�� i� S� j� S� and S� j� S��

The restriction of a solution space to a collection of set variables E is

Soln�S� jE � f� j ��� � Soln�S� such that ���� � ����� �� � Eg

There are actually more set environments in the restricted solution space� since these

additional environments can specify arbitrary domain elements for all set variables

that are not in E�

We extend the notion of restriction to the entailment and observable equivalence

of constraint systems�

De�nition ������ �Restricted Entailment� Restricted Observable Equivalence�

� If Soln�S�� jE
 Soln�S�� jE� then S� entails S� with respect to E �written

S� j�E S���

� If S� j�E S� and S� j�E S� then that S� and S� are observably equivalent with

respect to E �written S� ��E S�� �

��� Deriving Constraints

The speci�cation phase of set�based analysis derives constraints on the sets of values

that program expressions may assume� Following Aiken et al� �
� and Palsberg and

O�Keefe ����� we formulate this derivation as a proof system�

The derivation proceeds in a syntax�directed manner according to the constraint

derivation rules presented in �gure
�
� Each rule infers a judgment of the form

� �M
 ��S � where

��

� � fx
 �g � x
 �� f� � �g �var�

� � b
 �� fb � �g �const�

� �M
 ��S

� �M l
 ��S � f� � l� � � �g
�label �

� � fx
 ��g �M
 ���S

� � ��tx�M�
 ��S �

���
��

t � �

dom��� � ��
�� � rng���

���
��

�abs�

� � Mi
 �i�Si

� � �M� M��
 ��S� � S� �

�
�� � dom����

rng���� � �

� �app�

� � V
 �V �SV
� � SetVar �SV � n �FV �range���� � Label�

� � fx
 ��� ��V �SV �g �M
 ��S

� � �let �x V � M�
 ��S
�let �

	 is a substitution of set variables for �

� � fx
 ��� ��V �SV �g � x
 �� 	�SV � � f	��V � � �g
�inst�

Figure ��� Constraint derivation rules�

�� the derivation context � maps the free variables of the expression M to either

set variables or constraint schemas �see below��

� � names the value set of M � and

�� the constraint system S is a simple constraint system �see below� describes the

data�	ow relationships of M � using ��

��

The constraint derivation rules only generates a certain subset of the constraint

language� called simple constraints� Simple constraints have the form

C � SimpleCon � c � �

j � � �

j � � dom���

j rng��� � �

j dom��� � �

j � � rng���

S � SimpleConSystem � P�n�SimpleCon�

A collection of such simple constraints forms a simple constraint system� We use the

calligraphic letters C and S as meta�variables ranging over simple constraints and

simple constraint systems� respectively�

The constraint derivation rule �var � derives appropriate constraints for a variable

reference x� This rule generates the constraint � � �� where � describes the value set

of x� and � denoting the value set for this reference to x� The constraint derivation

rule �const� generates the constraint b � �� which ensures that the value set for

a constant expression contains that constant� The rule �label � records the possible

values of a labeled expression M l in the label l�

The rule �abs� for functions records the function�s tag� and also propagates values

from the function�s domain into its formal parameter and from the function�s body

into its range� The rule �app� for applications propagates values from the argument

expression into the domain of the applied function and from the range of that function

into the result of the application expression� The correctness of the rules �abs� and

�app� relies on the anti�monotonicity of the underlying ordering v in the domain

position�

The rule �let � produces a constraint schema
 � ��� ���S� for polymorphic� let�

bound values �
� �
�� The set variable � names the result of the value� the simple

constraint system S describes the data�	ow relationships of the value� using �� and

the set � � f��� � � � � �ng contains those internal set variables of the constraint system

that must be duplicated at each reference to the let�bound variable via the rule �inst��

��

The derivation context � maps program variables to either set variables or con�

straint schemas

� � DerivCtxt � Var ��p SetVar � ConSchema

 � ConSchema � ��� ���S�

We use FV �range���� to denote the free set variables in the range of �� The free set

variables of a constraint schema ��� ���S� are those in S but not in �� and the free

variables of a set variable is simply the set variable itself�

Many of the constraint derivation rules contain meta set variables� For example�

the rule �const�

� � b
 �� fb � �g �const�

mentions the meta set variable �� Any time this rule is applied� we need to choose an

appropriate set variable for this meta variable� Choosing a fresh set variable not used

elsewhere in the derivation yields a more accurate analysis� A most general constraint

derivation is one that always uses fresh set variable for these meta variables� and a

most general constraint system for an expression is one produced by a most general

constraint derivation� However� the use of fresh variables is not strictly necessary for

the correctness of the analysis� As an extreme example� we could perform the entire

analysis using a single set variable� although this would yield extremely coarse results�

and would be of no practical use� But the ability to consider constraint derivations

that re�use certain set variables signi�cantly simpli�es the subject reduction proofs

of the following section�

��� Soundness of the Derived Constraints

Let P be a program such that
 � P
 ��S� Typically� S has many solutions� Each

solution � of S correctly approximates the value sets of labeled expressions in P �

That is� if � is a solution of S and V is a possible value of some expression M l in P �

then V in ��l�� We prove this property using a subject reduction proof ����� following

Wright and Felleisen ���� and Palsberg �����

Main Lemma ����� �Soundness of the Derived Constraints�� If
 � P
 ��S and

� j� S and P ���� E� V l � then V in ��l��

Proof	 The Subject Reduction for ��� Lemma �
���
� shows that standard reduction

steps preserve entailment� Hence� since P ���� E� V l �� there exists some S � such that

�

 � E� V l �
 ��S � and S j� S �� The derivation of this judgment must contain a

sub�derivation concluding

� � V
 ��SV

� � V l
 ��SV � f� � lg
�label �

Except for the rule �let �� each application of a constraint derivation rule can

only extend the constraint system produced by its sub�derivation� Since de�nition of

evaluation contexts does not contain a clause for let�expressions� there cannot be any

let�expressions on the spine from V l to E� V l �� Hence SV � f� � lg
 S ��

Since � j� S� S j� S �� and S � � SV � f� � lg� we have that � j� SV � f� � lg�

Hence V in ���� by the Value Typing Lemma
����� But ���� v ��l�� hence V in ��l��

as required�

The proof of the above result relies on the following lemma showing that standard

reduction steps preserves the entailment of the derived constraint systems�

Lemma ����� �Subject Reduction for ����� If � � M�
 ��S� and M� ���M�� then

� �M�
 ��S� where S� j� S��

Proof	 Follows from the Subject Reduction Lemma
���� and the Replacement

Lemma
�����

Lemma ����� �Subject Reduction for ���� If � �M�
 ��S� and M� ��M�� then

� �M�
 ��S� such that S� j� S��

Proof	 See Appendix A���

Lemma ����
 �Replacement�� If

�� D is a deduction concluding � � E� M� �
 ��S��

� D� is a sub�deduction of D concluding �� � M�
 ��S �
��

�� D� occurs in D in the position corresponding to the hole �� �� in E� and

�� �� �M�
 ��S �
� where S

�
� j� S

�
��

then � � E� M� �
 ��S� where S� j� S��

Proof	 Follows the proof idea of Hindley and Seldin �
�
page �����

�

The Flow Lemma describes conditions under which we can replace the result set

variable returned by the constraint derivation rules�

Lemma ����� �Flow�� If � � M
 ��S then for all � � SetVar � � � M
 ��S � with

S � f� � �g j� S ��

Proof	 See Appendix A���

The Value Typing Lemma simply states that any solution to the constraint system

for a syntactic value always corresponds to a value set invariant that includes that

value�

Lemma ����� �Value Typing�� If � � V
 ��S and � j� S� then V in �����

Proof	 By considering the two cases V � b and V � ��tx�M��

��� Solving Set Constraints

Every simple constraint system admits the trivial solution ��s de�ned by

��s��� � �s

where �s is recursively de�ned as

�s � hConst ��s��si

The domain element �s represents the set of all run�time values� including functions

that can take any value as an argument� and return any value as a result�

Lemma ����� If S is a simple constraint system then ��s j� S�

Proof	 By a case analysis showing that ��s j� C for any simple constraint C�

Since �s represents all run�time values� this solution is highly approximate and

thus utterly useless� Fortunately� simple constraint systems yield many additional

solutions that more accurately characterize the value sets of program expressions�

To illustrate this idea� consider the program P � ��tx�x�� According to the

constraint derivation rules of �gure
�
� this program yields the constraint system

ft � �P � dom��P � � �x� �x � �M � �M � rng��P �g

In addition to the trivial solution ��s� this constraint system admits a number of

other solutions� including

�� � f�P �� hftg����i� �x �� �� �M �� �g

�� � f�P �� hftg����i� �x �� �� �M �� �g

�� � f�P �� hft� c�g�X�Xi� �x �� X��M �� Xg

where X � hfc�g����i� and c� and c� are arbitrary constants� Because we assume

P to be the entire program� the function tagged t is never applied� and hence the

set of run�time values for x is simply the empty set� The solution �� describes this

�empty� set of run�time values of x more accurately than either �� or ��� Yet these

three solutions are incomparable under the ordering v� since the ordering models the

	ow of values through a program� but does not rank set environments according to

their accuracy�

Therefore we introduce an alternative ordering vs on D that ranks environments

according to their accuracy� This ordering is monotonic in the domain position

hC��D�� R�i vs hC��D�� R�i i� C�
 C��D� vs D�� R� vs R�

The maximal and minimal elements of D under vs are the solutions to the equations

�s � hConst ��s��si

�s � h
��s��si

respectively� The least upper bound and greatest lower bound operations are recur�

sively de�ned as

hC��D�� R�i ts hC��D�� R�i � hC� � C��D� ts D�� R� ts R�i

hC��D�� R�i us hC��D�� R�i � hC� � C��D� us D�� R� us R�i

Under the ordering vs� a simple constraint system has both a maximal solution

���s above� and a minimal solution� The minimal solution exists because the greatest

lower bound us with respect to vs of two solutions is also a solution �
���

Lemma ����� �Least Solution of Simple Constraint Systems�� Every simple con�

straint system has a solution that is least with respect to vs�

Proof	 See Appendix A�
�

Using Lemma
���
� it makes sense to de�ne LeastSoln�S� as the least solution

of the simple constraint system S under the ordering vs� Since this solution yields

�

the most accurate invariants consistent with the constraints S� we de�ne set�based

analysis as the function that extracts the possible values for each labeled expression

from this least solution�

De�nition ������ �sba
 �� �� �Label �� P�Value��� If
 � P
 ��S is a most

general derivation� then

sba�P ��l� � fV j V in LeastSoln�S��l�g

By Lemma
����� sba�P � correctly characterizes the possible value sets for each labeled

expression�

Theorem ����
 If P ���� E� V l � then V � sba�P ��l��

Proof	 Follows from Lemma
�����

����� Computing the Least Solution

To compute sba�P �� we derive the most general constraint system for P and close

that constraint system under the rules � described in �gure
��� Intuitively� these

rules infer all the data�	ow paths in the program� which are described by constraints

of the form � � � �for �� � � SetVar �� and propagate values along those data�

	ow paths� Speci�cally� the rules �s��� �s��� and �s�� propagate information about

constants� function domains and function ranges forward along the data�	ow paths

of the program� The rule �s�� constructs the data�	ow paths from actual to formal

parameters for each function call� and the rule �s�� similarly constructs data�	ow

paths from function bodies to corresponding call sites� We write S �� C if S proves

C via the rules �� and use ��S� to denote the closure of S under �� i�e�� the set

fC j S �� Cg� An algorithm for computing ��S� is included in the next section�

This closure process propagates all information concerning the possible constants

for labeled expressions into constraints of the form c � l� Hence� we can infer sba�P �

from ��S� according to the following theorem�

Theorem ����� If P � �� and
 � P
 ��S is a most general constraint derivation

then

sba�P ��l� � fb j S �� b � lg

� f��tx�M� j S �� t � lg

Proof	 See Appendix A�
�

�

c � � � � �

c � �
�s��

� � rng��� � � �

� � rng���
�s��

dom��� � � � � �

dom��� � �
�s��

� � rng��� rng��� � �

� � �
�s��

� � dom��� dom��� � �

� � �
�s��

Figure ��� The rules � � fs�� � � � � s�g

��
 An Implementation of Set�Based Analysis

We conclude this chapter with an outline implementation in MzScheme ���� of the

analysis described above� The implementation is presented in �gures
���
�� and
���

����� Representation of constraint systems

Since the most computationally�intensive part of the analysis is closing the constraint

system under the rules �� we choose a representation for constraint systems that

simpli�es this task� If we take a closer look at �� we see that each rule in � combines

a lower and upper bound for some set variable � into a single constraint� where the

lower bound on � must be of the form

c � � � � rng��� dom��� � �

and the upper bound on � must be of the form

� � � � � dom��� rng��� � �

We represent the above lower and upper bounds for each set variable � separately�

That is� a constraint system is represented as two mappings
 one mapping from set

�

variables to their lower bounds� and a second mapping from set variables to their

upper bounds� Each kind of lower bound on � corresponds to a structure in the

implementation

c � � c�leq�this

� � rng��� x�leq�rng�this

dom��� � � dom�this�leq�x

In a similar fashion� each kind of upper bound on � also corresponds to a structure

in the implementation

� � � this�leq�x

� � dom��� x�leq�dom�this

rng��� � � rng�this�leq�x

����� Closing constraint systems

Set�based analysis consists of a speci�cation phase and a solution phase� In this

implementation� these two phases are co�mingled in that the constraint derivation

algorithm keeps the derived constraint system closed under �� That is� whenever the

constraint derivation algorithm adds a new constraint to the current constraint sys�

tem� any consequences of the new constraint under � are also added to the constraint

system�

Constraint systems are extended via the functions add�lower�bound close� and

add�upper�bound close� � The function combine� checks if a new consequent can be

inferred from a lower and upper bound for a set variable�

����� Deriving constraints

The function derive is a straightforward implementation of the constraint derivation

rules described in �gure
�
� This function takes as arguments a constraint derivation

context gamma� an expression M � and a constraint system S � The function then

extends S with additional constraints and returns a set variable denoting the result

value set of M � For simplicity� the implementation does not support let�expressions

or constraint schemas� but these are straightforward to add�

�

�� �� Main analysis function
�de�ne �sba M �
�let ��S �create�constraint�system���
�derive �make�empty�derivation�context� M S�
S��

�� �� Abstract syntax structures
�de�ne�struct Var �x��
�de�ne�struct Const �b��
�de�ne�struct Lam �t x M ��
�de�ne�struct App �fn arg��
�de�ne�struct Labeled �M l��

�� �� Deriving constraints
�de�ne �derive gamma M S�
�let ��alpha �gen�set�var���
�match M

��� Var x�
�add�upper�bound�close� S �lookup gamma x� �make�this�leq�x alpha���

��� Const b�
�add�lower�bound�close� S alpha �make�c�leq�this b���

��� Labeled M l�
�let ��beta �derive gamma M S���
�add�upper�bound�close� S beta �make�this�leq�x l��
�add�upper�bound�close� S beta �make�this�leq�x alpha����

��� Lam t x N �
�let� � �alpha� �gen�set�var��

�alpha� �derive �extend gamma x alpha� � N S���
�add�lower�bound�close� S alpha �make�c�leq�this t��
�add�lower�bound�close� S alpha �make�dom�this�leq�x alpha� ��
�add�lower�bound�close� S alpha �make�x�leq�rng�this alpha� ����

��� App fn arg�
�let � �beta� �derive gamma fn S��

�beta� �derive gamma arg S���
�add�upper�bound�close� S beta� �make�x�leq�dom�this beta� ��
�add�upper�bound�close� S beta� �make�rng�this�leq�x alpha�����

alpha��

Figure ��
 Deriving constraints

�

�� �� Structures for constraints
�de�ne�struct c�leq�this �c��
�de�ne�struct dom�this�leq�x �x��
�de�ne�struct x�leq�rng�this �x��

�de�ne�struct this�leq�x �x��
�de�ne�struct x�leq�dom�this �x��
�de�ne�struct rng�this�leq�x �x��

�� �� Extending and re�closing constraint system
�� For clarity� we have not abstracted over the following two functions
�de�ne �add�lower�bound�close� S alpha low�bound�
�unless �has�lower�bound� S alpha low�bound�
�add�lower�bound� S alpha low�bound�
�for�each
�lambda �up�bound� �combine� S low�bound up�bound��
�upper�bounds S alpha����

�de�ne �add�upper�bound�close� S alpha up�bound�
�unless �has�upper�bound� S alpha up�bound�
�add�upper�bound� S alpha up�bound�
�for�each
�lambda �low�bound� �combine� S low�bound up�bound��
�lower�bounds S alpha����

�� �� Adding consequents of two constraints
�de�ne �combine� S low�bound up�bound�
�match �list low�bound up�bound�
�� The following cases applies rules �s	� through �s
�� respectively
���� c�leq�this � �� this�leq�x gamma��
�add�lower�bound�close� S gamma low�bound��

���� dom�this�leq�x � �� this�leq�x gamma��
�add�lower�bound�close� S gamma low�bound��

���� x�leq�rng�this � �� this�leq�x gamma��
�add�lower�bound�close� S gamma low�bound��

���� x�leq�rng�this alpha� �� rng�this�leq�x gamma� �
�add�upper�bound�close� S alpha �make�this�leq�x gamma���

���� dom�this�leq�x gamma� �� x�leq�dom�this alpha� �
�add�upper�bound�close� S alpha �make�this�leq�x gamma���

� �void����

Figure ��� Representing� extending and closing a constraint system

�

�� �� Functions for manipulating constraint systems

�de�ne �gen�set�var� � � � �
�� Creates a fresh set variable

�de�ne �create�constraint�system� � � � �
�� Creates an empty constraint system

�de�ne �add�lower�bound� S alpha low�bound� � � � �
�� Extends the constraint system S with an additional lower bound for alpha

�de�ne �has�lower�bound� S alpha low�bound� � � � �
�� Checks if the constraint system S already has the given lower bound for alpha

�de�ne �lower�bounds S alpha� � � � �
�� Returns a list of lower bounds for alpha in the constraint system S

�de�ne �add�upper�bound� S alpha up�bound� � � � �
�de�ne �has�upper�bound� S alpha up�bound� � � � �
�de�ne �upper�bounds S alpha� � � � �
�� Ditto for upper bounds

�� �� Functions for manipulating derivation contexts

�de�ne �make�empty�derivation�context� � � � �
�� creates an empty derivation context

�de�ne �extend gamma x alpha� � � � �
�� extends the derivation context gamma to map x to alpha

�de�ne �lookup gamma x� � � � �
�� looks up the binding for x in the derivation context gamma

Figure ��� Manipulating constraint systems and derivation contexts

�

Chapter �

Extending Set�Based Analysis

Realistic programming languages provide a variety of additional facilities on top of

the idealized core language �� These facilities typically include pairs �or other com�

pound data structures such as C�s structs or Pascal�s records�� assignable variables�

mutable data structures� and possibly objects� modules and non�local control oper�

ators� Since MrSpidey is designed to assist in the development of realistic Scheme

programs� we need to extend the underlying set�based analysis to encompass these

additional features of practical programming languages� This extension also suggests

how MrSpidey can be adapted to other safe languages such as Java�

��� Additional Selectors

Most of the additional programming constructs mentioned above introduce additional

kinds of values into the language� Modeling these additional values in the analysis

requires the introduction of additional selectors into the constraint language and the

corresponding extension of the underlying domain D and the set of operations and

relations de�ned on D�

To simplify this process� we �rst abstract over the collection of selectors in the

constraint language� The constraint language currently contains a single monotonic

selector� rng� and a single anti�monotonic selector� dom� We generalize the constraint

language with two sets� Sel� and Sel�� of monotonic and anti�monotonic selectors�

respectively� which are currently de�ned as the singletons

Sel� � frngg

Sel� � fdomg

We use the meta�variables sel�� sel� and sel to range over selectors in Sel�� Sel��

and Sel��Sel�� respectively� Expressed in terms of these meta�variables� the language

of set expressions becomes

� � SetExp � � j c j sel��� � j sel��� �

��

and a simple constraint is of the form

C � SimpleCon � c � �

j � � �

j � � sel����

j sel���� � �

j sel���� � �

j � � sel����

These constraints have their expected semantics on an extended domain D that con�

tains a product for each selector in the constraint language

D � P�Const�	D 	 � � � 	 D	
z �
sel��Sel

�

	D 	 � � � 	 D	
z �
sel��Sel

�

This reformulation simpli�es the process of extending the analysis to cope with ad�

ditional programming constructs� The remainder of the derivation from chapter

can be adapted to the modi�ed formulation� mutandis mutatis� In particular� the

appropriate inference rules � for the modi�ed formulation are described in �gure ����

c � � � � �

c � �
�s��

� � sel���� � � �

� � sel����
�s��

sel���� � � � � �

sel���� � �
�s��

� � sel���� sel���� � �

� � �
�s��

� � sel���� sel���� � �

� � �
�s��

Figure ��� The adapted rules � � fs�� � � � � s�g

��

��� Analysis of Pairs

Let �p be the following extension of � with immutable pairs�

M � �p � � � �

j �cons M M�

j �car M�

j �cdr M�

V � Value � � � �

j �cons V V �

����� Semantics

The additional syntactic forms have their usual Scheme semantics� which we formalize

via two additional notions of reduction

�car �cons V� V��� �� V� �car�

�cdr �cons V� V��� �� V� �cdr�

To allow the evaluation of sub�expressions inside the syntactic forms cons� car and

cdr� we extend the notion of evaluation contexts as follows

E � � � � j �cons E M� j �cons V E� j �car E� j �cdr E�

The standard reduction relation ��� and the evaluator eval for the extended language

�p can now be de�ned in the usual manner� following section
���
�

����� Analysis

The analysis of the extended language �p requires two additional monotonic selectors

car and cdr

Sel� � frng� car� cdrg

Sel� � fdomg

These additional selectors yield corresponding products in the domain D� Each el�

ement X � D is now a ��tuple hC�D�R�A�� A�i� where the additional components

A� and A� describe the possible car and cdr �elds of pairs represented by X� We

introduce the special tag pair � Const � which denotes that an element of D also

�

represents pairs� and we extend the relation V in X to describe the pairs represented

by an element X � hC�D�R�A�� A�i in D as follows

b in X i� b � C

��tx�M� in X i� t � C

�cons V� V�� in X i� pair � C� V� in A�� V� in A�

The constraint derivation rules for the new syntactic forms are described in �g�

ure ��
� The rule �cons� records both the pairs tag and the possible values for each

component of the pair� The rules �car� and �cdr� extract the appropriate component

from the set variable for the argument expression�

� �Mi
 �i�Si

� � �cons M� M��
 ��S� � S� � fpair � �� �� � car���� �� � cdr���g
�cons�

� �M
 ��S

� � �car M�
 ��S � fcar��� � �g
�car�

� �M
 ��S

� � �cdr M�
 ��S � fcdr��� � �g
�cdr�

Figure ��� Constraint derivation rules for pairs

The soundness proof for set�based analysis is easily adapted to the extended

language� The Replacement �
������ Value Typing �
������ and Soundness �
�����

Lemmas are straightforward to adapt� and we extend the Subject Reduction for ��

Lemma �
����� as follows�

Lemma ����� �Subject Reduction for �� on �p�� If � � M�
 ��S� andM� ��M��

then � �M�
 ��S� such that S� j� S��

Proof	

The proof proceeds by case analysis according to the relation M� ��M��

� Suppose M� ��M� via �car�� Then

M� � �car �cons V� V���

M� � V�

��

The typing derivation on M� must be of the following form

� � Vi
 �i�S �
i

� � �cons V� V��
 ��S
�
� � S

�
� � S

�cons�

� �M�
 ��S
�
� � S

�
� � S � S

� �car�

where

S � ft � �� �� � car���� �� � cdr���g

S � � fcar��� � �g

Hence S � S � j� f�� � �g� and by the Flow Lemma
����� � � V�
 ��S� where

S �
� � S � S

� j� S�� as required�

� The case for the reduction rule �cdr� is similar�

The set�based analysis function sba for the extended language �p is de�ned fol�

lowing de�nition
����� As in section
��� we can compute sba�P � from the closure of

S under �

sba�P ��l� � fb j S �� b � lg

� f��tx�M� j S �� t � lg

� f�cons V� V�� j S �� pair � l�

S �� �� � car�l�� V� � sba�P �����

S �� �� � cdr�l�� V� � sba�P �����g

��� Analysis of First�Class Continuations

Consider the following language �cc� which extends �p with �rst�class continuations

in addition to functional core language and pairs

M � �cc � � � � j �abort M� j �callcct M�

An abort�expression evaluates its sub�expression� and returns the resulting value

as the result of the entire computation� The callcc�expression �callcct M� �rst

evaluates its argumentM to a function� then captures the current evaluation context

�or continuation� surrounding the expression� and applies the function produced byM

to this evaluation context� An invocation of a captured evaluation context causes the

current evaluation context to be discarded and replaced by the captured context� Just

like a function expression� a callcc�expression has an identifying tag so that MrSpidey

can reconstruct the textual source of the corresponding continuation values from the

results of the analysis�

��

����� Semantics

We de�ne the semantics of the abort and callcc constructs by extending the stan�

dard reduction relation with the following rules for aborting and capturing evaluation

contexts

E� �abort M� � ��� M �abort�

E� �callcct M� � ��� E� �M ��tx��abort E� x ���� � �callcc�

The evaluator for the extended language is de�ned in the usual manner� following

section
���
�

����� Analysis

Figure ��� introduces the additional derivation rules for abort and callcc expressions�

An abort expression never returns� so the derivation rule �abort� introduces a fresh

type variable for these expressions� The least solution �undervs� for this type variable

is �s� denoting the empty set of values�

The rule �callcc� introduces a new type variable � to denote the captured contin�

uation� The rule records that

�� the type variable � contains the tag t from the callcc expression�

� � is the argument to the function �denoted by �� that is returned by M �

�� the result value this function becomes the result of the callcc expression�

�� argument values to � are also returned as results of the callcc expression�

In addition� the rule adds the �dummy� constraint � � rng���� This dummy con�

straint is required in order that the constraint derivation rules satisfy the subject

reduction lemma� That is� the �callcc� reduction rule produces a contractum contain�

ing the syntactic term ��tx��abort E� x ���� which is not present in the �callcc��redex�

Applying the constraint derivation rules to this contractum yields a number of con�

straints� including the constraint � � rng���� where � describes the value set for

�abort E� x ��� and � describes the value set for the ��expression� The subject reduc�

tion lemma requires that this constraint is entailed by the constraint system for the

�callcc��redex� In order to satisfy this requirement� we include that constraint in the

redex�s constraint system�

��

� �M
 ��S

� � �abort M�
 ��S
�abort�

� �M
 ��S

� � �callcct M�
 ��S �

��������
�������

t � �

� � dom���
rng��� � �

dom��� � �

� � rng���

��������
�������

�callcc�

Figure ��� Constraint derivation rules for �rst�class continuations

The Replacement �
������ Value Typing �
������ and Soundness �
����� Lemmas

are easily adapted to the extended language� We extend the Subject Reduction for

��� Lemma �
���
� to account for the additional standard reduction rules as follows�

Lemma ����� �Subject Reduction for ��� on �cc�� If
 �M�
 ��S� andM� ���M��

then
 �M�
 ��S� such that S� j� S��

Proof	 The proof proceeds by case analysis according to the relation M� ���M��

Since the cases for the ��v� and �unlabel � rules are the same as before� we only consider

the cases for the additional rules �abort� and �callcc��

� Suppose M� ���M� via �abort�� Then

M� � E� �abort M�� �

The derivation on M� must include a sub�derivation concluding � � M�
 ��S�

where S�
 S�� Since M� is closed� so is M�� and hence
 �M�
 ��S��

� Suppose M� ���M� via �callcc�� Then

M� � E� �callcct M� �

M� � E� �M ��tx��abort E� x ���� �

The derivation on M� must include a sub�derivation concluding

� � M
 �M �SM

� � �callcct M�
 ��SM � SC
�callcc�

��

where

SC �

����������
���������

t � �

� � dom��M�

rng��M� � �

dom��� � �

� � rng���

����������
���������

Let SE be the additional constraints generated by the derivation on M� due

to the context E surrounding �callcct V �� Then S� � SE � SM � SC � and the

following derivation holds

� � fx
 �g � x
 �� f� � �g

� � fx
 �g � E� x �
 ��SE
� � fx
 �g � �abort E� x ��
 ��SE

�abort�

� � ��tx��abort E� x ���
 ��SL
�abs�

where

SL � SE � ft � �� dom��� � �� � � rng���g

Hence

� � �M ��tx��abort E� x ����
 ��S �
�

where

S �
� � SL � SM � f� � dom��M �� rng��M� � �g

Therefore� by the Replacement Lemma
����

� � M�
 �
��S�

where

S� � SE � S
�
�

Since S� contains S�� S� j� S�� and the lemma holds for this case�

The set�based analysis function sba for the extended language �cc is de�ned as in

de�nition
����� and can be computed in the usual fashion based on the closure of the

derived constraint system under ��

��

��� Analysis of Assignable Variables

Next we consider the set�based analysis of a language with assignable variables� Let

�� be the following extension of �p

M � �� � � � � �Expressions�

j �letrec �D�� M�

j �set
 z M�

j z

D � De�nes � �de�ne z V � �De�nitions�

z�w � AssignVar �Assignable Variables�

The extended language contains assignable variables� in addition to the regular� im�

mutable variables� These assignable variables are introduced by a letrec�expression

�letrec �D�� M�� where D� is a sequence of de�nitions of the form �de�ne z V ��

Each assignable variable in these de�nitions is bound in the entire letrec�expression�

and we work with the usual conventions concerning ��renaming for assignable vari�

ables� An assignment expression �set
 z M� �rst evaluates M to some value� assigns

the variable z to that value� and then returns the value�

��
�� Semantics

We evaluate programs within an enclosing letrec containing a heap and an expres�

sion� The heap is a sequence of de�nitions containing all currently de�ned assignable

variables

H � Heap � D�

All references and assignments to assignable variables operate on this heap� We use

the functional notation H�z� to extract the value bound to z in the heap H�

To allow the evaluation of sub�expressions inside the set
 form� we extend the

notion of evaluation contexts as follows

E � � � � j �set
 z E�

We extend the standard reduction relation with the following additional cases for

the new syntactic forms� To evaluate an internal letrec� we lift its de�nitions out

��

into the global heap� ensuring that the appropriate hygiene conditions are satis�ed

�letrec �H� E� �letrec �D�� M� ��

��� �letrec �H �D�� E� M �� �letrec�

if dom�H� � dom�D�� �

�letrec �H� E� z �� ��� �letrec �H� E� V �� if H�z� � V �ref �

�letrec �H � �de�ne z V �� E� �set
 z V �� ��

��� �letrec �H � �de�ne z V ��� E� V � �� �set� �

The semantics of the extended language is de�ned via the partial function eval on

programs� This evaluator now returns a pair consisting of a heap and a value� where

the heap provides bindings for the assignable variables in the value�

eval
 �� ��p Heap 	 Value

eval �M� � hH�V i if �letrec �� M� ���� �letrec �H� V �

��
�� Analysis

The analysis of the extended language �� is based on the additional constraint deriva�

tion rules described in �gure ���� The rule �letrec� extends the derivation context � to

map each assignable variable zi to a fresh set variable �i and generates constraints for

both the de�ned values and the letrec�body using the extended derivation context�

The rule �set� � simply propagates all possible assigned values into the value set for

the assigned variable� A constraint derivation context now maps variables to either

set variables or constraint schemas� as before� and now also maps assignable variables

to set variables�

Adapting the soundness proof for the extended analysis is straightforward� The

Replacement �
������ Value Typing �
������ and Soundness �
����� Lemmas are eas�

ily adapted to the extended language� It is straightforward to extend the Subject

Reduction for ��� Lemma �
���
� with cases for the additional reduction rules� The

set�based analysis function sba for the extended language �� can be de�ned and com�

puted in the usual fashion�

��� Analysis of Assignable Boxes

Next� we extend our sample language with assignable boxes� where are somewhat

more di�cult to analyze than assignable variables� Let �b be the following extension

��

� � fzi
 �ig � Vi
 �i�Si
� � fzi
 �ig � M
 ��S

� � �letrec ��de�ne z� V�� � � � �de�ne zn Vn�� M�

 ��S � S� � � � � � Sn � f�i � �i j � � i � ng

�letrec�

� � fz
 �g � z
 ��S � f� � �g �ref �

� �M
 ��S

� � �set
 z M�
 ��S � f� � ��z�g
�set� �

Figure ��
 Constraint derivation rules for assignable variables

of ��

M � �b � � � � �Expressions�

j �box M�

j �unbox M�

j �set�box
 M M�

V � Value � � � � �Values�

j hbox zi

����� Semantics

The additional syntactic forms have their usual Scheme semantics� The value hbox zi

denotes a box containing the value bound to the assignable variable �or location� z�

We formalize this semantics by extending the standard reduction relation as follows

�letrec �H� E� �box V � ��

��� �letrec �H � �de�ne z V �� E� hbox zi �� �box �

if z �� dom�H�

�letrec �H� E� �unbox hbox zi� ��
��� �letrec �H� E� V �� if H�z� � V �unbox �

�letrec �H � �de�ne z V �� E� �set�box
 hbox zi V �� ��

��� �letrec �H � �de�ne z V ��� E� V � �� �set�box� �

��

The rule �box � allocates a new assignable variable� or location� z� that is not already

bound in the heap� binds this location to the boxed value in the heap� and returns

a new kind of value� hbox zi as the result of the box expression� The rules �unbox �

and �set�box� � are analogous to the rules �ref � and �set� � described in the previous

section� except that the new rules operate on box values of the form hbox zi� instead

of directly on assignable variables�

To allow the evaluation of sub�expressions inside the syntactic forms box� unbox

and set�box
� we extend the notion of evaluation contexts as follows

E � � � � j �box E� j �unbox E� j �set�box
 E M� j �set�box
 V E�

The semantics of the extended language is de�ned via the partial function eval

on programs� in the same manner as in the previous section�

����� Analysis

The assignable boxes of the extended language �b are �rst�class values� Unlike

assignable variables� these boxes can be passed around between various parts of the

analyzed program� This 	exibility makes assignable boxes signi�cantly more di�cult

to analyze than assignable variables� �

As a �rst attempt� we could try to analyze boxes by extending the constraint

language with an single additional selector� box� such that box�� � describes the set

of values contained in the boxes denoted by � � Unfortunately� this approach does not

work very well� To illustrate the problem with this approach� consider the data�	ow

path in the analyzed program represented by the constraint � � �� In order to ensure

that boxed values 	ow forward along this data�	ow path in the appropriate manner�

we need to require that box��� � box���� which implies that box is monotonic� But

now suppose that a set�box
 operation is performed on the value set described by

�We could alternatively de�ne the semantics of the additional syntactic forms in �b by macro

expanding them into the following �� expressions�

�box M � �� �letrec ��z M �� �cons ��d� z� ��x� �begin �set� z x� x����

�unbox M � �� ��car M � ��

�set�box� M� M�� �� ��cdr M�� M��

The analysis of these macro
expanded forms yields results are analogous to that produced by the
analysis described in this section for the original forms�

��

�� thus increasing the set of possible boxed values at �� To insure that this e�ect

is re	ected in the boxed values of �� we need to require that box��� � box����

which implies box is also anti�monotonic� Hence the constraint � � � can hold if

and only if box��� � box���� In practice� this means that any two boxed values

that reach the same program point are uni�ed � Unfortunately� our experience with

Soft Scheme ���� indicates that the results of uni�cation�based analyses are often

unintuitive and di�cult to explain�

In order to produce a more intuitive and accurate analysis� we introduce the notion

of split boxesy� which uses the following two additional selectors for the analysis of

boxes

�� a monotonic selector box� that models how boxed values 	ow forward along

data�	ow paths�

Sel� � f� � � � box�g

and

� an anti�monotonic selector box� that models how the values assigned to boxes

	ow backward along data�	ow paths�

Sel� � f� � � � box�g

Appropriate constraint derivation rules for the new syntactic forms� based on the

two selectors box� and box�� are described in �gure ���� The rule �box � introduces a

set variable � to describe the set of values possibly contained in the newly constructed

box� The set expression box���� describes values that are contained in the box� and

box���� describes values that are assigned to the box� Both the initial value of the

box ��� and any values assigned to the box �box����� must be contained in �� and �

is contained in the set of values �box����� that can be extracted from the box� The

rules �unbox � and �set�box� � are straightforward�

Proving the soundness of the new analysis is straightforward� The Replacement

�
������ Value Typing �
������ and Soundness �
����� Lemmas are easily adapted to the

extended language� and the Subject Reduction for ��� Lemma �
���
� can be extended

with cases for the additional reduction rules� The set�based analysis function sba for

�b is de�ned and computed in the usual fashion�

yThis idea was also independently discovered by Scott Smith and Valerie Tri�nov� and by Francois
Pottier �private communications� ICFP����� and earlier by Reynolds �
���

�

� �M
 ��S

� � �box M�
 ��S �

���
��

� � �

box���� � �

� � box����

���
��

�box �

� �M
 ��S

� � �unbox M�
 ��S � fbox���� � �g
�unbox �

� �Mi
 �i�Si

� � �set�box
 M� M��
 ��S� � S� � f�� � box������ �� � �g
�set�box� �

Figure ��� Constraint derivation rules for boxes

��� Analysis of Units

Realistic programming languages typically have a module system to help organize

large software systems� In MzScheme ����� the module system is based on units �����

In this section we consider the analysis of a simpli�ed version of MzScheme�s unit

system� The language �u extends �� as follows

M � �u � � � � �Expressions�

j �linkt M M�

j �invoke M z�

V � Value � � � � �Values�

j �unitt w� D
� M w��

A unit expression �unitt w� D
� M w�� consists of

�� an identifying tag t�

� a single imported assignable variable w��

�� a series of de�nitions D� binding assignable variables to syntactic values�

�� an expression M that may mutate those assignable variables� if required� and

��

�� an exported assignable variable w��

Assignments to the imported variable are syntactically disallowed�

A link clause contains an identifying tag and two sub�expressions� These sub�

expressions should evaluate to units� which the link clause then combines into a

single �compound� unit� Both units and link clauses have identifying tags so that

MrSpidey can reconstruct the textual source of various unit values from the results

of the analysis� An invoke clause consists of an expression that should evaluate to a

unit� and an assignable variable that becomes the imported variable of the unit� after

which the de�nitions in the unit are evaluated in order�

����� Semantics

We specify the semantics of the new syntactic forms via the reduction rules

�linkt �unitt� w� D
�
� M� w�� �unit

t� w� D
�
� M� w���

�� �unitt w� D
�
��D

�
� �begin M� M�� w�� ��link �

�invoke �unitt z D� M w� z�

�� �letrec �D�� �begin M w�� �invoke�

The rule ��link � for link expressions combines two units to produce a compound unit�

The imported variable of the compound unit is the imported variable of the �rst sub�

unit� the exported variable of the �rst sub�unit is connected to the imported variable

of the second sub�unit� and the exported variable of the second sub�unit becomes the

exported variable of the compound unit� The syntax �begin M� M�� is shorthand

for ���td�M�� M��� where d �� FV �M��� The rule �invoke� converts a unit value into

a letrec�expression� which is then evaluated as described in the previous section�

We augment the de�nition of evaluation contexts to permit evaluation of the sub�

expressions in link and invoke forms

E � � � � j �linkt E M� j �linkt V E� j �invoke E z�

This semantics can easily be extended to handle mutually�recursive units by al�

lowing units to have two imported variables� such that a link clause connects the

exported variable of the �rst sub�unit to one of the imported variables of the second

unit� and vice�versa�

��

����� Analysis

The analysis of the extended language �u requires additional selectors ui and ue that

extract the imported and exported value sets of a unit

Sel� � f� � � � ueg

Sel� � f� � � � uig

The additional constraint derivation rules for the new syntactic forms are described

in �gure ���� The rule �unit � for unit expressions introduces a number of additional

set variables� including a set variable �� for the imported variable w�� set variables

��� � � � � �n for the de�ned variables z�� � � � � zn� set variables ��� � � � � �n for the initial

values V�� � � � � Vn� and a set variable � denoting the result of the unit expression� The

rule �unit� then ensures that

� the set variable � includes the identifying tag t of the unit�

� the imported value set of the unit is contained in the value set of the imported

variable�

� the value set of the exported variable w� is contained in the exported value set

of the unit� and

� the set variable �i �describing Vi� is contained in �i �describing zi��

The rule �link � ensures that the set variable � for the link expression includes

the identifying tag t� that the imported value set of the resulting compound unit is

contained in the imported value set of the �rst unit� that the exported value set of

the �rst unit is contained in the imported value set of the second unit� and that the

exported value set of the second unit is contained in the exported value set of the

resulting compound unit�

The rule �invoke� ensures that the value set of the argument variable is contained

in the imported value set of the unit� and that the exported value set of the unit

becomes the result value set of the invoke expression�

We extend the relation V in X describing the set of run�time values represented

by an element X � D �relative to a given program� with the following additional

clause for unit values

�unitt x D� M y� in hC� � � �i i� t � C

��

�� � � � fw�
 ��� z�
 ��� � � � � zn
 �ng
�� � Vi
 �i�Si for i � �� � � � � n

�� �M
 �M �SM

� � �unitt w� �de�ne z� V�� � � � �de�ne zn Vn� M w��

 ��SM � S� � � � � � Sn �

�����
����

t � �

ui��� � ��
��w�� � ue���

�i � �i � � i � n

�����
����

�unit�

� �Mi
 �i�Si for i � ��

� � �linkt M� M��
 ��S� � S� �

�����
����

t � �

ui��� � ui����
ue���� � ui����
ue���� � ue���

�����
����

�link �

� �M
 ��S

� � �invoke M z�
 ��S � f��z� � ui���� ue��� � �g
�invoke�

Figure ��� Constraint derivation rules for units

The soundness proof for set�based analysis can be adapted to the extended lan�

guage�

��
 Analysis of Classes

In this section� we outline the extension of set�based analysis to a simple class system�

Let �c be the following extension of �u

M � �c � � � �

j �class N �z� � � � zk� �zk�� Vk��� � � � �zn Vn��

j �make�obj M�

j M�z

In the class expression

�class N �z� � � � zk� �zk�� Vk��� � � � �zn Vn��

��

N describes the super�class� z�� � � � � zk are instance variables inherited from that super�

class� and zk��� � � � � zn are additional instance variables in the new class� These new

instance variables are initialized to the values Vk��� � � � � Vn� respectively�

The special form �make�objM� creates new objects of the class described by M �

Although the make�obj form does not allow arguments to be passed to the class� such

arguments can be simulated by extending the class with additional instance variables

that are initialized to the appropriate argument values� The special formM�z extracts

the value bound to the instance variable z in the object described by M �

����� Semantics

We do not provide a formal semantics for this class system� Instead� we refer the

interested reader to a paper on the formal semantics of a related class system �
���

����� Analysis

The analysis of programs in �c requires that we add a number of additional selectors

to the constraint language� For describing the behavior of class values� we introduce

an additional� monotonic selector� cl�obj���� such that cl�obj�� � describes objects

produced by classes in � �

We also introduce additional selectors for describing the behavior of objects�

Objects are similar to the assignable boxes of section ���� except that whereas boxes

have a single assignable �eld� an object may have multiple assignable instance vari�

ables� The analysis of boxes required two additional selectors� box� and box�� which

model how boxed values 	ow both forward and backward along data�	ow paths� In

a similar manner� for each instance variable z� we introduce two additional selectors�

ivar�z and ivar�z � These additional selectors model how values for an instance vari�

able z of an object 	ow both forward and backward along the data�	ow paths of the

object�

The additional constraint derivation rules for classes are described in �gure ����

The rule �class� is the most complex� and introduces a number of new set variables�

which have the following meaning

� the set variable �s describes the super�class�

� the set variables ��� � � � � �n describe the value set of the corresponding instance

variables z�� � � � � zn�

��

� � N
 �s�Ss
��z�
 ��� � � � � zn
 �n� � Vi
 �i�Si for i � k �� � � � � n

� � �class N �z� � � � zk� �zk�� Vk��� � � � �zn Vn��

 ��Ss � Sk�� � � � � � Sn �

��������
�������

cl�obj��s� � �o

ivar�zi��o� � �i
�i � ivar�zi��o�
�i � �i
�o � cl�obj���

��������
�������

�class�

� �M
 ��Ss

� � �make�objM�
 ��S � fcl�obj��� � �g
�make�obj �

� �M
 ��Ss

� �M�z
 ��S � fivar�z ��� � �g
�ivar�

Figure ��� Constraint derivation rules for classes

� the set variables �k��� � � � � �n describe the value set of the corresponding initial�

ization expressions Vk��� � � � � Vn� and

� the set variable �o describes objects of the new class�

The rule �class� �rst derives constraints for the super�class expression N � and then

derives constraints for each initialization expression Vi in an appropriate derivation

context� It then ensures that

� that the current object ��o� contains instance variable values de�ned in the

super class ��s�� via the constraint cl�obj��s� � �o�

� that the values in �i for the instance variable zi re	ect the values from �o�

� that the initial value V�� described by �i� is contained the value set described

by �i� and

� that the resulting class� described by �� correctly refers to objects of the new

class� which are described by �o�

��

The rule �make�obj � extracts the cl�obj��� component from the set variable de�

scribing the class� and the rule �ivar� extracts the instance variable component from

the set variable describing the object�

We do not provide a soundness proof for the extended analysis� but we conjecture

the Subject Reduction for ��� Lemma �
���
� could be appropriately extended to the

new analysis� based on suitable rewriting semantics for the extended language�

��

Chapter �

Using Set�Based Analysis for Static Debugging

The constraint system inferred by set�based analysis provides information about the

behavior of the analyzed program� MrSpidey uses this constraint system to

� compute a compact and intuitive value set invariant� or type� for each expression

in the program� and

� identify potentially unsafe program operations�

This chapter describes how this information is inferred from the results of the analysis�

��� The Type Language

The simple constraint system computed by set�based analysis is not suitable for pre�

sentation to the programmer� Simple constraint systems are well�suited for e�ciently

representing and manipulating information about a program�s run�time behavior� but

are di�cult for programmers to interpret� for two reasons�

� The constraints are expressed in terms of �selectors�� instead of the conventional

�constructors�� which are familiar to most programmers�

� Simple constraint systems use set variables extensively as indirection pointers�

For example� the constraint � � rng�rng���� is represented as the simple con�

straint system f� � rng���� � � rng���g with an indirection through �� This

extensive use of indirections makes constraint systems di�cult to interpret�

To avoid the need for programmers to interpret constraint systems� MrSpidey uses

a conventional type language for communication with programmers� We present the

type language in the context of the programming language �p described in section ��
�

This type language includes constants� set variables� the empty type �s� functions�

pairs� unions and recursive type de�nitions
 see �gure ���� The scope rules for recur�

sive type de�nitions are analogous to Scheme�s letrec construct� The notions of free

��

and bound variables in types are de�ned in the usual manner� and we use Type� to

denote the set of closed types�

� � Type � c

j �
j �s

j �� �T ��
j �cons � ��
j � � �
j �rec ���� ��� � � � ��n �n�� ��

T
 FnTag

Figure
�� The type language Type�

The semantics of closed types is speci�ed via the meaning functionM that maps

each closed type intoD� The semantics of open types is speci�ed via a related function

M�� where the additional set environment � speci�es the meaning of the free variables

in the type� These two functions are de�ned in �gure ��
� The semantics of the types

c� �� and �s are straightforward� The type ��� �T ��� denotes an element of D

with function tags T and whose dom and rng components are described by �� and ���

respectively� The type �cons �� ��� denotes an element of D with whose car and cdr

components are denoted by �� and ��� respectively� The type ����� denotes the union

�or least upper bound� of �� and ��� The recursive type �rec ���� ��� � � � ��n �n�� ��

denotes the element of D described by �� where each �i is bound to the element

denoted by �i�

��� Computing Type Information

MrSpidey infers a type for each program expression from the constraint system S

computed by set�based analysis� The least solution LeastSoln�S� of this constraint

system is a set environment mapping set variables to elements of the domain D�

For each labeled expression M l in the program� LeastSoln�S��l� describes the set of

possible run�time values of M l� To communicate this value set to the programmer�

��

M���
 Type� �� D
M��� � M����

�the choice of � does not a�ect the defn��

M����
 SetEnv 	Type �� D
M��c� � hfcg��s��s��s��si
M���� � ����
M���s� � �s

M����� �T ���� � hT� ������ �������s��si
M���cons �� ���� � hfpairg��s��s�M������M�����i

M���� � ��� � M����� ts M�����
M���rec ���� ��� � � � ��n �n�� ��� � M�����

where �� � lfp���� ���i �� M���i���
under the ordering vs

Figure
�� The semantics of types�

MrSpidey computes a type invariant describing LeastSoln�S��l� from the program�s

constraint system� This type invariant is computed in three steps�

Step �

MrSpidey �rst uses one of the simpli�cation algorithms from section ��� to simplify

the constraint system S with respect to the external variable l� while preserving

LeastSoln�S��l��

Step �

MrSpidey then computes a type from the simpli�ed constraint system according to

the function MkType
 SimpleConSystem 	 SetVar �� Type�

MkType�S� �� � �rec ���� ��� � � � ��n �n�� ��

where f��� � � � � �ng � SetVar �S�

and �i � MkType��S� �i�

The auxiliary functionMkType� maps a constraint system S and a set variable �i to

an open type that may refer to other set variables from S� The function MkType

�

then links the open types for each set variable in S together in a single rec type� thus

producing an appropriate closed type�

The auxiliary function MkType �
 SimpleConSystem 	SetVar �� Type is de�ned

as

MkType ��S� �� � �b � �p � �f

where �b � fb � BasicConst j S �� b � �g

�p � �cons �car �cdr�

�car � f� j S �� � � car���g

�cdr � f� j S �� � � cdr���g

�f � ��dom �T �rng�

T � ft � FnTag j S �� t � �g

�dom � f� j S �� �i �� �� � � dom���g

� �rng � f� j S �� � � rng���g

The auxiliary function MkType � returns a union of three types� The �rst type �b

describes the basic constants in LeastSoln�S����� the second type �p describes pairs

in LeastSoln�S����� and the last type �f describes the function tags and argument

and results sets in LeastSoln�S����� In the de�nition above� we use a set of types to

denote the corresponding union type� i�e�� the set of types f��� ��� ��g denotes the

union type �� � �� � ��� and the empty set denotes the type �s�

The type produced by MkType�S� �� correctly describes LeastSoln�S�����

Lemma
���� �Correctness of MkType�� If S is a simple constraint system then

M�MkType�S� ��� � LeastSoln�S����

Proof	 See Appendix B���

��

Step �

Finally� MrSpidey uses the following reductions on Type to simplify type expressions�

� � �s �� �

�s � � �� �

�cons �s �s� �� �s

��s �� �s� �� �s

�rec �� �� �� �

�rec ���� ��� � � � ��n �n�� �� ��
�rec ���� ��� � � � ��i�� �i�����i�� �i��� � � � ��n �n�� ����i �� �i�

provided �i �� SetVar ��i�

MrSpidey produces a type that is in normal form with respect to these reductions�

each of which preserves the meaning of type expressions�

Lemma
���� �Correctness of Type Reductions�� If �� �� �� then M����� �

M����� for any set environment ��

Proof	 By case analysis on the reductions �� �� ���

The type produced by this three�step processes provides a compact description of

the corresponding value�set invariant� and is more easily understood by the program�

mer than the original constraint system produced by set�based analysis�

��� Identifying Unsafe Operations

Unsafe program operations are a natural starting point in the static debugging pro�

cess� MrSpidey identi�es these unsafe operations using the results of set�based anal�

ysis� We consider the problem of identifying unsafe operations in the language �p�

To identify these unsafe operations� MrSpidey considers in turn each operation in the

program�

� Suppose the operation is of the form �car M l�� Then MrSpidey considers the

set of constants fc j �c � l� � Sg� where S is the constraint system for the

program closed under �� If this constant set only contains the tag pair� then�

according to the de�nition of the relation V in X� the value set invariant for

M l contains only pairs� Hence the operation �car M l� is safe� and can never

raise an error during an execution�

��

Conversely� if the constant set contains additional constants such as function

tags or basic constants� then the expression M l may return values other than

pairs� in which case operation �car M l� is unsafe� since it may raise an error at

run�time�

� Operations of the form �cdr M l� are dealt with in a similar manner�

� Suppose the operation is an application of the form �M l N�� If the constant

set fc j �c � l� � Sg for M l only contains function tags� then M l only returns

functions� and the application will always succeed�

Conversely� if the constant set contains additional constants such as basic con�

stants or the tag pair� then M l may return values other than functions� Hence

the application unsafe� and may raise an error at run�time�

Since car� cdr and function application are the only operations in the language

that may cause errors in �p� the above analysis will identify all unsafe operations�

Appendix E�� describes how MrSpidey extends this idea to detect unsafe opera�

tions in full Scheme�

��

Chapter �

User Interface to the Static Debugger

A useful static debugger must �t seamlessly into a programmer�s work pattern� and

should provide the programmer with useful information in a natural and easily ac�

cessible manner� For these reasons� we integrated MrSpidey with DrScheme� Rice�s

program development environment for Scheme�

On demand� MrSpidey analyzes the current project and uses the resulting con�

straint systems to infer useful static debugging information� Speci�cally� MrSpidey

�� identi�es unsafe program operations�

� derives an appropriate type for each program expression� and

�� provides a graphical explanation of each derived invariant�

MrSpidey presents this information to the programmer using program mark�ups�

These mark�ups are simple font and color changes that provide information about the

analysis results without disturbing the familiar lexical and syntactic structure of the

program� Additional information is available via a pop�up menu associated with each

marked�up token� The programmer can thus browse through the derived information�

and can resume program development based on an improved understanding of the

program�s execution behavior�

��� Displaying Unsafe Operations

Unsafe program operations that may raise run�time errors are natural starting points

in the static debugging process� MrSpidey highlights these unsafe operations via font

and color changes� Any primitive operation that may be applied to inappropriate

arguments� thus raising a run�time error� is highlighted in red �or underlined on

monochrome screens�� Conversely� primitive operations that never raise errors are

shown in green� Any function de�nition that may be applied to an incorrect number of

arguments is highlighted by displaying the lambda keyword in red �again� underlined

��

on monochrome screens�� and any application expression where the function position

may yield a non�function is highlighted by displaying the enclosing parentheses in red

�or underlined�� Figure ��� contains an example of each of these three kinds of unsafe

operations�

MrSpidey also presents summary information describing each unsafe operation�

together with a hyper�link to that operation� The tab key moves the focus forward

to the next unsafe operation� and the shift�tab key moves the focus backward to

the previous unsafe operation� By using these facilities� the programmer can easily

inspect the unsafe operations in a program�

Figure ��� Identifying unsafe operations

��� Pop�Up Menu

MrSpidey also provides a signi�cant amount of additional information for each ex�

pression in the analyzed program� This information cannot be immediately displayed�

��

since it would simply result in �information overload�� Instead� MrSpidey provides

this information on a demand�driven basis via a pop�up menu associated with each

program variable and expression� Figure ��
 shows the pop�up menu displayed by

clicking on the variable tree� The information available through the menu is described

in the following sections�

Figure ��� The pop�up menu

��� Presenting Type Information

MrSpidey lazily computes a type for each program expression� as described in sec�

tion ��
� The selection of the Show Value Set option from an expression�s menu causes

MrSpidey to compute the corresponding type� and to display that type in a box in�

serted to the right of the expression in the bu�er� For example� �gure ��� shows the

inferred type for the variable tree�

��

Figure ��� Displaying type information

��� The Value Flow Browser

During the constraint derivation phase of the set�based analysis� MrSpidey infers

subset constraints of the form �� � �� that describe the 	ow of values between

various points in the program�

Since the type invariant of an expression is derived from the values propagated

along the incoming subset constraints to that expression� the collection of all subset

constraints for a program provides an explanation of the derivation of type invariants

for that program� MrSpidey can display each subset constraint as an arrow overlaid

on the program text� Because a large numbers of arrows would clutter the program

text� these arrows are presented in a demand�driven fashion� The Parent option in

the pop�up menu for an expression allows the programmer to view incoming edges for

that expression in the value�	ow graph� For example� �gure ��� shows the incoming

edges for the parameter tree�

Hyper�links associated with the head and tail of each arrow provide a fast means of

navigating through textually distinct but semantically related parts of the program�

which is especially useful on large programs� Clicking on the head of an arrow moves

the focus to the term at the tail of the arrow� and vice versa�

��

Figure ��
 Value source information

Using these facilities� a programmer who encounters a surprising value set invari�

ant can proceed in an iterative fashion to expose arrows that describe the derivation of

that invariant� To expedite this iterative process� MrSpidey also provides an Ancestors

facility that automatically exposes all portions of the value 	ow graph that in	uence

a particular invariant� thus providing the programmer with a complete explanation

of the derivation of that invariant� For example� �gure ��� shows the ancestors of the

argument variable tree�

In some cases� the number of arrows presented by the ancestor facility is exces�

sive� Since the programmer is typically only interested in a particular class of values�

MrSpidey incorporates a �lter facility that allows the programmer to restrict the dis�

played arrows to those that a�ect the 	ow of certain kinds of values� This facility is

extremely useful for quickly understanding why a primitive operation may be applied

to inappropriate argument values� Figure ��� shows how to con�gure the �lter facility

to consider only values corresponding to a particular constructor�

By using an appropriate combination of the ancestor and �lter facilities� the pro�

grammer can quickly view the 	ow of a particular class of value through the program�

��

Figure ��� Ancestors of tree

Figure ��� Con�guring the �lter facility

For example� �gure ��� shows the derivation of the nil component in the value set

invariant for tree�

Finally� MrSpidey also provides Children and Descendants options on the pop�up

menu for each expression� These options allow the programmer to view possible uses

of the expression�s return value�

��

Figure ��� Flow of nil

��� A Sample Debugging Session

To illustrate how the explanatory capabilities of MrSpidey can be used to identify

and eliminate bugs� we describe how this tool could be used on the program sum�ss�

When MrSpidey is invoked� it highlights the primitive operation car as unsafe �see

Figure ����� indicating that this operation may raise a run�time error� Inspecting

the type invariant for the operation argument� tree� shows that this set includes

the inappropriate argument nil �see Figure ����� By using the ancestor and �lter

facilities� we can view how this erroneous value 	ows through the program� resulting

in the display shown in �gure ���� The displayed information makes it obvious that

the error is caused by application of sum to the ill�formed tree �cons �cons nil �� ���

Although the example program sum presented in this section is trivial� it does

provide a good example of the explanatory capabilities of MrSpidey� Before we can

discuss how MrSpidey�s explanatory capabilities scale to signi�cantly larger programs�

we must �rst deal with the problem of analyzing those larger programs� which is the

topic of the following two chapters�

�

Chapter �

Constraint Simpli�cation

The traditional set�based analysis described in chapters
 and � has proven highly

e�ective for programs of up to a couple of thousand lines of code� Unfortunately�

it is useless for larger programs due to its nature as a whole�program analysis and

due to the size of the constraint systems it produces� which are quadratic in the

size of �large� programs� Storing and manipulating these constraint systems can be

extremely expensive�

To overcome this problem� we have developed algorithms for simplifying con�

straint systems� A simpli�ed version of a constraint system contains signi�cantly

fewer constraints� yet still preserves the essential characteristics of the original sys�

tem� Applying these simpli�cation algorithms at strategic points during the con�

straint derivation� e�g�� to the constraint system for a module de�nition or a poly�

morphic function de�nition� signi�cantly reduces both the time and space required

by the overall analysis�

The following section shows that constraint simpli�cation does not a�ect the anal�

ysis results� provided the simpli�ed system is observably equivalent to the original

system� Section ��
 presents a proof�theoretic formulation of observable equivalence�

and section ��� exploits this formulation to develop a complete algorithm for decid�

ing the observable equivalence of constraint systems� The insights provided by this

theoretical development lead to the practical constraint simpli�cation algorithms of

section ����

��� Conditions for Constraint Simpli	cation

Let us consider a program P containing a program component M � where M may

be a module de�nition or a polymorphic function de�nition� Suppose the constraint

derivations for M concludes

� �M
 ��S�

��

where S� is the constraint system for M � Our goal is to replace S� by a simpler

constraint system� say S�� without changing the results of the analysis�

Let the context surrounding M be C� i�e�� P � C�M �� Since the constraint

derivation process is compositional� the constraint derivation for the entire program

concludes

 � P
 ��SC � S�

where SC is the constraint system for C� The union of the sets SC and S� describes

the space of solutions for the entire program� which is the same as the intersection of

the two respective solution spaces

Soln�SC � S�� � Soln�SC� � Soln�S��

Hence Soln�S�� describes at least all the properties of S� relevant to the analysis� but

it may also describe solutions for set variables that are not relevant to the analysis�

In particular

� sba�P � only references the solutions for label variables� and

� an inspection of the constraint derivation rules shows that the only interactions

between SC and S� are due to the set variables in f�g � FV �range�����

In short� the only properties of S� relevant to the analysis is the solution space for its

external set variables

E � Label � f�g � FV �range����

For our original problem� this means that we want a constraint system S� whose

solution space restricted to E is equivalent to that of S� restricted to E

Soln�S�� jE � Soln�S�� jE

or� with the notation from section
�
� S� and S� are observably equivalent on E

S� ��E S� �

We can translate this compaction idea into an additional rule for the constraint

derivation system

� ��	 M
 ��S� S� ��E S� where E � Label � FV �range���� � f�g

� ��	 M
 ��S�
����

��

This rule is admissible in that any derivation �denoted using ��	� in the extended con�

straint derivation system produces information that is equivalent to the information

produced by the original analysis�

Lemma ����� �Admissibility of ������ If
 ��	 P
 ��S is a most general constraint

derivation then

sba�P ��l� � const �LeastSoln�S��l��

Proof	 See Appendix C���

��� The Proof Theory of Observable Equivalence

Since the new derivation rule ���� involves the semantic notion of observably equiv�

alent constraint systems� it cannot be used in an algorithmic manner� To make this

rule useful� we must �rst reformulate the observable equivalence relation �or some

conservative approximation thereof� as a syntactic proof system�

The key properties of the observational equivalence relation are re	ections of the

re	exivity and transitivity of the ordering relation �v� and the monotonicity and

anti�monotonicity of the functions rng and dom� respectively� We can reify these

properties into a syntactic proof system via the following inference rules !

� � � �re�ex �
�� � � � � ��

�� � ��
�trans� �

� �
�

rng�
�� � rng�
��

dom�
�� � dom�
��

�compat�

The meta�variables
�
��
� range over non�constant set expressions

�
��
� � � j dom�
� j rng�
�

This restriction avoids inferring useless tautologies� For example� without this restric�

tion� the constraint c � � would yield the constraint rng�c� � rng��� via �compat��

which is a tautology since rng�c� � ��

The rules �re�ex � and �trans� � capture the re	exivity and transitivity of the or�

dering relation v� �compat� re	ects the monotonicity and anti�monotonicity of the

functions rng and dom� respectively� Since many of the inferred constraints lie out�

side of the original language of simple constraints� we de�ne an extended compound

constraint language that includes all of the inferred constraints

C � CmpdConstraint � c �
 j
 �

S � CmpdConSystem � P�n�CmpdConstraint�

��

We use the boldface roman lettersC and S as meta�variables ranging over compound

constraints and compound constraint systems� respectively�

The proof system ! completely captures the relevant properties of the ordering

v and the functions rng and dom� That is� ! is both sound and complete�

Lemma ����� �Soundness and Completeness of !�� For a compound constraint

system S and a compound constraint C

S �
 C �� S j� C

Proof	 See Appendix C�
�

This lemma implies that !�S� contains exactly those compound constraints that

hold in all environments in Soln�S�� Hence� if we consider a collection of external

set variables E� then !�S� jE contains all compound constraints that hold in all

environments in Soln�S� jE� Therefore the following lemma holds�

Lemma ����� For a compound constraint system S� S ��E !�S� jE�

Proof	 See Appendix C�
�

We could use this result to de�ne a proof�theoretic equivalent of restricted entail�

ment as follows

S� �E
 S� if and only if !�S�� jE � !�S�� jE

and then show that S� �E
 S� if and only if S� j�E S�� However� this de�nition

based on the proof system ! does not lend itself to an e�cient implementation�

Speci�cally� checking if two potential antecedents of �trans� � contain the same set

expression � involves comparing two potentially large set expressions� Hence we

develop an alternative proof system that is more suitable for an implementation� yet

infers the same constraints as !�

The alternative system consists of the inference rules " described in �gure ����

together with the rules � from �gure
��� The rules �compose������ of " replace

a reference to a set variable by an upper or lower �non�constant� bound for that

variable� as appropriate� The rules �re�ex � and �compat� of " are as described above�

The rule �trans�� of " provides a weaker characterization of transitivity than the

previous rule �trans��� but� provided we start from with a simple constraint system�

the additional rules� � and �compose������� compensate for this weakness� That is�

��

� � rng��� � �

� � rng�
�
�compose��

� � dom��� � �

� � dom�
�
�compose��

� � rng��� � �

� � rng�
�
�compose��

� � dom��� � �

� � dom�
�
�compose��

� � � �re�ex �

�� � � � � ��

�� � ��
�trans��

� �
�

rng�
�� � rng�
��
dom�
�� � dom�
��

�compat�

Figure ��� The inference rule system "

suitable combinations of these additional rules allow us to infer any constraint that

could be inferred by the rule �trans���

Lemma ����� �Equivalence of Proof Systems�� For a simple constraint system S

!�S� � "��S�

Proof	 See Appendix C�
�

We could use this result to de�ne a proof�theoretic equivalent of restricted entail�

ment as follows

S� �E�� S� if and only if "��S�� jE � "��S�� jE

and then show that S� �E�� S� if and only if S� j�E S�� However� this de�nition

is needlessly ine�cient� Because �compat� does not eliminate any variables� any

��

�compat��consequent in "��S�� jE is subsumed by its antecedent� If we de�ne

� " n fcompatg

then this argument implies that "��S�� jE �� #��S�� jE� Hence we get the following

lemma�

Lemma ����
 "��S� jE �� #��S� jE�

Proof	 See Appendix C�
�

Together� Lemmas ��
�
� ��
�� and ��
�� provide the basis to introduce proof�

theoretic equivalents of restricted entailment and observable equivalence�

De�nition ������ ��E��� �
E
���

� S� �E�� S� if and only if "��S�� jE � #��S�� jE�

� S� �E
�� S� if and only if S� �

E
�� S� and S� �

E
�� S��

The two relations �E�� and �
E
�� completely characterize restricted entailment and

observable equivalence of constraint systems�

Theorem ����� �Soundness and Completeness of �E�� and �E
����

�� S� �E�� S� if and only if S� j�E S��

� S� �E
�� S� if and only if S�

��E S��

Proof	 See Appendix C�
�

��� Deciding Observable Equivalence

While the relation �E
�� completely characterizes the model�theoretic observable equiv�

alence relation ��E� an implementation of the extended constraint derivation system

needs a decision algorithm for �E
���

Given two simple constraint systems S� and S�� this algorithm needs to verify that

"��S�� jE � "��S�� jE� If S� and S� are �rst closed under �� then the algorithm

only needs to verify that "�S�� jE � "�S�� jE� The naive approach to enumerate

and to compare the two constraint systems "�S�� jE and "�S�� jE does not work�

��

since they are typically in�nite� For example� if S � f� � rng���g� then "�S� is the

in�nite set f� � rng���� � � rng�rng����� � � �g�

Fortunately� the in�nite constraint systems inferred by " exhibit a regular struc�

ture� which we exploit to decide observable equivalence as follows

�� We generate regular grammars describing the upper and lower bounds for each

set variable�

� We extend these regular grammars to regular tree grammars �RTGs� describing

all constraints in #�S�� jE and #�S�� jE� This representation allows us to use

a standard RTG containment algorithm to decide if #�S�� jE � #�S�� jE�

�� Based on the RTG containment algorithm� we develop an extended algorithm

that decides the more di�cult entailment question "�S�� jE � #�S�� jE by

allowing for the additional �compat� inferences on S��

By checking entailment in both directions� we can decide if two constraint systems

are observably equivalent� These steps are described in more detail below�

����� Regular Grammars

Our �rst step is to describe� for each set variable � in a simple constraint system S�

the following two languages of the lower and upper non�constant bounds of �

f
 j �
 � �� � #�S� and SetVar �
�
 Eg

f
 j �� �
� � #�S� and SetVar �
�
 Eg

These languages are generated by a regular grammar� For each set variable �� the

grammar contains the non�terminals �L and �U � which generate the above lower and

upper bounds of �� respectively�

To illustrate this idea consider the program component P � ��gy����fx��� y���

where f and g are function tags� and take E � f�P g� The constraint system SP for

P �closed under �� is described in �gure ��
� together with the productions in the

corresponding regular grammar� This grammar describes the upper and lower non�

constant bounds for each set variable in #�SP � jE� For example� the productions

�x
L �� �r

L

�r
L �� dom��P

U �

�P
U �� �P

��

imply that �x
L ��

� dom��P �� This lower bound for x means that the value set for x

must include all values to which the function P is applied�

Additional productions
Constraints SP Grammar Gr�SP � E� in Gt�SP � E�

f � �f R �� �f � �
f
U �

dom��f � � �x �xL �� dom��fU �
� � �� R �� �� � ��

U �

�� � rng��f � ��

U �� rng��fU �

rng��f � � �a �aL �� rng��fL�
�y � �r �

y
U �� �rU �rL ���

y
L

�r � dom��f � �rU �� dom��fL�
g � �P R �� �g � �PU �

dom��P � � �y �
y

L
�� dom��PU �

�a � rng��P � �aU �� rng��PU �

�r � �x �rU �� �xU �xL ���rL
�� � �a ��

U �� �aU �aL ����

L

� � �a R �� �� � �aU �

�PL �� �P �PU ���P R �� ��L � �U � �� � SetVar�SP �

Figure ��� The constraint system� regular grammar� and
regular tree grammar for P � ��gy����fx��� y��

The productions of the grammar are determined by SP and #� For example�

the constraint ��� � rng��f �� � SP implies that for each upper bound
 of �f �

the rule �compose�� infers the upper bound rng�
� of ��� Since� by induction� �f �s

upper bounds are generated by �f
U � the production ��U �� rng��f

U� generates the

corresponding upper bounds of ���

More generally� the collection of productions

f�U �� rng��U� j �� � rng���� � Sg

describes all bounds inferred via �compose�� on a simple constraint system S� Bounds

inferred via the remaining �compose� rules can be described in a similar manner�

Bounds inferred via the rule �re�ex � imply the productions �U �� � and �L �� �

for � � E� Finally� consider the rule �trans��� and suppose this rule infers an upper

bound � on �� This bound must be inferred from an upper bound � on �� using the

additional antecedent �� � ��� Hence the productions f�U �� �U j �� � �� � Sg

��

generate all upper bounds inferred via �trans��� In a similar fashion� the productions

f�L �� �L j �� � �� � Sg generate all lower bounds inferred via �trans���

De�nition ������ �Regular Grammar Gr�S� E�� Let S be a simple constraint

system and E a collection of set variables� The regular grammar Gr�S� E� consists of

the non�terminals f�L� �U j � � SetVar �S�g and the following productions

�U �� �� �L �� � � � � E

�U �� �U � �L �� �L � �� � �� � S

�U �� dom��L� � �� � dom���� � S

�U �� rng��U� � �� � rng���� � S

�L �� dom��U� � �dom��� � �� � S

�L �� rng��L� � �rng��� � �� � S

The grammarGr�S� E� generates two languages for each set variable that describe

the upper and lower non�constant bounds for that set variable� Speci�cally� if ���
G

denotes a derivation in the grammarG� and LG�x� denotes the language f� j x ���
G �g

generated by a non�terminal x� then the following lemma holds�

Lemma ����� Let G � Gr�S� E�� Then

LG��L� � f
 j �
 � �� � #�S� and SetVar �
�
 Eg

LG��U � � f
 j �� �
� � #�S� and SetVar �
�
 Eg

Proof	 See Appendix C���

����� Regular Tree Grammars

The grammar Gr�S� E� does not describe all constraints in #�S� jE� In particular

� Gr�S� E� does not describe constraints of the form �c � � �� Thus� for example�

the regular grammar for the example program component P does not describe

the constraint �� � rng��P �� in #�SP � jE�

� Gr�S� E� does not describe constraints inferred by the �trans�� rule that are

not bounds of the form �
 � �� or �� �
�� To illustrate this idea� consider the

program Q � ��tx�x� whose constraint system is

SQ � ft � �Q� dom��Q� � �x� �x � rng��Q�g �

��

The regular grammar Gr�SQ� E� for Q describes the constraints fdom��Q� �

�x� �x � rng��Q�g in #�SQ� jE� but it does not describe the trans� consequent

�dom��Q� � rng��Q�� of those constraints� which is also in #�SQ� jE�

For an arbitrary constraint system S� we represent the constraint system #�S� jE

by extending the grammar Gr�S� E� to a regular tree grammar Gt�S� E�� The ex�

tended grammar combines upper and lower bounds for set variables in the same

fashion as the �trans�� rule� and also generates constraints of the form �c � � � where

appropriate�

De�nition ������ �Regular Tree Grammar Gt�S� E�� The regular tree gram�

mar Gt�S� E� extends the grammar Gr�S� E� with the root non�terminal R and the

additional productions

R �� ��L � �U � � � � SetVar �S�

R �� �c � �U � � �c � �� � S

where �� � �� is viewed as a binary constructor�

The extended regular tree grammar Gt�S� E� describes all constraints in #�S� jE�

Lemma ����
 Let G � Gt�S� E�� Then #�S� jE � LG�R��

Proof	 See Appendix C���

The grammar Gt�SP � E� for the example program component P is described in

�gure ��
� This grammar yields all constraints in #�SP � jE� For example� the pro�

ductions

R �� �� � �a
U � �a

U �� rng��P
U� �P

U �� �P

imply that R ��� �� � rng��P ��� or that the constant � is returned as a possible result

of the function P �

����� Staging

Before we can exploit the grammar representation of #�S� jE� we must prove that the

closure under ��#�fcompatg can be performed in a staged manner� The following

lemma justi�es this staging of the closure algorithm� In particular� it states that #

does not create any additional opportunities for rules in �� and �compat� does not

create any additional opportunities for # or ��

�

Lemma ����� �Staging�� For any simple constraint system S

"��S� � "���S�� � compat�#���S���

Proof	 See Appendix C���

����
 The Entailment Algorithm

We can check entailment based on lemmas ����� and ����� as follows� Given S� and

S�� we close them under � and then have

S� �E�� S�

�� "��S�� jE � #��S�� jE by defn �E��
�� "���S��� jE � #���S��� jE by lemma �����

�� "�S�� jE � #�S�� jE as Si � ��Si�

�� compat�#�S�� jE� � #�S�� jE by lemma �����

�� compat�LG�
�R�� � LG�

�R� by lemma �����

where Gi � Gt�Si� E�

The containment question

LG�
�R� � LG�

�R�

can be decided via a standard RTG containment algorithm �
��� To decide the more

di�cult question

compat�LG�
�R�� � LG�

�R�

we extend the RTG containment algorithm to allow for constraints inferred via

�compat� on the language LG�
�R��

The extended algorithm is presented in �gure ���� It �rst computes the largest

relation RS��S� such that RS��S� ��L� �U� C�D� holds if and only if

L���L � �U ��
 compat�L�C�� � L�D�

where �L� �U describe collections of types� C� D describe collections of constraints�

and L���L � �U �� denotes the language f��L � �U � j �L ��� �L� �U ��� �Ug� The

�rst case in the de�nition of R uses an RTG containment algorithm to detect if

L���L � �U ��
 L�C� � L�D�� The two remaining cases handle constraints of the

form �rng���L� � rng���U�� or �dom��
�
U� � dom���L��� and allow for inferences via

��

The Entailment Algorithm

In the following� P�n denotes the �nite power�set constructor�
Let

G� � Gt�S�� E�
G� � Gt�S�� E�

Li � f�L j � � SetVar�Si�g
Ui � f�U j � � SetVar�Si�g

Let G� and G� be pre�processed to remove ��transitions�
For C � P�n�L� � U��� de�ne

LG�
�C� � f��L � �U � j h�L� �Ui � C� �L ��G�

�L� �U ��G�
�Ug

The relation RS��S� ��� �� �� �� is de�ned as the largest relation on

L� � U� �P�n�L� � U���P�n�L� � U��

such that if

RS��S� ��L� �U � C�D�
�L ��G�

X

�U ��G�
Y

then one of the following cases hold

	� LG�
��X � Y �� � LG�

�C �D��

�� X � rng���L�� Y � rng���U� and RS��S� ��
�
L� �

�
U � C�D

��� where

D� � fh��L� �
�
Ui j h�L� �Ui � C �D� �L ��G�

rng���L�� �U ��G�
rng���U �g

�� X � dom���U�� Y � dom���L� and RS��S� ��
�
L� �

�
U � C�D

��� where

D� � fh��L� �
�
Ui j h�L� �Ui � C �D� �L ��G�

dom���U�� �U ��G�
dom���L�g

�� In no other cases does RS��S� ��L� �U � C�D� hold�

The computable entailment relation S� 	
E
alg S� holds if and only if

	�
R ��G�
��L � �U �� RS��S� ��L� �U � fh�L� �Ui j � � SetVar�S��g� ��� and

��
R ��G�
�c � �U �� LG�

��U� � LG�
�f�U j R ��G�

�c � �U �g��

Figure ��� The computable entailment relation �Ealg

��

�compat�� The relation R can be computed by starting with a maximal relation �true

at every point�� and then iteratively setting entries to false� until the largest relation

satisfying the de�nition is reached�

Based on this relation� the algorithm then de�nes a computable entailment relation

�Ealg on constraint systems� This relation is equivalent to �
E
��

Theorem ����� �Correctness of the Entailment Algorithm�� S� �E� S� if and only

if S� �Ealg S��

Proof	 See Appendix C���

The entailment algorithm takes exponential time� since the size ofR is exponential

in the number of set variables in S�� Although faster algorithms for the entailment

may exist� these algorithms must all be in PSPACE� because the containment prob�

lem on NFA�s� which is PSPACE�complete ���� can be polynomially reduced to the

entailment problem on constraint systems�

By using the entailment algorithm in both directions� we can now decide if two

constraint systems are observable equivalent� Thus� given a constraint system� we

can �nd a minimal� observably equivalent system by systematically generating all

constraint systems in order of increasing size� until we �nd one observably equivalent

to the original system� Of course� the process of computing the minimal equivalent

system with this algorithm is far too expensive for use in practical program analysis

systems�

��� Practical Constraint System Simpli	cation

Fortunately� to take advantage of the rule ���� in program analysis algorithms� we

do not need a completely minimized constraint system� Any simpli�cations in a

constraint system produces corresponding reductions in the time and space required

for the overall analysis�

For this purpose� we exploit the connection between constraint systems and RTGs�

By Lemma ������ any transformation on constraint systems that preserves the lan�

guage

LGt���S
�E
�R�

also preserves the observable behavior of S with respect to E� Based on this obser�

vation� we have transformed a variety of existing algorithms for simplifying regular

tree grammars to algorithms for simplifying constraint systems� In the following

��

subsections� we present the four most promising algorithms found so far� We use

G to denote Gt�S� E�� and we let X range over non�terminals and p over paths�

which are sequences of the constructors dom and rng� Each algorithm assumes that

the constraint system S is closed under �� Computing this closure corresponds to

propagating data�	ow information locally within a program component� This step is

relatively cheap� since program components are typically small �less than a thousand

lines of code��

Constraints Production Rules Non
empty Reachable

f � �f R �� �f � �
f
U �

dom��f � � �x �xL �� dom��fU�
� � �� R �� �� � ��

U � � � �� � � ��

�� � rng��f � ��

U �� rng��fU�

rng��f � � �a �aL �� rng��fL�
�y � �r �

y
U �� �rU �rL ���

y
L �y � �r

�r � dom��f � �rU �� dom��fL�
g � �P R �� �g � �PU � g � �P g � �P

dom��P � � �y �
y

L �� dom��PU� dom��P � � �y

�a � rng��P � �aU �� rng��PU� �a � rng��P � �a � rng��P �

�r � �x �rU �� �xU �xL ���rL �r � �x

�� � �a ��

U �� �aU �aL ����

L �� � �a �� � �a

� � �a R �� �� � �aU � � � �a � � �a

�PL �� �P �PU ���P

Figure ��
 The constraint system� grammar and
simpli�ed systems for P � ��gy����fx��� y��

��
�� Empty Constraint Simpli�cation

A non�terminal X is empty if LG�X� �
� Similarly� a production is empty if it

refers to empty non�terminals� and a constraint is empty if it only induces empty

productions� Since empty productions have no e�ect on the language generated by

G� an empty constraint in S can be deleted without changing S�s observable behavior�

Let us illustrate this idea with the program component P � ��gy����fx��� y�� we

considered earlier� Although this example is unrealistic� it illustrates the behavior

of our simpli�cation algorithms� The solved constraint system SP for P is shown in

��

�gure ���� together with the corresponding grammar Gt�SP � E� where E � f�Pg� An

inspection of this grammar shows that the set of non�empty non�terminals is

f�P
L � �

P
U � �

y
L� �

a
U � �

r
L� �

�
U � �

x
L� Rg

Five of the constraints in SP are empty� and are removed by this simpli�cation algo�

rithm� yielding a simpli�ed system of eight non�empty constraints�

��
�� Unreachable Constraint Simpli�cation

A non�terminal X is unreachable if there is no production R �� �Y � Z� or R �� �Z �

Y � such that LG�Y � ��
 and Z ��
G p�X�� Similarly� a production is unreachable if it

refers to unreachable non�terminals� and a constraint is unreachable if it only induces

unreachable productions� Unreachable productions have no e�ect on the language

LG�R�� and hence unreachable constraints in S can be deleted without changing the

observable behavior of S�

In the above example� the reachable non�terminals are ��U � �
a
U and �

g
U � Three

of the constraints are unreachable� and are removed by this algorithm� yielding a

simpli�ed system with �ve reachable constraints�

��
�� Removing ��Constraints

A constraint of the form �� � �� � S is an ��constraint � Suppose � �� E and the only

upper bound on � in S is the ��constraint �� � ��� i�e�� there are no other constraints

of the form � � � � rng��� � �� or � � dom��� in S� Then� for any solution � of S�

the set environment �� de�ned by

����� �

��
� ���� if � �� �

���� if � � �

is also a solution of S� Therefore we can replace all occurrences of � in S by � while

still preserving the observable behavior Soln�S� jE� This substitution transforms

the constraint �� � �� to the tautology �� � ��� which can be deleted� Dually� if

�� � �� � S with � �� E and � having no other lower bounds� then we can replace �

by �� again eliminating the constraint �� � ���

To illustrate this idea� consider the remaining constraints for P � In this system�

the only upper bound for the set variable �� is the ��constraint ��� � �a�� Hence this

��

algorithm replaces all occurrences of �� by �a� which further simpli�es this constraint

system into

f� � �a� �a � rng��P �� g � �P g

This system is the smallest simple constraint system observably equivalent to the

original system ��S��

��
�
 Hopcroft�s Algorithm

The previous algorithm merges set variables under certain circumstances� and only

when they are related by an ��constraint� We would like to identify more general

circumstances under which set variables can be merged� To this end� we de�ne a

valid uni�er for S to be an equivalence relation � on the set variables of S such that

we can merge the set variables in each equivalence class of � without changing the

observable behavior of S� Using a model�theoretic argument� we can show that an

equivalence relation � is a valid uni�er for S if for all solutions � � Soln�S� there

exists another solution �� � Soln�S� such that �� agrees with � on E and ����� � �����

for all � � ��

A natural strategy for generating �� from � is to map each set variable to the least

upper bound of the set variables in its equivalence class

����� �
F

����

�����

Figure ��� describes su�cient conditions to ensure that �� is a solution of S� and hence

that � is a valid uni�er for S� To produce an equivalence relation satisfying these

conditions� we use a variant of Hopcroft�s O�n lg n� time algorithm �
�� for computing

an equivalence relation on states in a DFA and then merge set variables according to

their equivalence class��

The following theorem states that this simpli�cation algorithm preserves the ob�

servable behavior of constraint systems�

Theorem ��
�� �Correctness of the Hopcroft Algorithm�� Let S be a simple con�

straint system with external variables E� let � be an equivalence relation on the set

variables in a constraint system S satisfying conditions �a� to �e� from �gure ���� let

�A similar development based on the de�nition ����� � uf����� j � � ��g results in an alternative
algorithm� which is less e�ective in practice�

��

�� Use a variant of Hopcroft�s algorithm �
�� to compute an equivalence relation
� on the set variables of S that satis�es the following conditions

�a� Each set variable in E is in an equivalence class by itself�

�b� If �� � �� � S then �� � �� �� � �� such that ��� � ��� � S�

�c� If �� � rng���� � S then �� � �� �� � �� such that ��� � rng����� � S�

�d� If �rng��� � �� � S then �� � �� �� � �� such that �rng���� � ��� � S�

�e� If �� � dom���� � S then �� � �� �� � �� such that ��� � dom����� � S�

� Merge set variables according to their equivalence class�

Figure ��� The Hopcroft algorithm

the substitution f map each set variable to a representation element of its equivalence

class� and let S � � f�S�� i�e�� S � denotes the constraint system S with set variables

merged according to their equivalence class� Then S ��E S ��

Proof	 See Appendix C���

��� Simpli	cation Benchmarks

To test the e�ectiveness of the simpli�cation algorithms� we extended MrSpidey

with the four algorithms that we have just described
 empty� unreachable� ��removal �

and Hopcroft � Each algorithm also implements the preceding simpli�cation strategies�

The �rst three algorithms are linear in the number of non�empty constraints in the

system� and Hopcroft is log�linear�

We tested the algorithms on the constraint systems for nine program components

on a ���MHz Sparc Ultra � with �
�M of memory� using the MzScheme compiler �����

The results are described in �gure ���� The second column gives the number of lines

in each program component� and the third column gives the number of constraints in

the original �unsimpli�ed� constraint system after closing it under the rules �� The

remaining columns describe the behavior of each simpli�cation algorithm� presenting

the factor by which the number of constraints was reduced� and the time �in mil�

liseconds� required for this simpli�cation� Since MzScheme is a byte code compiler�

��

empty unreachable ��removal Hopcroft

De�nition lines size factor time factor time factor time factor time

map
 ��	 � �	� � �� 		 �� 	� ��
reverse � ��� � �	� � �� �� 	� �� ��
substring �
�� 	� 	� �� 	� �� 	� �� ��
qsort �	 	��� 	
 �	� 	
 ��
�
� �� ��
unify �� ���	 	� 	� 		 ��

 	�� �
 	
�
hopcroft ��	 ���� �
 	� �� 	�� 		� 	�� 	�� ���
check ��� �	�
� �
� � 		
� �� ��� 	��
	�
escher�fish ��� ��
�� 	�� 	� ��� �� ��� �� ��� ��
scanner 	���
��	
 � 	�� 	� ��� �
 ��
�
� �	��

Figure ��� Behavior of the constraint simpli�cation algorithms�

porting the simpli�cation algorithms to a native code compiler could be expected to

produce a speed�up of roughly a factor of ��

The results demonstrate the e�ectiveness and e�ciency of our simpli�cation algo�

rithms� The resulting constraint systems are typically at least an order of magnitude

smaller than the original system� The cost of these algorithms is reasonable� particu�

larly considering that they were run on a byte code compiler� As expected� the more

sophisticated algorithms are more e�ective� but are also more expensive�

��

Chapter 	

Componential Set�Based Analysis

Equipped with the simpli�cation algorithms� we can now return to our original prob�

lem of extending set�based analysis to handle signi�cantly larger programs� These

programs are typically constructed as a collection of program components �e�g� mod�

ules� packages or �les�� Exploiting this component�based structure is the key to

analyzing such programs e�ciently�

The following section describes componential set�based analysis� Section ��

presents experimental results on the e�ectiveness of the analysis� and section ���

describes how MrSpidey presents the analysis results for multi�component programs

to the programmer�

The constraint simpli�cation algorithms also enables an e�cient polymorphic� or

context�sensitive� analysis that only duplicates a simpli�ed constraint system for each

reference to a polymorphic function� A description of this polymorphic analysis is

presented in section ���� together with experimental results on the behavior of the

analysis�

�� Componential Set�Based Analysis

Componential set�based analysis processes programs in three steps�

�� For each component in the program� the analysis derives and simpli�es the

constraint system for that component and saves the simpli�ed system in a con�

straint �le� for use in later runs of the analysis� The simpli�cation is performed

with respect to the external variables of the component� excluding expression

labels� in order to minimize the size of the simpli�ed system� Thus� the simpli�

�ed system only needs to describe how the component interacts with the rest of

the program� and the simpli�cation algorithm can discard constraints that are

only necessary to infer local value set invariants� These discarded constraints

are reconstructed later as needed�

��

This step can be skipped for each program component that has not changed

since the last run of the analysis� and the component�s constraint �le can be

used instead�

� The analysis combines the simpli�ed constraint systems of the entire program

and closes the combined collection of constraints under �� thus propagating

data�	ow information between the constraint systems for the various program

components�

�� Finally� to reconstruct the full analysis results for the program component that

the programmer is focusing on� the analysis tool combines the constraint system

from the second step with the unsimpli�ed constraint system for that compo�

nent� It closes the resulting system under �� which yields appropriate value set

invariants for each labeled expression in the component�

The new analysis can easily process programs that consist of many components�

For its �rst step� it eliminates all those constraints that have only local relevance�

thus producing a small combined constraint system for the entire program� As a

result� the analysis tool can solve the combined system more quickly and using less

space than traditional set�based analysis �
��� Finally� it recreates as much precision

as traditional set�based analysis as needed on a per�component basis�

The new analysis performs extremely well in an interactive setting because it

exploits the saved constraint �les where possible and thus avoids re�processing many

program components unnecessarily�

�� Experimental Results

We implemented four variants of componential set�based analysis� Each analysis uses

a particular simpli�cation algorithm from chapter � to simplify the constraint sys�

tems for the program components� We tested these analyses with �ve benchmark

programs� ranging from ��
�� to ������ lines� For comparison purposes� we also

analyzed each benchmark with the standard set�based analysis that performs no sim�

pli�cation� The analyses handled library functions in a context�sensitive� polymorphic

manner according to the constraint derivation rules �let � and �inst� to avoid merging

information between unrelated calls to these functions� The remaining functions were

analyzed in a context�insensitive� monomorphic manner� The results are documented

in �gure ����

�

The fourth column in the �gure shows the maximum size of the constraint system

generated by each analysis� and also shows this size as a percentage of the constraint

system generated by the standard analysis� The analyses based on the simpli�cation

algorithms produce signi�cantly smaller constraint systems� and can also analyze

more programs� such as sba and poly� for which the standard analysis exhausted

heap space�

The �fth column shows the time required to analyze each program from scratch�

without using any existing constraint �les�� The analyses that exploit constraint

simpli�cation yield signi�cant speed�ups over the standard analysis because they

manipulate much smaller constraint systems� The results indicate that� for these

benchmarks� the ��removal algorithm yields the best trade�o� between e�ciency and

e�ectiveness of the simpli�cation algorithms� The additional simpli�cation performed

by the more expensive Hopcroft algorithm is out�weighed by the overhead of running

the algorithm� The tradeo� may change as we analyze larger programs�

To test the responsiveness of the componential analyses in an interactive setting

based on an analyze�debug�edit cycle� we re�analyzed each benchmark after changing

a randomly chosen component in that benchmark� The re�analysis times are shown in

the sixth column of �gure ���� These times show an order�of�magnitude improvement

in analysis times over the original� standard analysis� since the saved constraint �les

are used to avoid reanalyzing all of the unchanged program components� For example�

the analysis of zodiac� which used to take over two minutes� now completes in under

four seconds� Since practical debugging sessions using MrSpidey typically involve

repeatedly analyzing the project each time the source code of one module is modi�ed�

e�g�� when a bug is identi�ed and eliminated� using separate analysis substantially

improves the usability of MrSpidey�

The disk�space required to store the constraint �les is shown in column seven�

Even though these �les use a straight�forward� text�based representation� their size is

typically within a factor of two or three of the corresponding source �le�

�� User Interface for Multi�File Programs

We extended MrSpidey�s user interface to cope with programs consisting of multiple

source �les� or components� MrSpidey �rst analyses the program� using the compo�

nential set�based analysis described above� and then displays an annotated version of

�These times exclude scanning and parsing time�

��

Num� of Analysis Re�analysis Constraint
Program lines Analysis constraints time time �le �bytes�

scanner 	�
� standard �	K 	��	s ���s
��K
empty ��K ����� 	���s ��	s 	��K

unreachable 	
K ��
�� ���s ���s ��K
��removal 	�K ����� ��
s 	��s ��K
Hopcroft 	�K ����� 	���s 	��s �
K

zodiac ��	� standard ���K 	����s 		���s 	���K
empty ��K ���� ���	s ��	s ���K

unreachable �	K ���� ����s ��
s 	��K
��removal 	�K ���� ����s ���s 	��K
Hopcroft 		K ���� �	��s ���s 	��K

nucleic ���� standard ���K ����s
	��s ����K
empty ��K �����
���s 	���s
��K

unreachable ��K ����� ����s 	���s ���K
��removal
�K �	��� ����s 	��	s ���K
Hopcroft
�K �	��� ����s 	���s ���K

sba 		
�� standard �� 	
M � � �

empty 	���K ������ 	�	�
s �
�
s 	�
	K
unreachable 	�
K ����� 	���
s ����s ���K
��removal ��K ����� 	���	s ����s ���K
Hopcroft �
K ��	�� 	
���s �	�	s �	�K

mod�poly 	���	 standard �� 	
M � � �

empty �� 	
M � � �

unreachable ��	K ����� �
���s ����s 	
	�K
��removal ��K ��	�� �����s 	���s 	���K
Hopcroft ��K ��	�� �
��	s 	���s ���K

� indicates the analysis exhausted heap space

Figure ��� Behavior of the modular analyses�

the program�s main �le with the usual static debugging mark�ups� The programmer

can also view annotated versions of any other source �le by using the File�Open ���

dialog box �shown in Figure ��
� to select the source �le of interest�

In multi��le programs� the source �or destination� of an arrow may sometimes

refer to a program point in a separate �le� In this case MrSpidey draws an arrow

originating �or terminating� in the left margin of the program� as shown in �gure ����

Clicking on the arrow provides the option to zoom to and highlight the term at the

��

Figure ��� The File�Open ��� dialog box

other end of the arrow� as shown in �gures ��� and ���� These facilities are useful for

following the 	ow of values through multi��le programs�

�� E
cient Polymorphic Analysis

The constraint simpli�cation algorithms also enables an e�cient polymorphic� or

context�sensitive� analysis� To avoid merging information between unrelated calls to

functions that are used in a polymorphic fashion� a polymorphic analysis duplicates

the function�s constraints at each call site� We extended MrSpidey with �ve polymor�

phic analyses� The �rst analysis is copy� which duplicates the constraint system for

each polymorphic reference via a straightforward implementation of the rules �let � and

�inst��y The remaining four analyses are smart analyses that simplify the constraint

system for each polymorphic de�nition�

yWe also implemented a polymorphic analysis that re
analyzes a de�nition at each reference� but
found its performance to be comparable to� and sometimes worse than� the copy analysis�

��

Figure ��� Source in another �le

Figure ��
 Zooming to the source in another �le

We tested the analyses using a standard set of benchmarks �
��� The results of

the test runs are documented in �gure ���� The second column shows the number of

lines in each benchmark� the third column presents the time for the copy analysis�

and columns four to seven show the times for each smart polymorphic analysis� as

a percentage of the copy analysis time� For comparison purposes� the last column

shows the relative time of the original� but less accurate� monomorphic analysis�

��

Figure ��� The source in the other �le

copy Relative time of smart polymorphic analyses Mono�
Program lines analysis empty unreachable ��removal Hopcroft analysis

lattice �	
 ���s ��� ��� �
� ��� ���
browse ��� ��
s ��� ��� ��� �	� �
�
splay ��
 ���s �
� ��� ��� ��� ���
check ��	
��	s �	� ��� 	�� 	�� ���
graphs ��	 ���s �
� �
� ��� ��� ���
boyer ��� ���s ��� ��� ���
�� ���
matrix ��� ��
s ���
��
	�
�� �
�
maze �
� ���s ���
��
�� �	�
��
nbody ��� ����s
�� �
� �
� ��� ���
nucleic ���
 � � ���s � ��s � ��s � ��s � ��s

� indicates the copy analysis exhausted heap space�
and the table contains absolute times for the other analyses

Figure ��� Times for the smart polymorphic
analyses� relative to the copy analysis�

The results again demonstrate the e�ectiveness of our constraint simpli�cation

algorithms� The smart analyses that exploit constraint simpli�cation are always sig�

ni�cantly faster and can analyze more programs than the copy analysis� For example�

while copy exhausts heap space on the nucleic benchmark� all smart analyses suc�

cessfully analyzed this benchmark�

��

Again� it appears that the ��removal analysis yields the best trade�o� between

e�ciency and e�ectiveness of the simpli�cation algorithms� This analysis provides the

additional accuracy of polymorphism without much additional cost over the coarse�

monomorphic analysis� With the exception of the benchmarks browse� splay and

graphs� which do not re�use many functions in a polymorphic fashion� this analysis

is a factor of
 to � times faster than the copy analysis� and it is also capable of

analyzing larger programs�

��

Chapter

Evaluation of MrSpidey

We evaluated the usefulness of MrSpidey as static debugging tool using a number of

programs�

��� Verifying a Web Server

Rice�s web server software consists of a normal� fully�functional web server and a

simple backup server� The backup server consists of a �� line Scheme program that

accepts connections to the web port� and returns a HTML page saying

The Rice University computer science department�s Web server has

been disconnected temporarily�

We used MrSpidey to statically debug the backup server� MrSpidey detected a

single� potentially unsafe operation� where the analysis suggested that the end�of�

�le value could be returned by read�line and then passed as an argument to the

operation string�length� An inspection of the program revealed that this behavior

could never actually occur� After simplifying two lines of code� MrSpidey was able to

verify the safety of the string�length operation� and produced the summary

TOTAL CHECKS� � �of �	 possible checks is ���
�

��� Verifying gunzip

MzScheme�s standard library contains Scheme code for in	ating de	ated �PKZIP�s

method � compressed� data� The code consists of a single ��� line �le inflate�ss�

translated directly from the gzip source distribution� MrSpidey initially reported

that out of the ��� operations in the program� it was unable to verify the safety of

� �or �$� of them�

The majority of these unsafe operations were vector�ref operations that� accord�

ing to MrSpidey�s analysis� could be applied to non�vector values� We used MrSpidey�s

��

�lter and path�to�source facilities to identify the source of these erroneous� non�vector

values�

� Some of these non�vector values came from the third �eld in a structure called

huft� This �eld contains a number in some situations and a vector in others� By

splitting the �eld into separate �elds for numeric and vector values� we reduced

the unsafe operation count to ���

� Some non�vector values came from a stack of tables� each of which should be

a vector� However� the stack was initialized as a vector of zero�s� By changing

the initial value of the stack to a vector of empty vectors� we reduced the unsafe

operation count by one to ���

� The non�vector value null value was mistakenly passed as an argument to a

function huft build� instead of the empty vector� Changing the program to

pass the empty vector instead reduced the unsafe operation count by two to ���

� The non�vector value null also was the initial value of a variable that was later

assigned to a vector� Initializing the variable to the empty vector reduced the

unsafe operation count by three to �
�

Some of the remaining unsafe operations were caused by an extremely complicated

return protocol from the function huft build� The function returns a tuple where

the type of some �elds depends on the value of other �elds� We simpli�ed the return

protocol of the function by using exceptions to handle erroneous conditions� This

reduced the unsafe operation count by three to ��

Minor rewriting to produce a cleaner coding style further reduced the unsafe

operation count by two to �� All of the remaining unsafe operations are actual errors

that resulted from failing to detect and handle a truncated input �le� Thus the

original program would crash on a truncated input �le with a message such as

� �gunzip
��tmp�t
�

char��� expects type �character� as �st arg�

given ���eof� �type �eof��� other args� ����

By adding code to check of the end�of��le case� we �nally reduced the unsafe

operation count to �� and the resulting statically debugged program gracefully handles

truncated input �les

� �gunzip
��tmp�t
�

gunzip� Unexpected end of input file

��

��� Verifying an Extended Direct Semantics Interpreter

Extended direct semantics is a format for denotational language speci�cations that

accommodates orthogonal extensions of a language without changing the denotations

of existing phrases ���� The semantics of a language is speci�ed in this format using

a tower of interpreters� The tower starts with a basic interpreter� which can only

interpret certain trivial expressions� This basic interpreter is then composed with

additional interpreters for the various constructs in the language�

We used MrSpidey to statically debug an interpreter expressed in this style� In

addition to the basic interpreter� this program contains interpreters for

� Arithmetic operations �integer constants� add� and sub��

� Call�by�value functions �variables� functions and applications�

� Control operations �catch and throw�

� Assignments �ref� deref and setref�

Each interpreter consists of two units
 one unit de�ning the abstract syntax struc�

tures and a second unit that speci�es how to interpret the new abstract syntax� An

additional �ve units specify global de�nitions and test cases� for a total of �� units

in �� separate �les�

Porting the program to MzScheme�s unit system introduced an error� where one

of the units was de�ned to take three input signatures

�unit�sig �Program�

�import global� language� arith�AST��

� � �

but was only passed two signatures in the main compound�unit clause

� � �

�PROGRAM

	 Program�

��reference�unit
program�ss
� GLOBAL TOP��

� � �

When this program was analyzed� MrSpidey produced the warning

Warning� Unit takes �� imports� given �	 in file
program�ss
 line �

��

together with a hyper�link to the relevant unit�

After this bug was �xed� MrSpidey was able to verify the safety of the program�

and produced the following summary

main�ss CHECKS� � �of �� possible checks is ���
�

program�ss CHECKS� � �of � possible checks is ���
�

top�ss CHECKS� � �of � possible checks is ���
�

storeM�ss CHECKS� � �of �	� possible checks is ���
�

controlM�ss CHECKS� � �of �� possible checks is ���
�

cbvM�ss CHECKS� � �of �� possible checks is ���
�

arithmM�ss CHECKS� � �of �� possible checks is ���
�

baseM�ss CHECKS� � �of �� possible checks is ���
�

storeAST�ss CHECKS� � �of �� possible checks is ���
�

controlAST�ss CHECKS� � �of � possible checks is ���
�

arithAST�ss CHECKS� � �of � possible checks is ���
�

cbvAST�ss CHECKS� � �of � possible checks is ���
�

baseAST�ss CHECKS� � �of � possible checks is ���
�

global�ss CHECKS� � �of �� possible checks is ���
�

tst�ss CHECKS� � �of �	 possible checks is ���
�

Part of the reason that MrSpidey is so successful on this program is that the

program had already been carefully written so that Soft Scheme ���� could verify

its safety� and thus the style of the program was already well�suited for automatic

analysis techniques�

��� Statically Debugging HHL

We used MrSpidey to statically debug a program under development� This program�

called HHL� is a hardware veri�er using heterogeneous logic� It consists of ���
 lines

of Scheme code distributed over �
 �les� and interfaces to the Omega calculator �����

We used MrSpidey to analyze the entire program� and then concentrated on stat�

ically debugging one �le� prover�ss� containing ��� lines of code� MrSpidey initially

reported that out of ��� operations in the �le� it was unable to verify the safety of ��

�or �$� of them� Nine of these unsafe operations were caused by bugs in the program�

� Two unsafe string�append operations were caused by a variable being erro�

neously initialized with void� instead of with a string�

�

� An arity check was caused be a two�argument function being applied to a single

argument�

� An unsafe car operation was applied to the result value of read� which is not

necessarily a pair�

� Three other unsafe string operations were applied to the result of read�line�

which can return the end�of��le value in addition to strings�

� On two occasions� the primitive andmap was applied to a single argument�

The remaining eight unsafe operations appear to be caused by limitations in the

underlying analysis�

��

Chapter �

Related Work

��� Static Debuggers

A number of interactive analysis tools and static debugging systems have been de�

veloped for various programming languages� Some address di�erent concerns� none

provide an explanation of the derived invariants�

Syntox ��� is a static debugger for a subset of Pascal� Like MrSpidey� it associates

run�time invariants� i�e�� numeric ranges� with statements in the program� Because

Syntox does not provide an explanation of these invariants� it is di�cult for a pro�

grammer to decide whether an unexpected invariant is caused by a weakness in the

proof system or a 	aw in the program� In addition� the existing system processes

only a �rst�order language� though Bourdoncle explains how to extend the analy�

sis ��
Section ���

Several environments ���� ��
�� ��� ��� have been built for parallel programming

languages to expose dependencies� thus allowing the programmer to tune programs to

minimize these dependencies� In particular� the ParaScope ��� ��� and D editors �
��

have many similarities to MrSpidey� Both MrSpidey and the editors provide infor�

mation at varying levels of granularity� both retain source correlation through trans�

formations� and both depict dependencies graphically� However� unlike MrSpidey�

the editors process a language with extremely simple control� and data�	ow facili�

ties� and therefore do not need to provide a supporting explanation for the derived

dependencies�

The Extended Static Checking system �ESC� ��� is a static debugger designed

to detect program errors such as nil dereferences� out�of�bound array accesses and

deadlocks� and race conditions� If an error may occur� then ESC returns a counter�

example in the form of an assignment of values to program variables that can cause

the error� ESC is based on an automatic theorem prover that is more powerful than

MrSpidey�s constraint�based approach� but which is also more expensive� Hence ESC

cannot analyze large programs� and is restricted to working on a per�procedure basis�

��

Therefore� this approach requires that the programmer annotates the program with

speci�cations for the interfaces between procedures� which signi�cantly increases the

start�up cost of using ESC� In contrast� MrSpidey can be immediately applied to

existing programs without the need for any additional annotations�

Microsoft�s Program Analysis Group has developed a static debugger for small C

programs�� In a fashion similar to MrSpidey� this debugger analyzes programs and

uses the resulting invariants to identify potential bugs� However� it cannot explain

the derivation of the resulting invariants� and only works on small programs of up to

a few hundred lines of code�

��� Constraint Simpli	cation

A number of researchers have investigated the problem of constraint simpli�cation in

order to derive faster and more scalable analyses and type systems�

Deutsch and Heintze ��� examine constraint simpli�cation for set�based analysis�

They discover two simpli�cation algorithms� which are analogous to our empty and

unreachable constraint simpli�cation algorithms� but do not present results on the

cost or e�ectiveness of these simpli�cation algorithms�

F�ahndrich and Aiken ��
� examine constraint simpli�cation for an analysis based

on a more complex constraint language� They develop a number of heuristic algo�

rithms for constraint simpli�cation� which they test on programs of up to ���� lines�

Their fastest approach yields a factor of � saving in both time and space� but is slow

in absolute times compared to other program analyses�

Pottier ���� studies an ML�style language with subtyping� Performing type infer�

ence on this language produces subtype constraints that are similar to our constraints�

Pottier de�nes an entailment relation on constraints� and presents an incomplete al�

gorithm for deciding entailment� In addition� he proposes some ad hoc algorithms for

simplifying constraints� He does not report any results on the cost or e�ectiveness of

these algorithms�

Trifonov and Smith ���� present constrained types that are similar to our constraint

systems� and they describe an incomplete algorithm for deciding the subtyping rela�

tion between constrained types� They do not discuss constraint simpli�cation� Eifrig�

Smith and Trifonov ���� discuss constraint simpli�cation in the context of type infer�

ence for objects� They present three algorithms for simplifying constraint systems�

�Personal communication� Daniel Weise �February ����

��

two of which which are similar to the empty and ��removal algorithms� and the third

is a special case of the Hopcroft algorithm� They do not present results on the cost

or e�ectiveness of these algorithms�

Duesterwald et al ���� describe algorithms for simplifying data�	ow equations�

These algorithms are similar to the ��removal and Hopcroft algorithms� Their ap�

proach only preserves the greatest solution of the equation system and assumes that

the control 	ow graph is already known� Hence it cannot be used to analyze pro�

grams in a componential manner or to analyze programs with advanced control�	ow

mechanisms such as �rst�class functions and virtual methods� The paper does not

present results on the cost or e�ectiveness of these algorithms�

��

Chapter ��

Limitations and Future Work

Although MrSpidey has proven to be an e�ective tool for statically debugging a variety

of programs� including the programs described above� there are several aspects of

MrSpidey that could be improved�

���� Size of Types

The constraint simpli�cation algorithms can reduce the size of type invariants by a

signi�cant factor� but in some cases the resulting types are still excessively large�

This problem could be partly remedied by developing more aggressive constraint

simpli�cation algorithms� However� more aggressive algorithms may not completely

solve the problem� because for a given constraint system� even the smallest equivalent

system may yield an excessively large type�

Traditional static type systems avoid this problem by introducing a new type name

each time a new datatype is declared� For example� the Standard ML declaration

corresponding to the binary trees we considered earlier is

datatype tree � Leaf of int

� Node of tree � tree

This declaration introduces the type name tree that can be used as a shorthand

for describing any valid tree build using Leaf and Node� By comparison� in MrSpidey

the corresponding type expression would need to explicate the combination of Leaf

and Node constructors used to build the tree�

As a partial solution to this problem� MrSpidey allows the programmer to con�

�gure the type display algorithm to avoid displaying the types for the �elds of a

structure or for the instance variables of an object �see appendix D�
�
�� Since most

excessively large types involve either structures or objects� selecting this option keeps

the size of types manageable� even for complicated programs�

��

���� Accuracy of the Analysis

Componential set�based analysis infers reasonably accurate invariants describing the

value sets for program expressions� even in the presence of complex control�	ow and

data�	ow patterns� However� since the actual run�time behavior of a program is un�

decidable� these invariants are necessarily approximate� and there are some situations

where the invariants are overly coarse�

A serious limitation of MrSpidey is that it does not perform any analysis of integer

subranges� Thus� MrSpidey cannot detect errors that may occur due to an array index

being out�of�bounds� Other static debuggers ��� �� can detect this kind of error� but

it is not clear how well these debuggers scale up to large� complex programs�

���� State in the User Interface

For the most part� MrSpidey�s graphical user interface presents static debugging in�

formation in a natural and intuitive manner� However� the �lter facility �described in

section ���� introduces some hidden state into the user interface� That is� although

the currently selected �lter a�ects the behavior of the interface� this �lter is not dis�

played� Hence it is easy for the programmer to forget which �lter is currently selected�

and to be confused by the displayed value 	ow�

There are two possible solutions to this problem� The �rst is simply to display

the currently selected �lter� However� state can be confusing in a user interface� even

when it is displayed� Therefore� a better solution would be develop an alternative

interface that does not require this state information�

One such approach is to allow the programmer to click on the internal components

of a type invariant� yielding a pop�up menu as before� and then to have options in

that menu that display the value 	ow only for values corresponding to the selected

component of the type� This approach would remove the need for state in the user in�

terface� and would hopefully provide programmer with better access to the derivation

of the program�s invariants�

���� Signatures

All the constraint simpli�cation algorithms we considered preserve the observable

behavior of constraint systems� and thus do not e�ect the accuracy of the analysis�

If we were willing to tolerate a less accurate analysis� we could choose a simpli�ed

��

constraint system that does not preserve the observable behavior of the original sys�

tem� but only entails� or conservatively approximates� that behavior� This approach

allows the use of smaller constraint systems� and hence yields a faster analysis�

A promising approach for deriving such approximate constraint systems is to

rely on a programmer�provided signature describing the behavior of a polymorphic

function or module� and to derive the new constraint system from that signature�

After checking the entailment condition to verify that signature�based constraints

correctly approximates the behavior of the module� we could use those constraints in

the remainder of the analysis� The appropriate constraint derivation rule is

� �M
 ��S� S� j�E S� where E � Label � FV �range���� � f�g

� �M
 ��S�
�approx�

Since the signature�based constraints are expected to be smaller than the derived

ones� this approach could signi�cantly reduce analysis times for large programs� It

would also allow for a program component to be statically debugged with respect to

its signature� without needing to access the entire source program�

��

Appendix A

Proofs for Chapter �

A�� Subject Reduction Proof

Lemma ����� �Subject Reduction for ���� If � �M�
 ��S� and M� ��M�� then

� �M�
 ��S� such that S� j� S��

Proof	 The proof proceeds by case analysis according to the relation M� ��M��

� Suppose M� ��M� via ��v�� Then

M� � ���tx�N� V �

M� � N �x �� V �

The typing derivation on M� is of the form

� � fx
 �xg � N
 �N �SN
� � ��tx�N�
 �t�St

�abs� � � V
 �V �SV

� � M�
 ��S�
�app�

where

St � SN � ft � �t� dom��t� � �x� �N � rng��t�g

S� � St � SV � f�V � dom��t�� rng��t� � �g

By the Substitution Lemma A����

� �M�
 �N �S
�
� where SN � SV � f�V � �xg j� S

�
�

By the Flow Lemma
����

� �M�
 ��S� where S �
� � f�N � �g j� S�

Since S� � SN � SV � we have that S� j� SN � SV � Also

S� � f�V � dom��t�� dom��t� � �xg j� f�V � �xg

S� � f�N � rng��t�� rng��t� � �g j� f�N � �g

Hence S� j� S�� as required�

���

� Suppose M� ��M� via ��let �� Then

M� � �let �x V � N�

M� � N �x �� V �

The typing derivation on M� is of the form

� � V
 �V �SV

� � SetVar �SV � n �FV �range���� � Label�

� � fx
 ��� ��V �SV �g � N
 ��S

� �M�
 ��S
�let �

By the Subject Reduction for let Lemma A���

� �M�
 ��S

as required�

� Suppose M� ��M� via �unlabel �� Then

M� � V l

M� � V

The typing derivation on M� is of the form

� � V
 ��SV

� � V l
 ��SV � f� � l� � � �g
�label �

Hence � � V
 ��SV � and by the Flow Lemma
����� � � V
 ��S� where S� j�

S��

Lemma A���� �Substitution�� If

� � fx
 �xg � N
 �N �SN

� � V
 �V �SV

then

� � N �x �� V �
 �N �S where SN � SV � f�V � �xg j� S

Proof	 The proof proceeds by induction on the number of let�expressions in N � and

on the size of N

� � fx
 �xg � N
 �N �SN

���

If x �� FV �N �� then N �x �� V � � N � S � SN and the lemma trivially holds�

Otherwise we proceed by case analysis on the constraint derivation rule used in

the last step in the derivation�

� �var�
 Since x � FV �N �� N � x� Hence SN � f�x � �Ng� N �x �� V � � V and

this case holds via the Flow Lemma
�����

� �const�
 This case cannot occur since x � FV �N ��

� �label �
 This case is straightforward�

� �abs�
 In this case N � ��ty�M�� and the constraint derivation is

� � fx
 �x� y
 �yg �M
 �M �SM

� � fx
 �xg � ��
ty�M�
 �N �SN

�abs�

where

SN � SM � ft � �N � dom��N� � �y� �M � rng��N �g

Since x � FV �N �� x �� y� Hence N �x �� V � � ��ty�M �x �� V ��� By induction

� � fx
 �x� y
 �yg � M �x �� V �
 �M �S
�
M

where

SM � SV � f�V � �xg j� S
�
M

Hence� via �abs�

� � N �x �� V �
 �N �S

where

S � S �
M � ft � �N � dom��N� � �y� �M � rng��N �g

Since SN � SV � f�V � �xg j� S� the lemma holds for this case�

� �app�
 In this case M � �M� M��� and the constraint derivation is

� � fx
 �xg � Mi
 �i�Si

� � fx
 �xg � �M� M��
 �N �SN
�app�

where

SN � S� � S� � f�� � dom����� rng���� � �Ng

By induction�

� �Mi�x �� V �
 �i�S
�
i

��

where

Si � SV � f�V � �xg j� S
�
i

Hence

� � M �x �� V �
 �N �S

where

S � S �
� � S

�
� � f�� � dom����� rng���� � �Ng

Obviously� SN � SV � f�V � �xg j� S� and the lemma holds for this case�

� �let �
 In this case N � �let �y W � M�� where W � Value � Hence

� � fx
 �xg � �let �y W � M�
 �N �SN

and therefore by the following Subject Reduction for let Lemma A���

� � fx
 �xg � M �y �� W �
 �N �SN

By induction

� �M �y ��W ��x �� V �
 �N �S

where SN � SV � f�V � �xg j� S� Since

M �y ��W ��x �� N � �M �x �� N ��y ��W �x �� N ��

we have that

� �M �x �� V ��y �� W �x �� V ��
 �N �S

and therefore� by the Subject Reduction for let Lemma A���

� � �let �y W �x �� V �� M �x �� V ��
 �N �S

or� equivalently

� � �let �y W � M��x �� V �
 �N �S

and thus the lemma holds in this case�

� �inst�
 This case cannot occur since x � FV �N � and x is bound to a set variable

in the derivation context�

���

The constraint derivation rules uses constraint schemas to accurately analyze poly�

morphic let�expressions� The constraint system for a let�expression is actually equiv�

alent to the constraint system for the corresponding �let �expanded expression
�� The

following lemma demonstrates this equivalence of constraint systems�

Lemma A���� �Subject Reduction for let��

� � �let �x V � N�
 �N �SN

if and only if

� � N �x �� V �
 �N �SN

Proof	 The derivation � � �let �x V � N�
 �N �SN holds if and only if

� � V
 �V �SV

� � SetVar �SV � n �FV �range���� � Label�

 � ��� ��V �SV �

� � fx

g � N
 �N �SN

The proof of both directions proceeds by induction on the number of let�expressions

in N � and on the size of N

If x �� FV �N �� then N �x �� V � � N and the lemma trivially holds�

Otherwise we proceed by case analysis on the constraint derivation rule used in

the last step in the derivation

� � fx

g � N
 �N �SN

� �var�
 This case cannot occur since x � FV �N � implies N � x� but x is bound

to a schema in the derivation context and so the rule �inst� applies�

� �const�
 This case cannot occur since x � FV �N ��

� �abs�
 In this case N � ��ty�M�� and the typing derivation is

� � fx

� y
 �yg �M
 �M �SM

� � fx

g � ��ty�M�
 �N �SN
�abs�

�This equivalence contrasts with the situation for the other reduction rules� where the constraint
system for the redex only entails the constraint system for the contractum� as shown in the Subject
Reduction for �� Lemma 	�����

���

where

SN � SM � ft � �N � dom��N� � �y� �M � rng��N �g

Since x � FV �N �� x �� y� Hence N �x �� V � � ��ty�M �x �� V ��� By induction�

� � fx

� y
 �yg � M �x �� V �
 �M �SM

Hence� via �abs�

� � N �x �� V �
 �N �SN

The reasoning for the converse direction is similar�

� �app�
 In this case M � �M� M��� and the typing derivation is

� � fx

g �Mi
 �i�Si

� � fx

g � �M� M��
 �N �SN
�app�

where

SN � S� � S� � f�� � dom����� rng���� � �Ng

By induction�

� � Mi�x �� V �
 �i�Si

Hence

� �M �x �� V �
 �N �SN

as required� The reasoning for the converse direction is similar�

� �label �
 This case is straightforward�

� �let �
 In this case N � �let �y W � M�� where W � Value � Hence

� � fx

g � �let �y W � M�
 �N �SN

Since M has fewer let�expressions than N � by induction

� � fx

g �M �y �� W �
 �N �SN

Since M �y �� W � has fewer let�expressions than N � by induction

� �M �y ��W ��x �� V �
 �N �SN

Since

M �y ��W ��x �� N � �M �x �� N ��y ��W �x �� N ��

���

we have that

� � M �x �� V ��y �� W �x �� V ��
 �N �SN

Since M �x �� V ��y �� W �x �� V �� is smaller than N � by induction

� � �let �y W �x �� V �� M �x �� V ��
 �N �SN

or� equivalently

� � �let �y W � M��x �� V �
 �N �SN

and thus the lemma holds in this case�

� �inst�
 Since x � FV �N �� N � x� and the derivation on N must be

� � fx

g � x
 �N �SN

where 	 is a substitution of fresh variables for � and SN � 	�SV � � f	��V � �

�Ng�

If D is the derivation concluding

� � V
 �V �SV

then 	�D� is an analogous derivation concluding

� � V
 	��V �� 	�SV �

Now N �x �� V � � V � and by the Flow Lemma
����

� � V
 �N �SN

as required�

Lemma ����� �Flow�� If � � M
 ��S then for all � � SetVar � � � M
 ��S � with

S � f� � �g j� S ��

Proof	 By induction on the derivation � � M
 ��S and by case analysis on the last

step in this derivation�

���

� �var�
 In this case the derivation for M � x is

�� � fx
 �g � x
 ��S

where S � f� � �g� For any � � SetVar � let S � � f� � �g� and then

�� � fx
 �g � x
 ��S �

with S � f� � �g j� S �� as required�

� �const�
 This case follows by reasoning similar to the �var� case�

� �label �
 The derivation for M � N l must conclude

� � N
 ��SN

� � N l
 ��S
�label �

where S � SN � f� � l� � � �g� Let S � � f� � l� � � �g� and then

� � N
 ��SN

� � N l
 ��S � �label �

with S � f� � �g j� S ��

� �abs�
 The derivation for M � ��tx�N� must conclude

� � fx
 ��g � N
 ���SN

� � ��tx�N�
 ��S
�abs�

where S � ft � �� dom��� � ��� �� � rng���g�

Let S � ft � �� dom��� � ��� �� � rng���g� and then

� � fx
 ��g � N
 ���SN

� � ��xN�
���S
�abs�

with S � f� � �g j� S ��

� �app�
 This case follows by reasoning similar to the �app� case�

� �let �
 This case follows by induction�

���

� �abs�
 The derivation for M � x must be

� � fx
 ��� ��V �SV �g � x
 ��S

where S � 	�SV � � f	��V � � �g� and 	 is a substitution of set variables for ��

Let S � � 	�SV � � f	��V � � �g� Then

� � fx
 ��� ��V �SV �g � x
 ��S �

with S � f� � �g j� S ��

A�� Proofs for Computing Set�Based Analysis

Lemma ����� �Least Solution of Simple Constraint Systems�� Every simple con�

straint system has a solution that is least with respect to vs�

Proof	 Let S be a simple constraint system� and de�ne � �
T
sSoln�S�� using the

pointwise extension of
T
s to set environments� We prove that � � Soln�S� by showing

that � satis�es any constraint C � S� The proof proceeds by case analysis on C�

� The case where C � �� � �� follows from Lemma A�
���

� Suppose C � �c � ��� Then c � const ������� for all �� � Soln�S�� therefore

c � const ������ and � j� C�

� Suppose C � �� � rng����� Then

���� �
T
s

���Soln�S

�����

v
T
s

���Soln�S

���rng����

by Lemma A�
��� since ����� v ���rng����

� rng

�
BB
 T

s

���Soln �S

�����

�
CCA by de�nition of us

� rng ������

� ��rng����

Hence � j� � � rng����

���

The remaining cases are similar� Hence the set of environments satisfying S has a

least element
T
sf� j � j� Sg�

The following lemma describes some properties about how the two orderings v

and vs de�ned on D interact�

Lemma A���� Let I be an index set� and let xi� yi � D for all i � I�

� If xi v yi for all i � I� then

T
s

i�I

xi v
T
s

i�I

yi

F
s

i�I

xi v
F
s

i�I

yi

� If xi vs yi for all i � I� then

u

i�I

xi vs u

i�I

yi

F
i�I

xi vs

F
i�I

yi

Proof	 The proof is based on the interpretation of D as the set of total functions

f
 fdom� rngg� �� P�Const�

and proceeds by showing the appropriate relation holds between the sets of constant

elements at any path in fdom� rngg��

To prove the �rst relation� assume xi v yi for all i � I� and let p be a path in

fdom� rngg�� If p is monotonic� then p�xi� v p�yi�� Hence

p

�
BB
Ts

i�I

xi

�
CCA �

T
s

i�I

p�xi�

v
T
s

i�I

p�yi�

� p

�
BB
Ts

i�I

yi

�
CCA

���

Conversely� if p is anti�monotonic� then p�xi� w p�yi�� Hence

p

�
BB
Ts

i�I

xi

�
CCA �

T
s

i�I

p�xi�

w
T
s

i�I

p�yi�

� p

�
BB
Ts

i�I

yi

�
CCA

Hence T
s

i�I

xi v
T
s

i�I

yi

as required�

Theorem ����� If P � �� and
 � P
 ��S is a most general constraint derivation

then	

sba�P ��l� � fb j S �� b � lg

� f��tx�M� j S �� t � lg

Proof	

S �� c � � �� S j� c � � by lemma A�
�

�� �� j� S� � j� c � �

�� �� � Soln�S�� c � const������

�� c �
T
�fconst������ j � � Soln�S�g�

�� c � const�u�f���� j � � Soln�S�g��

�� c � const�u�f� j � � Soln�S�g�����

�� c � const�LeastSoln�S�����

The correctness of this theorem then follows from de�nition
�����

Lemma A���� �Soundness and Completeness of ��� For any simple constraint

system S

S j� c � � �� S �� c � �

���

Proof	 The soundness of � is straightforward� To prove the completeness of ��

assume S j� c � �� Let � be any �xpoint of the functional F de�ned as

F
 SetEnv �� SetEnv

F ������ � h fc j S �� c � �g�F
f���� j S �� � �� �� � � dom���g�F
f���� j S �� � � rng���g i

where the notation S �� � �� � means there exists some ��� � � � � �n with � � �� and

�n � � such that

S �� f�i � �i��� j � � i � ng

The asymmetry between the de�nition of the domain and range components

F ������ arises from the rules �� These rules propagate set variables denoting the

result of functions in � forward along data�	ow paths into constraints of the form

� � rng���� However� the same propagation does not occur for set variables denot�

ing argument values to functions in �� and hence this propagation in performed in

the de�nition of F ������ by �nding all � such that � � dom��� and � �� ��

If � j� S� then � j� c � � and hence S �� c � � by the de�nition of �� as required�

Thus it just remains to prove that � j� S� We proceed by case analysis on constraints

C � S�

� Suppose C � �� � ��� We need to show that the correct ordering holds between

the corresponding components of ���� and ����� For the �rst component� by

�s��� which is the �rst rule in �

fc j S �� c � �g
 fc j S �� c � �g
��� const ������ v const ������

For the second �domain� component� by �s��

�S �� � �� �� � �S �� � �� ��
��� f���� j S �� � �� �� � � dom���g
 f���� j S �� � �� �� � � dom���g
���
F
f���� j S �� � �� �� � � dom���g v

F
f���� j S �� � �� �� � � dom���g

��� dom ������ v dom ������

For the third �range� component� by �s��

�S �� � � rng���� � �S �� � � rng����
��� f���� j S �� � � rng���g
 f���� j S �� � � rng���g
���
F
f���� j S �� � � rng���g v

F
f���� j S �� � � rng���g

��� rng ������ v rng ������

���

Hence ���� v �����

� Suppose C � �c � ��

���� w hfc j S �� c � �g����i

w hfcg����i

� ��c�

� Suppose C � �� � rng�����

f����g
 f���� j S �� � � rng���g
��� ���� v

F
f���� j S �� � � rng���g

� ��rng����

� Suppose C � �rng��� � ��� Then

���� w ���� �S �� � � �

��� ���� w
F
f���� j S �� � � �g

w
F
f���� j S �� � � rng���g by �s��

� ��rng����

� Suppose C � �� � dom����� Then

���� v
F
f���� j S �� � � dom���g

v
F
f���� j S �� � �� �� � � dom���g

� ��dom����

� Suppose S � �dom��� � ���

��dom���� �
F
f���� j S �� � �� �� � � dom���g by �s��

v
F
sf���� j S �� dom��� � �� � � dom���g

v
F
sf���� j S �� � � �g

v ����

Hence � j� S� and the lemma holds�

��

Appendix B

Proofs for Chapter �

B�� Correctness of MkType

Lemma
���� �Correctness of MkType�� If S is a simple constraint system then	

M�MkType�S� ��� � LeastSoln�S����

Proof	 By the de�nition ofM and MkType

M�MkType�S� ��� � �s���

where �s is the least �xed point under vs of the functional

� �� M��MkType��S� �i��

where �i ranges over SetVar �S� � f��� � � � � �ng� Hence �s is the least solution to the

system of equalities

���i� �M��MkType��S� �i��

But �ignoring pairs to simplify the presentation�

M��MkType��S� �i�� � h fb j S �� b � �ig � ft j S �� t � �ig�F
sf���� j S �� �i �� �� � � dom���g�F
sf���� j S �� � � rng��i�g i

Equating each component of ���i� with the corresponding component of the above

tuple� we see that �s must be the least solution to the system of equalities ���

const����i�� � fc j S �� c � �ig

dom ����i�� �
F
sf���� j S �� �i �� �� � � dom���g

rng ����i�� �
F
sf���� j S �� � � rng��i�g

���

An inductive argument shows that the system of equalities ��� holds if and only if

the following system of equalities �
� also holds� where p ranges over paths

const�p����i��� � fc j S �
 c � p��i�g

Hence �s is also the least solution to �
�� But

const�p����i��� � fc j � j� c � p��i�g �

hence �s is the least solution for � to the following condition ���

� j� c � p��i� �� S �
 c � p��i�

But ��� holds if and only if � j� S� Therefore LeastSoln�S� � �s� since �s is the least

solution to ���� and hence

M�MkType�S� ��� � LeastSoln�S����

as required�

���

Appendix C

Proofs for Chapter �

C�� Proofs for Conditions for Constraint Simpli	cation

The following lemma demonstrates that the rule ���� is admissible in that any deriva�

tion in the extended constraint derivation system produces information equivalent to

that produced by the original analysis�

Lemma ����� �Admissibility of ������ If
 ��	 P
 ��S is a most general constraint

derivation then	

sba�P ��l� � const �LeastSoln�S��l��

Proof	 This lemma follows from the induction hypothesis

If � ��	 M
 ��S�� and E � FV �range����� f�g�Label � then there exists
S� such that � � M
 ��S� and S� ��E S��

We prove this hypothesis by induction on the derivation � ��	 M
 ��S�� and by case

analysis on the last step in the derivation�

� If the last step in the derivation � ��	 M
 ��S� uses a derivation rule other

that ����� then the lemma holds based on the induction hypothesis�

� Suppose � ��	 M
 ��S� via ���� because � ��	 M
 ��S� and S� ��E S�� By

induction� � � M
 ��S� where S� ��E S�� Since ��E is an equivalence relation�

S� ��E S�� and hence the lemma holds�

C�� Proofs for Proof Theory of Observable Equivalence

The following proofs require a number of auxiliary de�nitions�

���

De�nition C����� �Paths�

� A path p� q � Path is a sequence of the constructors dom and rng� We use � to

denote the empty sequence� and p�q to denote the concatenation of the paths p

and q�

� The arity of a path p� denoted �p� is the number of dom�s in p� taken modulo

� If �p is �� we say p is monotonic� otherwise p is anti�monotonic�

� For a path p� the notation p�� � denotes the set expression � enclosed in the

dom�s and rng�s of p� i�e�� if p � rng�dom� then p��� � rng�dom�����

� The relations �� and �� denote � and �� respectively�

� The relations v� and v� denote v and w� respectively�

� The relations w� and w� denote w and v� respectively�

� The relations
� and
� denote
 and �� respectively�

� The operations
F
� and

F
� denote

F
and u� respectively�

� For a path p and a domain element X � D� the notation p�X� extracts the

component of X at the position p� This notation is formalized as follows

��X� � X

�rng�p��X� � rng �p�X��

�dom�p��X� � dom �p�X��

� For a path p and a domain element X � D� the notation X%p is de�ned as

follows

�%�
 D 	 path �� D

X%� � X

X%�dom�p� � h
�X��si%p

X%�rng�p� � h
��s�Xi%p

Lemma ����� �Soundness and Completeness of !�� For a compound constraint

system S and a compound constraint C	

S �
 C �� S j� C

���

Proof	 The soundness of ! is straightforward� To demonstrate the completeness of

!� we assume S j� C and prove that S �
 C by case analysis on C�

� Suppose C � �c �
�� De�ne � by

�p � Path� �� � SetVar � const�p������� � fc j S �
 c � p���g

We prove � j� S by a case analysis showing that � satis�es every constraint

C� � S�

� Suppose C� � �c � q����� Then� by the de�nition of �� c � const���q������

and hence � j� c � q����

� Suppose C� � �p��� � q����� We need to show that ��p���� v ��q�����

We prove this inequality by showing that for any path r

const�r���p������
�r const�r���q������

If r is monotonic� then

const�r���p������

� const�r�p��������

� fc j S �
 c � r�p����g

 fc j S �
 c � r�q����g

via �trans� �� since �p��� � q���� � S

and hence S �
 r�p���� � r�q���� via �compat�

� const�r�q��������

� const�r���q������

The case where r is anti�monotonic follows by a similar argument�

Hence � j� S� But since S j� c �
� � j� c �
� Since
 � p��� for some p and

�� then we have that

c � const���p�����

� const�p�������

� fc j S �
 c � p���g

Hence� S �
 c �
� as required�

���

� Suppose C � �
� �
��� Let c be a constant not used in S or C� let S� �

S � fc �
�g� and let � � LeastSoln�S��� Since � j� C� we have that

� j� fc �
��
� �
�g

Hence � j� c �
� and by the �rst part of this proof� S� �
 c �
��

We now show that for any
�� S� �
 c �
� if and only if S �

� �
�� We

prove this hypothesis by induction on the derivation of S� �
 c �
��

� Suppose S� �
 c �
� because �c �
�� � S�� Then
� �
�� and by the rule

�re�ex �� S �

� �
�� as required�

� If �c �
�� �� S�� then S� �
 c �
� must be derived via the rule �trans��

based on the antecedents S� �
 fc �
���
�� �
�g� By induction� S �

� �
��� Hence S �

� �
� via �trans��� as required�

Since S� �
 c �
�� the above induction hypothesis implies that S �

� �
��

as required�

Lemma ����� For a compound constraint system S� S ��E !�S� jE�

Proof	 We need to show that S ��E !�S� jE� i�e�

Soln�S� jE � Soln�!�S� jE� jE

Since the rules ! are sound

Soln�S� jE � Soln�!�S�� jE

 Soln�!�S� jE� jE

because the solution space increases as the constraints !�S� are restricted to E�

To show the containment in the other direction� assume � j� !�S� jE� Without

loss of generality� assume ���� � �s for all � �� E� We extend � to a super�

environment �� that satis�es S as follows

�p � Path� �� � SetVar � const�p�������� �
�
fconst���� �� j S �
 � � p���g

We show that �� j� S by case analysis on the constraints C � S�

���

� Suppose C � �c � q����� Then

const �q���� �
S
fconst���� �� j S �
 � � q���g

� fcg

as required�

� Suppose C � �p��� � q����� Then for any path r� S �
 r�p���� ��r r�q�����

Hence
 S
fconst���� �� j S �
 � � r�p����g

�r

S
fconst���� �� j S �
 � � r�q����g

Therefore

const����r�p������
�r const��
��r�q������

Hence

���p���� v ���q����

And hence �� j� C� as required�

Thus �� j� S� It remains to show that � and �� agree on E� Let � � E and r � Path�

Then

const����r����� �
S
fconst���� �� j S �
 � � r���g

by de�nition of ��

�
S
fconst���� �� j S �
 � � r����SetVar �� �
 Eg

since ���� � �s for � �� E

and hence ��� � � �s for SetVar �� � �
 E

�
S
fconst���� �� j � � r��� � !�S� jEg

� const���r�����

since �r��� � r���� � !�S� jE by �re�ex � and �compat�� and for �� � r���� � !�S� jE�

const���� ��
 const���r������ Thus � and �� agree on E� and the lemma holds�

Lemma C���� For any p � Path and X � D� p�X%p� � X�

Proof	 By induction on the length of p� and by case analysis on the top constructor

in p�

Lemma ����� �Equivalence of Proof Systems�� For a simple constraint system S	

!�S� � "��S�

���

Proof	 We show that "��S�
 !�S� by induction on the derivation of C � "��S��

For the base case� if C � "��S� because C � S� then C � !�S�� Otherwise we

proceed by case analysis on the last rule used in the derivation of C � "��S��

� �compose��
 In this case C � �� � rng�
�� is derived from the antecedents

f� � rng���� � �
g � "��S�� By induction� these antecedents are also in

!�S�� and hence the following derivation shows that C � !�S�

� � rng���
� �

rng��� � rng�
�
�compat�

� � rng�
�
�trans� �

� �compose��� �compose��� �compose��
 These cases follow by similar reasoning�

� �re�ex �� �trans��� �compat�
 These rules are either equivalent to or subsumed

by corresponding rules in !�

� �s��� �s��� �s��
 For these cases C � !�S� via �trans� ��

� �s��� �s��
 These rules are special cases of the rules �compose�� and �compose���

respectively�

There are no other possibilities for the derivation C � "��S� n!�S�� and hence

"��S�
 !�S��

We prove the converse inclusion !�S�
 "��S� by induction on the derivation of

C � !�S�� Again� for the base case� if C � !�S� because C � S� then C � "��S��

Otherwise we proceed by case analysis on the last rule used in the derivation of

C � !�S��

� �re�ex �� �compat�
 These rules are also in " and� by induction� the antecedents

are in "��S�� hence C � "��S��

� �trans��
 The last step in the derivation must be

�� � � � � ��

�� � ��
�trans� �

We proceed by case analysis on � to show that ��� � ��� � "��S��

�
�

� The case � � c is impossible� since ��� � c� is not a compound constraint�

� If � � SetVar � then ��� � ��� � "��S� via �trans���

� Suppose � � rng�� ��� If � � � SetVar then ��� � ��� � "��S� via �s���

Otherwise �� � rng�� �� and rng�� �� � �� are not simple constraints� and

we proceed by considering the derivation of these constraints in !�S�� The

last step in the derivation of �� � rng�� �� is either via

�� � rng���� �� � � �

�� � rng�� ��
�compose��

where �� � ��� or

� �� � � �

rng�� ��� � rng�� ��
�compat�

where �� � rng�� ���� Similarly� the last step in the derivation of rng��
�� �

�� is either via

� � � �� rng���� � ��

rng�� �� � ��
�compose��

where �� � ��� or

� � � � ��

rng�� �� � rng�� ���
�compat�

where �� � rng�� ���� We consider the four possible combinations for the

derivations of �� � rng�� �� and rng�� �� � ��

� Suppose �� � rng�� �� is inferred via �compose�� and rng�� �� � �� is

inferred via �compose��� Then f�� � � �� � � � ��g
 !�S�� and there�

fore ��� � ��� � !�S� via �trans��� By induction� ��� � ��� � "��S��

and the following derivation then shows that ��� � ��� � "��S��

�� � rng���� �� � ��

�� � rng����
�s�� rng���� � ��

�� � ��
�s��

� Suppose �� � rng�� �� is inferred via �compose�� and rng�� �� � �� is

inferred via �compat�� Then f�� � � �� � � � � ��g
 !�S�� and therefore

�
�

��� � � ��� � !�S� via �trans��� By induction� ��� � � ��� � "��S�� and

the following derivation shows that ��� � ��� � "��S��

�� � rng���� �� � � ��

�� � rng�� ���
�compose��

� Suppose �� � rng�� �� is inferred via �compat� and rng�� �� � �� is

inferred via �compose��� This case holds by similar reasoning to the

previous case�

� Suppose �� � rng�� �� is inferred via �compat� and rng�� �� � �� is

inferred via �compat�� Then f� �� � � �� � � � � ��g
 !�S�� and therefore

�� �� � � ��� � !�S� via �trans��� By induction� ��
�
� � � ��� � "��S�� and

therefore a �compat��inference shows that ��� � ��� � "��S��

There are no other possibilities for the derivations of �� � rng�� �� and

rng�� �� � ���

� Suppose � � dom�� ��� This case holds by similar reasoning to the previous

case where � � rng�� ���

There are no other possibilities for � �

There are no other possibilities for the derivation of C � !�S�� and hence !�S�

"��S��

Lemma ����
 "��S� jE �� #��S� jE�

Proof	 Since the rule �compat� does not create any # or � opportunities� "��S� �

compat�#��S��� and hence we just need to show that

compat�#��S�� jE �� #��S� jE

Now

compat�#��S�� � #��S�

��� compat�#��S�� jE � #��S� jE
��� compat�#��S�� jE j� #��S� jE

To prove the converse direction� let � j� #��S� jE� If � �j� compat�#��S�� jE� then

let C be the constraint in compat�#��S�� jE with the smallest derivation such that

� �j� C� Then the last step in the derivation of C must be via �compat�� Let C� be

�

the antecedent of this rule in compat�#��S��� Then SetVar �C�� � SetVar �C�
 E�

and hence C� � compat�#��S�� jE with a smaller derivation� Therefore � j� C�� and

hence since �compat� is sound� � j� C� Thus � �j� compat�#��S�� jE� as required�

Theorem ����� �Soundness and Completeness of �E�� and �E
���

� S� �
E
�� S� if and only if S� j�E S��

�� S� �E
�� S� if and only if S� ��E S��

�� Suppose S� j�E S�� Then

S� j�E !�S�� by the soundness of !
��� S� j�E !�S�� jE
��� �C � !�S�� jE� S� j� C
��� �C � !�S�� jE� S� �
 C by Lemma ��
��
��� �C � #��S�� jE� S� �
 C by Lemma ��
��
��� �C � #��S�� jE� S� ��� C by Lemma ��
��
��� �C � #��S�� jE� C � "��S�� jE
��� "��S�� jE � #��S�� jE
��� S� �E�� S�

Conversely� suppose S� �E�� S�� Then

"��S�� jE � #��S�� jE
��� Soln�"��S�� jE�
 Soln�#��S�� jE�
��� Soln�"��S�� jE� jE
 Soln�#��S�� jE� jE
��� Soln�S�� jE
 Soln�S�� jE

by Lemmas ��
�
� ��
�� and ��
��� since Soln�Si� jE � Soln�#��Si� jE� jE
��� S� j�E S�

� Follows from part ��

C�� Proofs for Deciding Observable Equivalence

We repeat de�nition ����� here� to avoid having to refer back to the original de�nition

earlier in the text�

�
�

De�nition ����� �Regular Grammar Gr�S� E�� Let S be a simple constraint system

and E a collection of set variables� The regular grammar Gr�S� E� consists of the

non�terminals f�L� �U j � � SetVar �S�g and the following productions

�U �� �� �L �� � � � � E

�U �� �U � �L �� �L � �� � �� � S

�U �� dom��L� � �� � dom���� � S

�U �� rng��U� � �� � rng���� � S

�L �� dom��U� � �dom��� � �� � S

�L �� rng��L� � �rng��� � �� � S

Lemma ����� Let G � Gr�S� E�� Then	

LG��L� � f
 j �
 � �� � #�S� and SetVar �
�
 Eg

LG��U� � f
 j �� �
� � #�S� and SetVar �
�
 Eg

Proof	 We prove the left�to�right inclusion by induction on the derivation of the

constraint C � "�S�� and by case analysis on the last step in that derivation�

� Suppose C � "�S� because C � S� We proceed by case analysis on C�

� Suppose C � �� � ��� Then � � E� so �L �� �L and �L �� � are

productions in the grammar� Hence � � LG��L�� Similarly� � � LG��U��

The remaining cases for C follow by similar reasoning�

� Suppose C � �� � rng�
�� is inferred via �compose�� from the antecedents

�� � rng���� and �� �
�� Then �U �� rng��U�� and by induction �U ���
�

Hence �U �� rng�
�� as required�

The remaining cases follow by similar reasoning�

We prove the right�to�left inclusion by induction on the derivation �L ���
 or

�U ���
� and by case analysis on the last step in the derivation� The reasoning for

each case is straightforward�

We repeat de�nition ����� here� to avoid having to refer back to the original

de�nition earlier in the text�

�
�

De�nition ����� �Regular Tree Grammar Gt�S� E�� The regular tree grammar

Gt�S� E� extends the grammar Gr�S� E� with the root non�terminal R and the addi�

tional productions

R �� ��L � �U � � � � SetVar �S�

R �� �c � �U � � �c � �� � S

where �� � �� is viewed as a binary constructor�

Lemma ����
 Let G � Gt�S� E�� Then #�S� jE � LG�R��

Proof	 We prove the left�to�right inclusion by case analysis on C � #�S� jE�

� Suppose C � �� �
�� Then by Lemma ����
� �U ���
G
� Since SetVar �C�
 E�

� � E� and hence �L ��G �� Thus R ��G ��L � �U � ���
G �� �
�� and hence

�� �
� � LG�R��

� The case where C � �
 � �� follows by similar reasoning�

� Suppose C � �c �
�� If C � S� then
 � �� � � E� and

R ��G �c � �U � ��G �c � ��

as required�

If C �� S� then an examination of the inference rules in # shows that C can

only be inferred via �trans��� based on the antecedents �c � �� and �� �
��

By Lemma ����
� �L ���
G c and �U ���

G
� Hence R �� �c �
�� and hence

�c �
� � LG�R�� as required�

� Otherwise C � �
� �
��� where
��
� �� SetVar � An examination of the

inference rules in # shows that C can only be inferred via �trans��� based on

the antecedents �
� � �� and �� �
��� By Lemma ����
� �L ���
G
� and

�U ���
G
�� Hence R �� �
� �
��� and hence �
� �
�� � LG�R�� as required�

We prove the right�to�left inclusion by case analysis on C � LG�R��

� Suppose C � �
� �
��� Then for some �� �L ���
G
� and �U ���

G
�� By

Lemma ����
� f
� � �� � �
�g
 "�S� and SetVar �
i�
 E� By Lemma ������

f
� � �� � �
�g
 #�S�� Hence �
� �
�� � #�S� jE� as required�

�
�

� Otherwise C � �c �
�� Then for some �� �c � �� � S and �U ���
G
�

By Lemma ����
� f� �
g
 "�S� and SetVar �
�
 E� By Lemma ������

f� �
g
 #�S�� Hence �c �
� � #�S� jE� as required�

Lemma ����� �Staging� For any simple constraint system S	

"��S� � "���S�� � compat�#���S���

Proof	 The equality "���S�� � compat�#���S��� holds since �compat� does not

create any # or � opportunities�

The inclusion "��S� � "���S�� obviously holds� To prove the inclusion "��S�

"���S�� holds� we suppose S ��� C� and prove ��S� �� C by induction on the

derivation S ��� C� and by case analysis on the last step in this derivation�

� Suppose S ��� C via some rule in "� By induction� the antecedents of this

rule are in "���S��� and hence C is also in "���S���

� Suppose S ��� C via one of the rules �s��� �s�� or �s��� These rules are sub�

sumed by �trans��� �compose�� and �compose��� and hence this case is subsumed

by the previous case�

� Suppose S ��� C via �s��� based on the antecedents f� � rng���� rng��� � �g�

By induction� these antecedents are in "���S��� An examination of " shows

that " can only infer �� � rng���� if there exists ��� �� such that ��S� contains

the constraints

� �� �� �� � rng���� �� �� �

Similarly� " can only infer �rng��� � �� if there exists ���� � � such that ��S�

contains the constraints

� �� ��� rng����� � �� �� �� �

Hence

S �� �� � rng����� via multiple applications of �s��

S �� �� � �� via �s��

��S� �� � � � via multiple applications of �trans��

�
�

� The case for �s�� holds by similar reasoning�

C�� Correctness of the Entailment Algorithm

Theorem ����� �Correctness of the Entailment Algorithm�� S� �
E
� S� if and only

if S� �Ealg S��

Proof	 The de�nitions of the computable entailment relation and the relation R

are shown in �gure C��� We prove this theorem based on the following invariant

concerning the relation RS��S���� �� �� ��

RS��S� ��L� �U� C�D� �� L���L � �U ��
 compat�L�C�� � L�D�

Assume this relation holds� and that S� �E� S�� Then #�S�� jE
 compat�#�S��� jE�

By lemma ������ #�Si� jE � LGi
�R�� and hence

LG�
�R�
 compat�LG�

�R��

Thus� for all R ��G�
��L � �U �

LG�
���L � �U ��
 compat�LG�

�R��
��� LG�

���L � �U ��
 compat�LG�
�fh�L� �Ui j � � SetVar �S��g��

Hence

RS��S� ��L� �U � fh�L� �U i j � � SetVar �S��g�
�

Also� from LG�
�R�
 compat�LG�

�R��� we have that for all R ��G�
�c � �U �

LG�
��c � �U ��
 compat�LG�

�R��
��� LG�

��c � �U ��
 LG�
�R�

��� LG�
��U �
 LG�

�f�U j R ��G ��c � �U �g�

Hence S� �Ealg S� holds� The proof of the converse implication that S� �
E
alg S� implies

S� �E� S� proceeds by a similar argument�

It remains to show that the invariant concerning R holds� To prove the left�to�

right direction� suppose RS��S� ��L� �U � C�D� and

�L ��G�
X ���

G�
�L

�U ��G�
Y ���

G�
�U

�
�

The Entailment Algorithm

In the following� P�n denotes the �nite power�set constructor�
Let

G� � Gt�S�� E�
G� � Gt�S�� E�

Li � f�L j � � SetVar�Si�g
Ui � f�U j � � SetVar�Si�g

Let G� and G� be pre�processed to remove ��transitions�
For C � P�n�L� � U��� de�ne

LG�
�C� � f��L � �U � j h�L� �Ui � C� �L ��G�

�L� �U ��G�
�Ug

The relation RS��S� ��� �� �� �� is de�ned as the largest relation on

L� � U� �P�n�L� � U���P�n�L� � U��

such that if

RS��S� ��L� �U � C�D�
�L ��G�

X

�U ��G�
Y

then one of the following cases hold

	� LG�
��X � Y �� � LG�

�C �D��

�� X � rng���L�� Y � rng���U� and RS��S� ��
�
L� �

�
U � C�D

��� where

D� � fh��L� �
�
Ui j h�L� �Ui � C �D� �L ��G�

rng���L�� �U ��G�
rng���U �g

�� X � dom���U�� Y � dom���L� and RS��S� ��
�
L� �

�
U � C�D

��� where

D� � fh��L� �
�
Ui j h�L� �Ui � C �D� �L ��G�

dom���U�� �U ��G�
dom���L�g

�� In no other cases does RS��S� ��L� �U � C�D� hold�

The computable entailment relation S� 	
E
alg S� holds if and only if

	�
R ��G�
��L � �U �� RS��S� ��L� �U � fh�L� �Ui j � � SetVar�S��g� ��� and

��
R ��G�
�c � �U �� LG�

��U� � LG�
�f�U j R ��G�

�c � �U �g��

Figure C�� The computable entailment relation �Ealg

�
�

We prove by induction on �L that

L���L � �U ��
 compat�L�C�� � L�D�

One of three cases in the de�nition of R must hold�

�� L���L � �U ��
 L�C � D�� This case is trivial�

� In this case

X � rng���L� ��L ��
�
G�

� �L �L � rng�� �L�

Y � rng�� �U� ��U ��
�
G�

� �U �U � rng�� �U�

and RS��S���
�
L� �

�
U � C�D

��� where

D� � fh��L� �
�
Ui j h�L� �Ui � C �D� �L ��G�

rng���L�� �U ��G�
rng���U�g

By induction� �� �L � � �U � � compat�L�C�� � L�D���

� If �� �L � � �U � � L�D
�� then there exists h��L� �Ui � D such that ��L ��

�
G�

� �L

and ��U ���
G�

� �U � By the de�nition of D
�� there exists h�L� �Ui � C � D

such that �L ���
G�

�L and �U ���
G�

�U � Therefore ��L � �U � � L�C �D�� as

required�

� If �� �L � � �U � � compat�L�C�� then ��L � �U � � compat�L�C��� as required�

�� The proof for the third case of the de�nition of RS��S���� �� �� �� is similar to that

for the second case�

To prove the right�to�left direction� suppose

L���L � �U ��
 compat�L�C�� � L�D�

and that the relation RS��S���L� �U � C�D� does not hold� Hence there exists X�Y such

that �L ��G�
X and �U ��G�

Y and none of the three conditions in �gure C�� hold�

Furthermore� since R is the largest relation satisfying the conditions in �gure C���

there exists a �nite proof that none of the three conditions hold�

Of all possible such counter�examples h�L� �U �X� Y�C�Di� we pick the one with

the smallest proof that the relation RS��S���L� �U � C�D� does not hold� and proceed

by case analysis on the last step in this proof�

�
�

� Suppose RS��S���L� �U � C�D� does not hold because of condition one� Then

L��X � Y �� �
 L�C �D�� which contradicts the assumptions above�

� Suppose RS��S���L� �U � C�D� does not hold because of condition
� Then X �

rng���L� and Y � rng���U�� Consider any pair of set expressions �L and �U

such that ��L ��
�
G�

�L and ��U ���
G�

�U � We consider the two possibilities for

�rng��L� � rng��U �� � compat�L�C�� � L�D� separately�

� If �rng��L� � rng��U �� � L�C� � L�D�� then there exists h�L� �Ui � C �D

such that

�L ��G�

rng���L� ��
�
G�

rng��L�

�U ��G�
rng���U� ��

�
G�

rng��U �

Hence ��L � �U � � L�D��� where

D� � fh��L� �
�
Ui j h�L� �Ui � C �D� �L ��G�

rng�� �L�� �U ��G�
rng���U�g

� Otherwise �rng��L� � rng��U �� � compat�L�C�� n L�C�� and hence ��L �

�U � � compat�L�C���

Hence

L����L � ��U ��
 compat�L�C�� � L�D��

The proof that RS��S� ��L� �U � C�D� does not hold cannot rely on a smaller

proof that RS��S���
�
L� �

�
U � C�D

�� does not hold� since that would yield a counter�

example with a smaller proof�

� The case where RS��S� ��L� �U � C�D� does not hold because of condition � is also

impossible via similar reasoning�

Thus the invariant on R is true� and thus the lemma holds�

C�� Correctness of the Hopcroft Algorithm

Theorem ��
�� �Correctness of the Hopcroft Algorithm�� Let S be a simple con�

straint system with external variables E� let � be an equivalence relation on the set

variables in a constraint system S satisfying conditions �a� to �e� from �gure
��� let

the substitution f map each set variable to a representation element of its equivalence

���

class� and let S � � f�S�� i�e�� S � denotes the constraint system S with set variables

merged according to their equivalence class� Then S ��E S ��

Proof	 Let � be a solution of S� De�ne �� by

����� �
F

����

�����

Obviously �� �� agree on E by condition �a� on �� We claim that �� j� C for all C � S

by case analysis on C�

� Suppose C � �� � rng����� Then for all �� such that � � �� there exists �� such

that � � �� and

����� v ��rng�����

Hence for all � � ��

����� v
F

����

��rng�����

and therefore
 F
����

����� v
F

����

��rng�����

Hence

����� �

F
����

�����

v
F

����

��rng�����

� rng

�
BB
 F
����

�����

�
CCA

� rng �������

� ���rng����

and thus �� j� C� as required�

� The cases where C � �� � �� and C � �rng��� � �� follow by similar reasoning�

� Suppose C � �� � dom����� Then �� � �� �� � �� such that

����� v ��dom�����

���

Hence �� � ��

����� v u

����

��dom�����

and therefore
 F
����

����� v u

����

��dom�����

Hence

����� �

F
����

�����

v u

����

��dom�����

� dom

�
BB
 F
����

�����

�
CCA

� dom �������

� ���dom����

� Suppose C � �dom��� � ��� Then

���dom���� � dom �������

� dom

�
BB
 F
����

�����

�
CCA

� u

����

��dom �����

v ��dom ����

v ����

v
F

����

�����

� �����

� Suppose C � �c � ��� Then

����� �
F

����

�����

w ����

� c

��

Appendix D

MrSpidey Reference Manual

MrSpidey is an interactive� static debugger for Scheme designed to help programmers

understand and debug complex programs� It automatically infers information about

the run�time behavior of programs� and uses this information to identify potential

�danger�points� in those programs� Speci�cally� MrSpidey

� infers a type� or value set invariant� describing the set of possible values for each

program expression�

� uses this information to identify unsafe program operations that may cause

run�time errors� and

� provides a supporting graphical explanation for these invariants�

MrSpidey supports almost all of DrScheme� which is an extension of R�RS Scheme

with structures� a module system� an object system� and a GUI toolbox� For further

information on the technology underlying MrSpidey� see ���� ��� ��� ����

Thanks	 Many thanks to both Matthew Flatt and Robby Findler for MrEd� and to

Shriram Krishnamurthi for Zodiac� his source�correlating macro�expander� MrSpidey

crucially depends on both of these packages� Thanks also to Stephanie Weirich for

work on the �rst implementation of MrSpidey� and to Matthias Felleisen� Corky

Cartwright� Jeremy Buhler� and the Rice University Spring ��� COMP��� program�

ming languages class for their feedback and help�

The typesetting sources for this manual are taken from Reference Manual for

wxWindows
�
�	 a portable C�� GUI toolkit�

D�� Using MrSpidey

MrSpidey is an integrated portion of DrScheme� To analyze the current program in

DrScheme� click on DrScheme�s Analyze button� MrSpidey analyzes the program and

���

displays the analysis results in a new frame� This frame contains two sub�windows
 a

program window and a summary window� The display of these windows is controlled

via the Show menu�

D���� The Program Window

The program window contains an annotated version of original program� The addi�

tional annotations present information about the results of the analysis� as described

below�

Unsafe Operations

An unsafe operation is one which may be applied to inappropriate arguments� thus

raising an error� Unsafe operations are a natural starting point for static debugging�

MrSpidey highlights these unsafe operations via font and color changes� as follows

� Any primitive operation that may be applied to inappropriate arguments� thus

raising a run�time error� is highlighted in red �or underlined on monochrome

screens��� Conversely� primitive operations that never raise errors are shown in

green�

� Any function that may be applied to an incorrect number of arguments is high�

lighted by displaying the lambda keyword in red �or underlined��

� Any application expression where the function position may return a non�

function is highlighted by displaying the enclosing parentheses in red �or under�

lined��

Figure D�� contains examples of these three di�erent kinds of unsafe operations� The

tab key moves the focus forward to the next unsafe operation� and the shift�tab key

moves the focus backward to the previous unsafe operation� These keystrokes make

it easy to inspect the unsafe operations in a program�

�Certain unsafe operations� such as a vector�ref operation whose index argument may be out
of

range� are not detected� A list of such operations is contained in section D���

���

Figure D�� Identifying unsafe operations

Popup Menus

MrSpidey also computes signi�cant additional information for each analyzed expres�

sion� This information is available on a demand�driven basis via pop�up menus�

MrSpidey associates a pop�up menu with all program variables� which are marked in

bold� and also with the opening parenthesis of each expression� which is also marked

in bold
 see �gure ��
� Clicking on one of these bold tokens displays the associated

menu� which then provides access to additional type and value 	ow information� as

described below�

Type Information

MrSpidey provides an inferred type for each program expression� To view the type of

an expression� select the Show Value Set option of the expression�s menu� Mrspidey

then computes the expression�s type and displays it in a box inserted to the right of

���

Figure D�� The pop�up menu

the expression� as illustrated in �gure D��� See Section D�� for a complete description

of the type language� The type box is deleted by selecting the Close Value Set option

from the popup menu� Alternatively� selecting Clear�Types deletes all type boxes in

the bu�er�

The Value Flow Browser

MrSpidey can also explain the derivation of each value set invariant� or type� This

explanation describes how the 	ow of values through the program yields a particular

value set invariant� The collection of all potential paths along which value may 	ow

through the program forms the program�s value �ow graph� MrSpidey describes each

edge in the data�	ow graph as an arrow overlaid on the program text that connects

the relevant points of the program� Because a large number of arrows would clutter

the program text� these arrows are presented in a demand�driven fashion� Each

expression�s popup menu provides facilities for inspecting relevant portions of the

value 	ow graph�

���

Figure D�� Displaying type information

� Parents� exposes arrows indicating the immediate parents of the current expres�

sion in the value 	ow graph� For example� �gure D�� shows the incoming edges

for the parameter tree in the program sum�

� Ancestors� exposes all ancestors of the current expression in the value 	ow graph�

� Path to Source� �nds the shortest path in the value 	ow graph from a constructor

expression to the current expression�

� Children� exposes the immediate children of the current expression in the value

	ow graph�

� Descendants� exposes all descendants of the current expression in the value 	ow

graph�

All of the above options can be customized to show only the 	ow of certain values

by selecting the appropriate set of values from the Filter menu� This option is par�

ticularly useful in conjunction with the Path to Source facility for inspecting the 	ow

of an unexpected value through the program� For example� in the program sum� the

unexpected value for tree is nil� Setting the �lter to this value� and then selecting

Path to Source for tree results in the explanation described in �gure D���

���

Figure D�
 Parents of tree

Figure D�� Flow of nil

���

Clicking on the head or tail of an arrow with the left mouse button moves the

current focus to the term at the other end of the arrow� which can be useful for

following the 	ow of values through large programs� Clicking on the head or tail

of an arrow with the right mouse button deletes the arrow� Alternatively� selecting

Clear�Arrows deletes all arrows in the bu�er�

D���� The Summary Window

The summary window lists all unsafe operations in the program� together with hyper�

links to those operation� It counts the number of unsafe operations� and expresses

that number as a percentage of the total number of operations in the program� This

window also contains warning about unbound variables and failed type assertions� A

typical summary window is show in �gure D���

D�� Preferences

The Edit�Preferences ��� menu item menu allows users to con�gure a variety of

DrScheme options� Two of the preferences windows� MrSpidey Analysis and MrSpidey

Type Display� control aspects of MrSpidey�s behavior� �These windows are only avail�

able after MrSpidey is loaded��

D���� MrSpidey Analysis Preferences Window

The MrSpidey Analysis preferences window con�gures MrSpidey�s analysis of pro�

grams� An example of this window is shown in �gure D��� and the controls are

described below�

� Accurate constant types
 When this button is o� �default�� then character� sym�

bolic and numeric constants are given the types char� sym or num respectively�

If the button is on� then these constants are typed accurately� i�e�� the number

� is assigned the type �� etc�

� Constant merge size
 Large quoted values in Scheme can yield large types that

signi�cantly increase the analysis time� To overcome this problem� MrSpidey

generates approximate types for such constants� The Constant merge size slider

controls how large constants can get before MrSpidey starts to approximate

their type�

���

Figure D�� MrSpidey Analysis preferences window

� If splitting
 If this button is on �default�� MrSpidey is smart about conditional

expressions such as �if �number� x � � � � �� MrSpidey only propagates numeric

values for x in the then�part� and non�numbers in the else�part�

� Flow sensitivity
 If this button is on �default�� then after an expression such as

�car x�� MrSpidey knows that the value of x must be a pair�

� Accurate analysis of numeric operations
 When this button is o� �default�� then

numeric operations such as � simply return the type num� If the button is

on� then the numeric operations are typed more accurately� as described in

subsection D�����

���

� Polymorphism
 This radio box controls how polymorphic expressions are ana�

lyzed�

� No polymorphism
 polymorphic annotation is ignored�

� Simplify constraints
 The constraint system for the polymorphic expression

is simpli�ed �see below�� and

� Reanalyze
 The polymorphic expression is re�analyzed for each polymorphic

reference�

� Polymorphism simpli�cation algorithms
 This radio box controls which constraint

simpli�cation algorithm is used to simplify the constraint system of polymor�

phic expression� provided the Polymorphism control is set to Simplify constraints�

These constraint simpli�cation algorithms are described in section ����

� Save �za �les in
 MrSpidey generates and saves constraint ��za� �les during the

analysis of multi��le programs� This radio box controls where these constraint

�les are stored� either in the same directory as the corresponding source �le

�default�� or in a temporary directory�

D���� MrSpidey Type Display Preferences Window

The MrSpidey Type Display preference window controls how MrSpidey computes and

displays type information� An example of this window is shown in �gure D��� and

the controls are described below�

� Show types as� Types can be displayed either as basic types �default�� which just

show the range of functions� or as type schemas� which show how the domain

and range of a function are related �e�g� �X� � � X���� Basic types contain

less information� but are more compact� which is an important bene�t when

working with large programs� With basic types� users can also choose whether

or not to show instance variables and structure �elds� For large programs� it

is often best not to show these components� in order to produce reasonably

compact types�

� Constraint simpli�cation algorithms� This radio box controls which constraint

simpli�cation algorithm is used to simplify the constraint system of an ex�

pression� before converting that constraint system to a type� These constraint

simpli�cation algorithms are described in section ����

���

Figure D�� MrSpidey Type Display preferences window

� Type naming� This parameter controls what types are named in a rec type

expression� and can be

� Recursive
 Names just enough types to express recursive types�

� Multiple
 �default� Names every type that is referred to more than once

� Non�Trivial
 Names every type except trivial types such as num� sym� etc�

� All
 Names all types�

� Primitive types� This parameter can be

� �prim ����
 Displays primitive types as �prim car� etc�

��

� Given types
 Displays the given types of primitives� e�g�� ��cons a b� �� a��

� Inferred types
 �default� Displays the inferred domain and range of primitive

functions� e�g�
 ��cons num �� �� num��

� Use equivalences to simplify types
 If this control is on �default�� then a number

of rewriting rules are used to simplify types before they are displayed�

� Use equivalences that make types tidy
 If this control is on �default�� then some

of the type rewriting rules will merge types into disjoint unions� thus losing a

certain amount of type information in order to produce a more compact type�

D�� Analysis of Large Programs

Large programs in DrScheme are typically split into multiple source �les� where each

source �le contains a unit �or unit�sig� expression� The main �le for the program

then refers to each source �le via the reference�unit �or reference�unit�sig�

form� and links these multiple units together into a single compound�unit that is then

invoked�

To provide a quick turn�around time when statically debugging such programs�

MrSpidey uses a componential analysis to avoid re�analyzing source �les where pos�

sible� When each referenced unit �le is �rst analyzed� MrSpidey

�� derives a constraint system that describes the data�	ow behavior of the unit�

� simpli�es the constraint system while preserving the externally�visible informa�

tion about the unit�s data�	ow behavior� and

�� saves the simpli�ed constraint system in a constraint �le named �le�za �where

�le�ss is the name of the source �le��

Although the use of constraint �les does not reduce the time required for the �rst

analysis� on subsequent analyses MrSpidey can use the saved constraint �les to avoid

the re�analysis of referenced unit �les that have not been modi�ed� This approach

substantially reduces re�analysis times�

Once the analysis is completed� MrSpidey displays the program�s main �le with

the usual static debugging mark�ups� To view other source �les� select the File�Open

��� option from the MrSpidey window� This option displays a dialog box containing

���

all the program�s source �les� and allows the programmer to select the �le of interest�

A typical dialog box is contained in �gure D��� Alternatively

� The File�Open All option opens a MrSpidey windows for each source �le� and

� The File�Load All option loads all source �les into memory but does not imme�

diately display them�

The File�Close All option closes all the MrSpidey windows�

Figure D�� The File�Open ��� dialog box

D���� Inter�File Arrows

In multi��le programs� the source �or destination� of an arrow may sometimes refer to

a program point in a separate �le� In this case MrSpidey draws an arrow originating

�or terminating� in the left margin of the program
 see �gure D��� If a margin arrow is

painted red� then it refers to an expression in a �le that has not yet been loaded� and

���

clicking on the arrow provides the option to load the �le� A blue margin arrow refers

to an expression in a �le that has been loaded� Clicking on a blue arrow provides the

option to zoom to and highlight the term at the other end of the arrow� as shown

in �gure D���� These facilities are useful for following the 	ow of values through

multi��le programs�

Figure D�� Source in another loaded �le

Figure D��� The highlighted source in the other �le

���

D�� The Type Language

The language of basic types in MrSpidey is de�ned as follows

type is one of�

set�variable

empty

zeroary�constructor

�constructor type � � � type�

�union type � � � type�

�rec ��set�variable type � � �� type�

�class �ivar type � � ��

�object �ivar type � � ��

function�type

type�abbreviation

set�variable is�

identi�er

zeroary�constructor is one of�

nil num sym str char void true false bool eof

constructor is one of�

zeroary�constructor

vec box promise mvalues iport oport Unary constructors

cons Binary constructors

de�ne�structure�constructor

user�de�ned�constructor

de�ne�structure�constructor is�

identi�er

user�de�ned�constructor is�

identi�er

���

function�type is one of�

�type � � � type �� type�

�type � � � type ��� type� Rest argument

�type � � � type ��� type� Return value list

�type � � � type ���� type� Rest argument and

return value list

�lambda type type� same as �type ���� type�

type�abbreviation is one of�

Abbreviates

�MU set�variable type� �rec ��set�variable type � set�variable�

noarg nil

�arg type type� �cons type type�

�list type � � � type� �cons type �cons � � ��cons type nil���

�listof type� �MU l �union �cons type l� nil��

null nil

bool �union true false�

atom �union nil num sym str char bool�

sexp �MU x �union atom �cons x x� �vec x���

The behavior of primitive operations is de�ned using multiple�arity schemas�

For each reference to a primitive operation� MrSpidey retrieves the corresponding

multiple�arity schema and selects the schema appropriate for the number of arguments

given to the primitive �or the last schema if the primitive is used in a higher�order

manner�� It then instantiates the schema by replacing the quanti�ed set variables by

set variables� and converts the resulting basic type into a constraint system� Multiple�

arity schemas are de�ned as follows

multiple�arity�schema is one of�

schema

�case�� schema � � ��

schema is one of�

type

���

�forall �set�variable � � �� type�

D�
�� Accurate Numeric Operations

When the Accurate numeric operations control in the MrSpidey Analysis preferences

window is turned on� MrSpidey performs a more accurate analysis of numeric opera�

tions� as follows�

The type language is extended with the unary constructors apply�� apply��

apply� and apply�� The return type of the numeric operations �� �� �� and � record

information about the numeric operation and its argument value sets� For exam�

ple� the type returned by the operation � is �apply� arglist�� where arglist is the

argument list to �� The resulting types are simpli�ed before being presented to the

programmer� For example� type �apply� �list x� ��� xn�� is transformed into

�� x� ��� xn�� etc�

In addition� the binary constructors �� not�� �� ��� � and �� are added to the type

language� The meaning of the type �� X Y� is the set of numbers x in X such that

there exists some y in Y with x � y� MrSpidey generates these types for if�expressions

where the predicate is one of zero�� �� �� ��� � or ���

D�� Extensions to DrScheme

D���� Type Assertions

The form �	 exp type� is an assertion that the values produced by exp must be con�

tained in type� If MrSpidey is unable to prove that the type assertion is satis�ed�

then a warning is reported in the summary window� These 	 forms evaluate to void�

D���� Polymorphic Annotations

The form �polymorphic exp� causes the expression exp to be analyzed in a poly�

morphic manner� That is� if the result of �polymorphic exp� is immediately bound

to an identi�er �e�g� by let or de�ne�� then all references to that identi�er that occur

below that binding will be polymorphic� The annotation has no runtime e�ect�

���

D���� Declaring New Primitives

The form �type	multiple�arity�schema� declares new primitive of typemultiple�arity�

schema� Some example de�nitions are

�de�ne my�car �type	 �forall �a� ��cons a � �� a����

�de�ne my�map �type	 �forall �a r� ��a �� r� �listof a� �� �listof r�����

The expression �type	 � � � � evaluates to void�

D���
 Declaring Constructors

The form �de�ne�constructor name modes � � � � adds a new type constructor to the

type language� The arguments mode ��� are all booleans� each specifying whether the

corresponding �eld in the constructor is mutable�

D���� Declaring New Types

The form �de�ne�type name type� adds a new type name that can later be used in

type expressions�

D�� Restrictions on Source Programs

The following DrScheme facilities are not handled�

� Primitives for dynamic loading and evaluation
 load� load�cd� load�relative�

load�use�compiled� current�load� require�library�use�compiled�

compile� eval� current�eval� expand�defmacroand expand�defmacro�once�

� Primitives that dynamically manipulate the top�level environment
 undefine�

global�defined�value� invoke�open�unit and invoke�open�unit�sig�

� MzScheme�s interfaces� exception system and exception hierarchy�

� Primitives that access structures without the appropriate selectors
 struct�ref

and struct��vector�

� MrSpidey doesn�t know about DrScheme language levels�

� Primitive names should not be assigned or de�ned�

���

Certain potential errors are not detected

� Returning an inappropriate number of multiple values to a single value context�

� Index out of bounds on vector� string and list operations�

� compound�unit errors� Since unit�s are normally used in a �rst�order manner�

these errors are typically easy to detect using the evaluator�

� The arguments to primitive�name and primitive�result�arity are only

checked to be procedures� not primitive procedures�

� Errors in read due to ill�formed s�expression on the input port�

The analysis of certain kinds of code is not completely sound

� Values passed to exception handlers�

� Tracking values through parameters�

� Tracking values through will executors�

� MrSpidey doesn�t translate unit�sig into unit� as MzScheme does�

���

Appendix E

Implementation Details

E�� Zodiac

A useful interface for MrSpidey must present the results of the program analysis in

terms of the original source program� Hence� the environment requires a front�end

for processing source text that can correlate the internal representation of programs

with their source location� For Scheme� this correlation task is complicated by the

powerful macro systems of typical implementations because macros permit arbitrary

rearrangements of syntax�

MrSpidey exploits Zodiac ��
� for its front�end� Zodiac is a tool�kit for generat�

ing language front�ends that are suitable for interactive environments� It includes a

hygienic high�level macro system that relates each expression in the macro�expanded

code to its source location� MrSpidey exploits this information to associate value set

invariants with expressions in the source program and to present portions of the value

	ow�graph as arrows relating terms in the program text�

E�� MrEd

MrSpidey�s graphical component is implemented using MrEd ����� a Scheme�based

engine for constructing graphical user interfaces� The core of the engine is a C �

like object system and a portable graphics library� This library de�nes high�level GUI

elements� such as windows� buttons� and menus� which are embedded within Scheme

as special primitive classes�

MrEd�s graphical class library includes a powerful� extensible text editor class�

This editor class is used in MrSpidey to display analyzed programs� including the

boxes containing type invariants and the arrows describing the value 	ow graph� Type

invariant boxes are easily embedded in the program text because an editor bu�er can

contain other bu�ers as part of its text� The arrows used to present 	ow information

are not part of the editor�s built�in functionality� but it was straightforward to ex�

���

tend the editor class with arrow drawing capabilities using other components of the

graphical library�

MrEd�s object system provides a robust integration between the Scheme imple�

mentation and the underlying graphical class library� The integration of the library

through the object system is easily understood by GUI programmers� The object

system also provides an important tool for designing and managing the components

of a graphical interface� Because the implementation of MrSpidey exploits this object

system� it can absorb future enhancements to the editor and it is easily integrated

into the DrScheme environment�

Applications developed with MrEd&includingMrSpidey and DrScheme&are fully

portable across the major windowing systems �X'Windows� Microsoft Windows� and

MacOS�� MrEd�s portability� its object system� and its rich class library enabled us

to focus on the interesting and novel parts of MrSpidey�s implementation�

E�� Multiple�Arity Functions

In contrast to the idealized languages of chapters
 and �� realistic languages such

as Scheme ��� provide more 	exible parameter passing mechanisms� In particular�

Scheme allows multiple arguments to be passed to a function� It also allows a list of

arguments to be passed� via the apply primitive� and it allows for the incoming list

of arguments to be bound to a formal parameter� via the syntax

�lambda x � � � �

To cope with these multiple argument passing and binding possibilities� MrSpidey

models each function as taking a single argument� which is a list of the function�s

actual arguments� Thus the function �lambda �x y� � � � � takes an argument list l�

extracts the car of l into x� and the cadr of l into y� Conversely� at an application

site� the arguments to the callee are wrapped up in a list� which is then passed as the

single argument to the callee� Thus the application �f x y� actually applies f to �list

x y�� The various other parameter passing and binding modes of Scheme� including

the apply primitive� can also be modeled within this framework�

E�� Multiple Values

Scheme ��� allows expressions to return a collection of multiple values� which can be

converted into an argument list via the call�with�values primitive�

��

To cope with multiple values� MrSpidey models each expression as returning a list

of return values� in a manner analogous to the way functions take a list of argument

values� Thus� the expression

�values � ��

is modeled in MrSpidey as returning the value

�list � ��

Similarly� the expressions �values �� and � �which are equivalent� both return �list ���

Thus each expression must return a list of multiple values� and each context needs

to expect such a list� This convention substantially simpli�es the analysis� but it does

cause problems in explaining of the program�s value 	ow� If we consider the binding

expression

�let ��x M �� � � � �

then we would expect that there should be a value 	ow arrow from the expression

M to the variable x � In the absence of multiple values� this arrow corresponds to a

subset constraint ��M � �x� in the solved constraint system� where �M and �x are

the set variables for M and x� respectively�

Once we introduce multiple values� this direct correspondence between the intu�

itive value 	ow arrows and subset constraints no longer exists� That is� in the presence

of multiple values� the constraint corresponding to the above let expression is

car��M� � �x

since �M actually denotes a list of multiple values� which in this case should contain

a single element� and that element should be extracted and bound to the variable x�

In order to produce intuitive value 	ow arrows that do not correspond to subset

constraints� MrSpidey needs to preserve additional information for certain binding

constructs such as the above let expression�

E�� Checking Scheme Primitives

Section ��� describes how to identify unsafe operations in the idealized language

�p� However� realistic languages such as MzScheme ���� contains a large number of

primitive procedures in addition to those in �p� The set of valid argument values for

each of these primitives is often more complicated than for the simple primitives car

���

and cdr� For example� the primitive proceduremember requires two arguments� the

second of which must be a list� and each element of the list must be a pair� MrSpidey

uses type schemas to describe both the behavior of each primitive procedure and the

appropriate argument set for that primitive�

E���� Type Schemas

Type schemas are used to describe the behavior and domain of primitive procedures�

and have the form

� � Schema � ����

For example� the operation car has the associated type schema

�car � ��� ����cons � �� �fcarg ��

where car is the function tag associated with the primitive car�

We de�ne the semantics of type schemas via the function M����
 SetEnv 	

Schema �� P�D�

M������ � � � � �n��� � fM����� j �� � ���i �� Xi��Xi � Dg

Thus the meaning of a type schema ���� � � � � �n�� is the set of meanings for � as

the universally quanti�ed variables ��� � � � � �n range over elements of D� For a closed

type schema �� we de�ne

M��� �M����

where � can be chosen arbitrarily� and does not a�ect the de�nition�

E���� New Constraint Classes

For each reference to a primitive operation� MrSpidey needs to translate the corre�

sponding type schema into a constraint system� To assist in this process� we introduce

two new classes of constraints
 checking constraints and constructor constraints�

Checking Constraints	 A checking constraint is of the form

� � C

for some C
 Const � and the semantics of checking constraints is de�ned by

� j� � � C �� const������
 C

���

Checking constraints are used to describe restrictions on the set of appropriate ar�

guments to a primitive operation� For example� suppose the program refers to the

primitive procedure car� and that � is the set variable corresponding to that refer�

ence� Then the data�	ow behavior of car can be extracted from the corresponding

type schema �car as the simple constraint system

fcar � �� dom��� � �d� car��d� � �� cdr��d� � �� � � rng���g

and the restriction on appropriate arguments to car can also be extracted from �car

as the checking constraint

�d � fpairg �

Constructor Constraints	 A constructor constraint is of the form

� � � j � � �

and the semantics of constructor constraints is de�ned by

� j� � � � �� M���� v ����

� j� � � � �� ���� v M����

A constructor constraint can be converted into an equivalent collection of simple and

checking constraints via the function CS described in �gure E��� That is

� � j� CS �� � �� if and only if � j� � � �� and

� � j� CS �� � �� if and only if � j� � � ��

The cases for constructor constraints of the form � � � are straightforward� The

cases for constructor constraints of the form � � � are more complicated� The func�

tion CS �rst extracts all the top�level constants in � via the function call TLC ���� and

creates a checking constraint that ensures that � only contains constants in TLC ����

It then calls the function CS ��� � �� to handle containment within subcomponents

of ��

���

CS �c � �� � fc � �g
CS �� � �� � f� � �g
CS ��s � �� �

CS ���d �T �r� � �� � fT � �� dom��� � �d� �r � rng���g
�CS ��r � �r� � CS ��d � �d�
where �d� �r are fresh

CS ��cons �a �d� � �� � f�a � car���� �r � rng���g
�CS ��a � �a� � CS ��d � �d�
where �a� �d are fresh

CS ��� � �� � �� � CS ��� � �� � CS ��� � ��
CS ��rec ���� ��� � � � ��n �n�� �� � �� � CS ��i � �i� � CS ��i � �i� � CS �� � ��

CS �� � �� � f� � TLC ���g � CS ��� � ��

CS ��� � C� �

CS ��� � �s� �

CS ��� � �� � f� � �g

CS ��� � �� �T ��� � f �d � dom���� rng��� � �rg
�CS �� � �d� � CS ��r � ��

CS ��� � �cons �a �d�� � fcar��� � �a� cdr��� � �dg
�CS ��a � �a� � CS ��d � �d�

CS ��� � �� � ��� � CS ��� � ��� � CS ��� � ���

Figure E�� Converting constructor
constraints to simple and checking constraints

The auxiliary function TLC
 Type �� P�Const� extracts the top level constants

in a type� and is de�ned as follows

TLC �c� � fcg

TLC ��� �

TLC ��s� �

TLC ��� �T ��� � T

TLC ��cons � ��� � fpairg

TLC ��� � ��� � TLC ���� � TLC ����

TLC ��rec ���� ��� � � � ��n �n�� ��� �
TLC ����

S
�j
TLC ��rec ���� ��� � � � ��n �n�� �j��

where �j is mentioned at top level in �

���

E���� Converting Type Schemas to Constraints

For each reference to a primitive operation� MrSpidey converts the corresponding type

schema into collection of simple and checking constraints� This conversion process

involves two steps�

Instantiating the Type Schema	 First� the type schema is instantiated� For

� � ����� this instantiation involves replacing references in � to the universally

quanti�ed variables ��� � � � � �n by fresh variables� producing an instantiated type ���

Converting the Instantiated Type into Constraints	 Second� the instanti�

ated type �� is converted into a collection of simple and checking constraints via the

function CS � That is� if � is the set variable for the primitive procedure reference�

then

S � S � CS ��� � ��

where S is a simple constraint system and S is a checking constraint system�

Thus MrSpidey converts each reference to a primitive operation into two constraint

systems
 a simple constraint system and a checking constraint system� The simple

constraint system is passed on to the set�based analysis algorithm and the analysis

proceeds as usual� The analysis later terminates� yielding a closed constraint system

S for the analyzed program� Since this constraint system is closed under �� it is

straightforward to check if the least solution of this constraint system satis�es the

checking constraints for the primitive operation� Speci�cally� LeastSoln�S� satis�es

the checking constraint � � C if and only if

fc j �c � �� � Sg
 C

If the least solution satis�es the checking constraints for a primitive operation�

then that operation is only applied to valid arguments at run�time� and hence that

operation is safe� Conversely� if the least solution does not satisfy the checking con�

straints� then the primitive operation may be applied to erroneous arguments at

run�time� and the operation should be marked as unsafe�

���

Appendix F

Notations

Symbol Meaning Section Page

M � � Terms
�� ��

V � Value Values
�� ��

x � Var Variables
�� ��

b � BasicConst Basic constants
�� ��

t � FnTag Function tags
�� ��

l � Label Labels
�� ��

�v� �let � unlabel Reduction rules
���
 �

�� Reduction relation
���
 �

E Evaluation contexts
���
 �

���� ���� Standard reduction relation
���
 �

eval Evaluator
���
 �

� � SetExp Set expressions
�
 �

�� �� � � � � SetVar Set variables
�
 �

c � Const Constants
�
 �

dom� rng Type expression constructors
�
 �

C � Constraint Constraints
�
 �

S � ConstraintSystem Constraint systems
�
 �

S jE Restriction of a constraint system
�
 ��

P Power set constructor
�
 ��

D Domain for constraints
���� ��

const � dom� rng Extract components of element of D
���� ��

in Values described by constants
���� ��

v�����t�u Ordering� elements and operations on D
���� ��

���

� � SetEnv Set environment
���
 ��

�� Extended set environment
���
 ��

j� Satis�es� or entails
���
 ��

Soln�S� Solution space
���
 ��
�� Observable equivalence
���
 ��

j�E Restricted entailment
���
 ��

Soln�S� jE Restricted solution space
���
 ��
��E Restricted observable equivalence
���
 ��

� Constraint derivation rules
�� ��

� � DerivCtxt Set variable context
�� ��

 � ConSchema Constraint schema
�� ��

FV �range���� Free variables in the range of �
�� ��

C � SimpleCon Simple constraints
�� ��

S � SimpleConSystem Simple constraint systems
�� ��

vs��s��s�ts�us Alternative ordering on domain
�� ��

sba Analysis function
����
�

LeastSoln Least Solution
��

� � fs�� � � � � sng Inference rules
����
�

�� Deduction via �
����
�

Sel��Sel� Sets of selectors ���
�

sel�� sel�� sel Selectors ���
�

�p Language � plus pairs ��
 ��

pair � Const Tag for pairs ��
�
 ��

car� cdr Selectors for pairs ��
�
 ��

�cc Language �p plus continuations ��� ��

�� Language �p plus assignments ��� ��

D � De�nes De�nitions ��� ��

z�w � AssignVar Assignable variables ��� ��

H � Heap Heap of de�nitions ����� ��

�b Language �� plus boxes ��� ��

box�� box� Selectors for boxes ����
 ��

���

�u Language �� plus units ��� �

ui� ue Selectors for units ����
 ��

�c Language �� plus objects ��� ��

cl�obj� ivar�z � ivar
�
z Selectors for classes ����
 ��

E External variables ��� ��

! Inference rules on constraint systems ��
 ��

 Non�constant set expression ��
 ��

C � CmpdConstraint Compound constraints ��
 ��

S � CmpdConSystem Compound constraint systems ��
 ��

" Inference rules on constraint systems ��
 ��

Inference rules on constraint systems ��
 ��

�E����
E
�� Relations on constraint systems ��
 ��

G Grammar ����� ��

Gr Function producing regular grammar ����� ��

�L� �U Grammar non�terminals ����� ��

LG�X� Language for X in G ����� ��

Gt Function producing RTG ����� ��

R Root non�terminal ����� ��

R Relation for computing entailment ����� �

p� q � Path Paths C�
 ���

arity� � Arity function C�
 ���

�i Either � or � C�
 ���

vi�wi Either v or w C�
 ���

i Either
 or � C�
 ���F
i Either

F
or u C�
 ���

X%p Injection function C�
 ���

���

Bibliography

��� Aho� A�� J� Hopcroft and J� Ullman� The Design and Analysis of Com�

puter Algorithms� Addison�Wesley� Reading� Mass�� �����

�
� Aiken� A�� Wimmers� E� L�� and Lakshman� T� K� Soft typing with

conditional types� In Proceedings of the ACM Sigplan Conference on Principles

of Programming Languages ������� pp� ���'����

��� Bourdoncle� F� Abstract debugging of higher�order imperative languages� In

Proceedings of the ACM SIGPLAN ��� Conference on Programming Language

Design and Implementation �June ������ pp� ��'���

��� Cartwright� R�� and Felleisen� M� Extensible denotational language spec�

i�cations� In Theoretical Aspects of Computer Software�

��� Clinger� W�� and Rees� J� �Eds��� The revised� report on the algorithmic

language scheme� ACM Lisp Pointers �� � �July ������

��� Cooper� K� D�� Hall� M� W�� Hood� R�� Kennedy� K�� McKinley�

K�� Mellor�Crummey� J�� Torczon� L�� and Warren� S� The Parascope

parallel programming environment� Proceedings of the IEEE �February ������

��'
���

��� Cousot� P�� and Cousot� R� Formal language� grammar� and set�constraint�

based program analysis by abstract interpretation� In Proceedings of the
���

Conference on Functional Programming and Computer Architecture �������

pp� ���'����

��� Detlefs� D� An overview of the extended static checking system� In Proceedings

of The First Workshop on Formal Methods in Software Practice �January ������

ACM �SIGSOFT�� pp� �'��

��� Deutsch� A�� and Heintze� N� Partial solving of set constraints� Unpublished

manuscript�

���

���� Duesterwald� E�� Gupta� R�� and Soffa� M� L� Reducing the cost of

data 	ow analysis by congruence partitioning� In International Conference on

Compiler Construction �April ������

���� Eifrig� J�� Smith� S�� and Trifonov� V� Sound polymorphic type inference

for objects� In Conference on Object�Oriented Programming Systems� Languages�

and Applications �������

��
� F�ahndrich� M�� and Aiken� A� Making set�constraint based program analy�

ses scale� Technical Report UCB(CSD�������� University of California at Berke�

ley� �����

���� Flanagan� C�� and Felleisen� M� Set�based analysis for full Scheme and its

use in soft�typing� Technical Report TR���
��� Rice University� �����

���� Flanagan� C�� and Felleisen� M� Modular and polymorphic set�based

analysis
 Theory and practice� Technical Report TR����
��� Rice University�

�����

���� Flanagan� C�� and Felleisen� M� Componential set�based analysis� In

Proceedings of the ACM SIGPLAN ��� Conference on Programming Language

Design and Implementation �June ������ pp�
��'
���

���� Flanagan� C�� Flatt� M�� Krishnamurthi� S�� Weirich� S�� and

Felleisen� M� Finding bugs in the web of program invariants� In Proceedings

of the ACM Conference on Programming Language Design and Implementation

������� pp�
�'�
�

���� Flatt� M� MzScheme Reference Manual� Rice University�

���� Flatt� M� MrEd
 An engine for portable graphical user interfaces� Technical

Report TR����
��� Rice University� �����

���� Flatt� M�� and Felleisen� M� First�class compilation units� Unpublished

manuscript�

�
�� Flatt� M�� Krishnamurthi� S�� and Felleisen� M� Mixins for java�

POPL��� submission�

��

�
�� G�ecseg� F�� and Steinby� M� Tree Automata� Akad)emiai Kiad)o� Budapest�

�����

�

� Gosling� J�� Joy� B�� and Steele� G� The Java Language Speci�cation�

Addison�Wesley� �����

�
�� Heintze� N� Set Based Program Analysis� PhD thesis� Carnegie Mellon Uni�

versity� ���
�

�
�� Heintze� N� Set�based analysis of ML programs� In Proceedings of the ACM

Conference on Lisp and Functional Programming ������� pp� ���'����

�
�� Hindley� R� J�� and Seldin� J� P� Introduction to Combinators and ��

Calculus� Cambridge University Press� �����

�
�� Hiranandani� S�� Kennedy� K�� Tseng� C��W�� and Warren� S� The D

editor
 A new interactive parallel programming tool� In Proceedings of Super�

computing �������

�
�� Hopcroft� J� E� An n log n algorithm for minimizing the states of a �nite

automaton� The Theory of Machines and Computations ������� ���'����

�
�� Jagannathan� S�� and Wright� A� K� E�ective 	ow analysis for avoiding

run�time checks� In Proc� �nd International Static Analysis Symposium� LNCS

��� �September ������ Springer�Verlag� pp�
��'

��

�
�� Jones� N�� and Muchnick� S� A 	exible approach to interprocedural data

	ow analysis and programs with recursive data structures� In Conference Record

of the Ninth Annual ACM Symposium on Principles of Programming Languages

�January ���
�� pp� ��'���

���� Kennedy� K�� McKinley� K�� and Tseng� C��W� Interactive parallel pro�

gramming using the ParaScope Editor� IEEE Transactions on Parallel and Dis�

tributed Systems �� � �July ������

���� Kernighan� B� W�� and Ritchie� D� M� The C Programming Language�

Prentice�Hall� �����

��
� Krishnamurthi� S� Zodiac
 A programming environment builder� Technical

Report TR����
��� Rice University� �����

���

���� Miller� B�� Koski� D�� Lee� C� P�� Maganty� V�� Murthy� P�� Natara�

jan� A�� and Steidl� J� Fuzz revisited
 A re�examination of the reliability

of unix utilities and services� Computer Science Department� University of Wis�

consin� �����

���� Milner� R�� Tofte� M�� and Harper� R� The De�nition of Standard ML�

The MIT Press� Cambridge� Massachusetts and London� England� �����

���� Palsberg� J� Closure analysis in constraint form� Transactions on Program�

ming Languages and Systems
�� � ������� ��'�
�

���� Palsberg� J�� and O�Keefe� P� A type system equivalent to 	ow analysis� In

Proceedings of the ACM SIGPLAN ��� Conference on Principles of Programming

Languages ������� pp� ���'����

���� Pottier� F� Simplifying subtyping constraints� In Proceedings of the
��

ACM SIGPLAN International Conference on Functional Programming �������

pp� �

'����

���� Pugh� W� The omega test
 a fast and practical integer programming algorithm

for dependence analysis� In Supercomputing �������

���� Reynolds� J� Automatic computation of data set de�ntions� Information

Processing�
� ������� ���'����

���� Reynolds� J� C� The essence of ALGOL� Algorithmic Languages �������

���'��
�

���� Shei� B�� and Gannon� D� Sigmacs
 A programmable programming environ�

ment� In Advances in Languages and Compilers for Parallel Computing� The

MIT Press� August �����

��
� Tofte� M� Type inference for polymorphic references� Information and Com�

putation ��� � �November ������ �'���

���� Trifonov� V�� and Smith� S� Subtyping constrained types� In Third Inter�

national Static Analysis Symposium �LNCS

��� ������� pp� ���'����

���� Wolfe� M� J� The Tiny loop restructuring research tool� In Proceedins of the

��
 International Conference on Parallel Processing �August ������

���

���� Wright� A� Practical Soft Typing for Scheme� PhD thesis� Rice University�

�����

���� Wright� A�� and Cartwright� R� A practical soft type system for scheme�

In Proceedings of the ACM Conference on Lisp and Functional Programming

������� pp�
��'
�
�

���� Wright� A�� and Felleisen� M� A syntactic approach to type soundness�

Information and Computation

�� � ������� ��'���

���� Wright� A� K� Simple imperative polymorphism� Lisp and Symbolic Compu�

tation �� � �Dec� ������ ���'����

