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Developing reliable multithreaded software is notoriously difficult, due to
the potential for unexpected interference between concurrent threads. Even a
familiar construct such as “x++” has unfamiliar semantics in a multithreaded
setting, where it must in general be considered a non-atomic read-modify-write
sequence, rather than a simple atomic increment. Understanding where thread
interference may occur is a critical first step in understanding or validating a
multithreaded software system.

Much prior work has addressed this problem, mostly focused on verifying the
correctness properties of race-freedom and atomicity (see, for example, [6, 13, 10,
3, 4, 1, 9, 11, 7, 14, 15, 8, 5]). Race-freedom guarantees that software running on
relaxed memory hardware behaves as if running on sequentially consistent hard-
ware [2]. Atomicity guarantees that a program behaves as if each atomic block
executes serially, without interleaved steps of concurrent threads. Unfortunately,
neither approach is entirely sufficient for ensuring the absence of unintended
thread interference.

We propose an alternative approach whereby all thread interference must
be specified with explicit yield annotations. For example, if multiple threads
intentionally access a shared variable x concurrently, then the above increment
operation would need to rewritten as “int t=x; yield; x=t+1” to explicate
the potential interference.

These yield annotations enable us to decompose the hard problem of reason-
ing about multithreaded program correctness into two simpler subproblems:

– Cooperative correctness: Is the program correct when run under a coop-
erative scheduler that context switches only at yield annotations?

– Cooperative-preemptive equivalence: Does the program exhibit the
same behavior under a cooperative scheduler as it would under a traditional
preemptive scheduler that can context switch at any program point?

A key benefit of this decomposition is that cooperative-preemptive equiva-
lence can be mechanically verified, for example, via a static type and effect sys-
tem that reasons about synchronization, locking, and commuting operations [17,
16]. Alternatively, cooperative-preemptive equivalence can be verified dynami-
cally by showing that the transactional happens-before relation for each observed
trace is acyclic (where a transaction is the code between two successive yield an-
notations) [18].



The remaining subproblem of cooperative correctness is significantly more
tractable than the original problem of preemptive correctness. In particular,
cooperative scheduling provides an appealing concurrency semantics with the
following desirable properties:

– Sequential reasoning is correct by default (in the absence of yield annota-
tions), and so for example “x++” is always an atomic increment operation.

– Thread interference is always highlighted with yields, which remind the pro-
grammer to allow for the effects of interleaved concurrent threads.

Experimental results on a standard benchmark suite show that surprisingly
few yield annotations are required—only 13 yields per thousand lines of code [16].
In addition, a preliminary user study showed that the presence of these yield an-
notations produced a statistically significant improvement in the ability of pro-
grammers to identify concurrent defects during code reviews [12]. These exper-
imental results suggest that cooperative concurrency is a promising foundation
for the development of reliable multithreaded software.
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