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Abstract

Behavioral contracts are widely used in programming lan-
guages to specify and enforce the dynamic behavior of pro-
grams. In this paper we present an extension of contracts.js,
a behavioral contract library for JavaScript, that enables
programmers to specify temporal properties of programs. In
particular, we describe async contracts that enforce when a
function may be invoked with respect to the event loop.

1. Introduction

Behavioral contracts are widely used in programming
languages including Eiffel [I], Scheme/Racket [2], and
JavaScript [3H6] to specify and enforce the dynamic behav-
ior of programs. Much of the work done recently in contract
systems has been in extending the expressive power of con-
tracts, for example to handle polymorphic specifications [7]
or integrate with types [§].

In prior work, we proposed a general contract framework
for specifying and enforcing higher-order temporal proper-
ties [9]. Here, we present several contracts that address spe-
cific temporal patterns commonly found in JavaScript pro-
grams.

Core to JavaScript’s notion of temporality is the event
loop. Unlike a preemptive multithreading language such
as Java where the scheduler can switch control between
threads at any point, programs in JavaScript process each
event one after another. Each event is guaranteed to run to
completion before returning control to the event loop, which
then processes the next event in a queue. While the run-to-
completion semantics of JavaScript is easier to reason about
than threads, there is still plenty of room for surprising
temporal bugs to bite.

One area temporal bugs can arise is when confusing
synchronous and asynchronous functions. A synchronous
function is a function that is called before returning control
to the event loop whereas an asynchronous function is called
on some later turn of the event loop.

As an example of a temporal bug that confuses syn-
chronous and asynchronous functions consider the following
API for a node.js program that provides a caching layer in
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front of file access (adapted from an example in Effective
JavaScript [10]):

var readFile = require("fs").readFile;
var cache = new Map();

function readCaching(fileName, onsuccess) {
if (cache.has(fileName)) {
onsuccess (cache.get (fileName)) ;

}

readFile(fileName, "utf8", function(err, data) {
cache.set(fileName, data);
onsuccess(data) ;

B;

As its name suggests, the node.js function readFile reads
a file and asynchronously invokes its callback on some later
turn of the event loop (once the file has been read from the
disk). At first glance readCaching seems fine, it calls the
onsuccess callback on a cache hit otherwise it first calls
readFile before invoking onsuccess once the file reading
operation completes.

The problem here is that readCaching implements an
inconsistent API; sometimes the onsuccess handler is called
asynchronously (when there is a cache miss) and sometimes
synchronously (when there is a cache hit). Client code that
is unaware of this inconsistency and expects the onsuccess
to always be called asynchronously can have its assumptions
violated leading to subtle bugs. Consider:

var obj = {};

readCaching("foo.txt", function(data) {
obj.totalLength += data.length;

b

obj.totalLength = 0;

If "foo.txt" is not in the cache then this snippet works
fine since the client has a chance to initialize obj before the
handler is called. If, on the other hand, "foo.txt" is actually
in the cache then the handler is called before the client code
has a chance to finish initializing obj, which means that the
final value of totalLength will be NaN (since in JavaScript
undefined + data.length will be evaluate to NaN). Since
the bug depends on what is in the cache, we have a source of
nondeterminism that makes reproducing the failure difficult.

2. Async Contracts

To address this problematic temporal behavior we add async
contracts to contracts.js, a higher-order JavaScript contract
library. Contracts.js uses sweet.js [II], a macro system for
JavaScript, to provide expressive syntax support around a
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runtime contract library. We can then rewrite our problem-
atic example by wrapping the function readCaching in the
contract (Str, (Str) --> () -> Q.

This contract says readCaching is wrapped in a function
contract (written ->) that takes two arguments, a string
(Str) and an async contract ((Str) --> ()) that takes a
string and returns undefined. A function wrapped in the
standard -> contract can be invoked either synchronously
or asynchronous whereas a function wrapped in the -->
contract must be invoked asynchronously (ie. on some later
turn of the event loop). Since readCaching does not obey
this specification, when onsuccess is synchronously invoked
on a cache hit the contract will throw an error blaming
readCaching for violating its contract.

To implement async contracts we need a way to know on
what turn of the event loop an event is currently executing.
A simple way to accomplish this is to make a unique identi-
fier for each event in the loop available to an async contract.
Then the process of checking for async/sync behavior can
proceed as follows:

1. Wrap the async function in its contract

2. Record the event loop id in which the wrapping took
place

3. When the wrapped async function is invoked:

¢ If the current loop id is equal to recorded loop id then
raise blame

* Otherwise continue execution

An example implementation of async contracts for just
asynchronous checking (ignoring the domain and range con-
tracts for simplicity) would look something like this:

function async(f) {
var loopIld = getLoopId();
return function() {
if (getLoopId() === loopId) {

throw new Blame("Called synchronously");

}

// invoke the function normally

return f.apply(this, arguments);
};

While the function getLoopId() does not exist in
JavaScript most JavaScript environments provide the means
for us to implement getLoopId() ourselves. In particular
node.js provides the function process.nextTick(cb) that
invokes its callback before the next turn of the event loop.
This allows us to implement getLoopId() directly; each
time getLoopId is called the current loop id is returned
and process.nextTick is used to queue up a callback that
increments loopId before the next turn of the event loop
occurs:

var loopld = 0;

function incLoopId() { loopId++; }

function getLoopId() {
process.nextTick(incLoopId);
return loopld;

In browser environments nextTick is not available but
the setImmediate function could be used to a similar ef-
fect however it is only available in certain browsers and
its standardization is contested. In any event, polyfills for

setImmediate existﬂ that take advantage of clever tricks us-
ing postMessage (a function meant for cross-document mes-
saging) and web workers.

Unsurprisingly, it is straightforward to implement the
dual of an async contract: a sync contract that specifies
the function must be invoked on the same turn of the
event loop. The only change required is that the loop id
when the function is invoked must be the same as when
the function was wrapped in the sync contract. It is also
straightforward to implement a contract that checks that
its argument is consistently used either synchronously or
asynchronously by recording how it was used the first time
and then consistently enforcing the same behavior.

We have implemented async contracts in contracts.jsﬂ
Preliminary benchmarking suggests that asynchronous con-
tracts impose minimal performance costs over traditional
contract checking. More investigation is needed to deter-
mine the utility of asynchronous contracts but their ability
to catch temporal violations as described in this paper is
promising.
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