
SideTrack: Generalizing Dynamic Atomicity Analysis

Jaeheon Yi
jaeheon@cs.ucsc.edu

Caitlin Sadowski
supertri@cs.ucsc.edu

Cormac Flanagan
cormac@cs.ucsc.edu

Computer Science Department
University of California at Santa Cruz

Santa Cruz, CA 95064

ABSTRACT

Atomicity is a key correctness specification for multithreaded
programs. Prior dynamic atomicity analyses include precise
tools, which report an error if and only if the observed trace
is not serializable; and imprecise tools, which generalize from
the observed trace to report errors that might occur on other
traces, but which may also report false alarms.

This paper presents SideTrack, a lightweight online dy-
namic analysis that generalizes from the observed trace with-
out introducing the potential for false alarms. If SideTrack
reports an error, then some feasible trace of the source pro-
gram is not serializable. Experimental results show that this
generalization ability increases the number of atomicity vi-
olations detected by SideTrack by 40%.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation – reliability ; D.2.5 [Software Engineering]: Testing
and Debugging – testing tools; F.3.1 [Logics and Mean-

ings of Programs]: Specifying and Verifying and Reason-
ing about Programs – specification techniques; F.3.2 [Logics

and Meanings of Programs]: Semantics of Programming
Languages – program analysis

General Terms

Languages, Algorithms, Verification

Keywords

Atomicity, serializability, dynamic analysis

1. INTRODUCTION
Recent trends in microprocessor architectures have made

concurrency a central strategy for scaling up the perfor-
mance of software. Unfortunately, writing correct multi-
threaded programs has proven to be very difficult because
reasoning about program correctness must be done at the
level of thread interleavings and platform-specific memory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PADTAD ’09, July 19-20, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-655-7/09/07 ...$10.00.

models. As our society depends increasingly on large soft-
ware systems, reliability of multithreaded programs is an
increasingly important concern. A crucial issue to consider
is what it means for a multithreaded program to be correct,
and how to specify correctness.

A general specification for multithreaded programs is atom-
icity, a strong non-interference property that is widely appli-
cable amongst many different programs. Informally, a block
of code is atomic if, for all executions of that code block, the
effect of that execution can be considered in isolation from
the rest of the running program. In the database literature
this property is often called serializability [3].

Atomicity corresponds to a natural way of thinking about
concurrency, where the problem of reasoning about inter-
leavings between individual operations is reduced to reason-
ing about interleavings between much coarser atomic blocks.
Inside an atomic block, simpler sequential reasoning may be
applied to show correctness.

While atomicity is related to the notion of race-freedom [23],
these two correctness properties provide complementary guar-
antees. Race-freedom guarantees that the program behaves
as if executed on a sequentially-consistent memory model [1],
while atomicity guarantees that each atomic block behaves
as if executed serially.

In this paper, we focus on dynamically detecting atomicity
violations in traditional multithreaded programs based on
synchronization idioms such as locks, fork, join etc. Prior
work on dynamic atomicity analysis includes both precise
and imprecise tools.

• Precise dynamic atomicity analyzers, such as Velo-
drome and others [17, 11], never produce false alarms.
Instead, they report an atomicity violation if and only
if the observed trace is not serializable.

• In contrast, imprecise tools, such as Atomizer and
others [13, 31, 34, 33], generalize from the observed
trace to also report errors which may (or may not)
occur on other possible traces. In practice, these im-
precise tools may report false alarms, which are noto-
riously difficult to distinguish from real error reports.

Sound trace generalization.
This paper explores a third approach, which is to general-

ize from the observed trace without introducing the poten-
tial of false alarms. Even if the observed trace is serializable,
our online analysis can still infer that the original program
can generate other feasible traces that are not serializable.

To illustrate this idea, consider the trace in Figure 1,
where Thread 1 contains an atomic block with two synchro-
nized statements, Thread 2 contains a single synchronized
statement, and where the vertical ordering of the statements
of the two threads reflects their relative execution order.

Thread 1 Thread 2

sync(m) {...}

atomic {

 sync(m) {...}

 sync(m) {...}

}

Figure 1: Observed Serial Trace

Clearly, this trace is serial and hence trivially serializable,
and so a precise checker such as Velodrome would not de-
tect any errors. A careful analysis of this trace, however,
shows that the synchronized statement of Thread 2 could
have been scheduled in between the two synchronized state-
ments of Thread 1; the original source program that gener-
ated the trace of Figure 1 is also capable of generating the
non-serializable trace shown in Figure 2.

Thread 1 Thread 2

sync(m) {...}

atomic {

 sync(m) {...}

 sync(m) {...}

}

Figure 2: Feasible Non-Serializable Trace

Technically, the synchronized block of Thread 2 could di-
verge in this alternate trace. Our analysis assumes that all
synchronized blocks terminate, and that the program is free
of race conditions. This latter assumption can be discharged
by concurrently running an efficient precise race detector
such as FastTrack [14] or Goldilocks [9].

We would like to catch the violation of Figure 2 without
having to observe it directly. Whenever the same lock is
acquired twice within a transaction, there is a vulnerable
window between the two acquires where a culprit acquire
by another thread could cause an atomicity violation.

SideTrack.
In this paper we introduce SideTrack, an online pre-

dictive atomicity analysis. By observing the serial trace of
Figure 1, our dynamic analysis can detect that the source
program contains an atomicity violation, even though that
violation does not manifest itself in the current trace. Thus,
our analysis generalizes from the observed trace to detect er-
rors that are guaranteed to occur on another feasible trace.
Furthermore, unlike prior imprecise tools, it performs this
generalization without introducing false alarms.

Our analysis detects three kinds of errors – before-errors,
in-errors, and after-errors – depending on where the
culprit acquire occurs in relation to the vulnerable window,

as shown in Figure 3 (a), (b), and (c), respectively. Prior
precise tools such as Velodrome only detect in-errors;
SideTrack introduces the additional ability to detect before-
errors and after-errors1.

Thread 1 Thread 2

sync(m) {...}

atomic {

 sync(m) {...}

 sync(m) {...}

}

V

(a) before-errors

Thread 1 Thread 2

sync(m) {...}

atomic {

 sync(m) {...}

 sync(m) {...}

}

V

(b) in-errors

Thread 1 Thread 2

sync(m) {...}

atomic {

 sync(m) {...}

 sync(m) {...}

}

V

(c) after-errors

Figure 3: Three Kinds of Atomicity Violations

Although the above examples are rather straightforward,
in practice generalizing from the observed trace in a sound
manner may be rather involved. To illustrate some of the
issues, consider an alternate trace shown in Figure 4, where
the second synchronized block of Thread 1 forks Thread 2.
In this situation, the synchronized statement of Thread 2
cannot be scheduled between the two synchronized state-
ments of Thread 1.

Despite the similarities between Figures 1 and 4, the first
trace reflects an atomicity error in the source program, where-
as the second trace does not. SideTrack needs to perform
a careful analysis of the happens-before relation of the ob-
served trace to detect situations where certain synchronized
blocks could have been scheduled before other synchronized
blocks. SideTrack uses the standard technique of vector
clocks to provide a compact and efficient representation of
this happens-before relation. SideTrack tracks the relative
timing of synchronization operations and flags an error if an
operation by another thread is concurrent with one of the
operations flanking a vulnerable window.

1Some tools do generalize to other traces using a combina-
tion of online and offline analysis; please see the related work
section for more details.

Thread 1 Thread 2

sync(m) {...}

atomic {

 sync(m) {...}

 sync(m) {

 fork(2);

 }

}

Figure 4: Observed Serial Trace with Fork

Empirical validation.
On a range of standard multithreaded benchmarks, we

show that generalizing from the observed trace significantly
increases SideTrack’s ability to detect atomicity violations,
without introducing false alarms. In particular, SideTrack
detected 27 in-errors, which would also be detected by
prior precise tools such as Velodrome. However, Side-
Track also predicted an additional 11 atomicity violations
that did not occur on the observed trace, but which could
occur on other feasible traces. Thus, the ability to soundly
generalize from the observed trace increased the number of
atomicity violations detected by SideTrack by 40%.

Summary.
This paper contains the following contributions:

• We show how serializable traces can still reveal atom-
icity violations in the original program.

• We present SideTrack, a lightweight on-line dynamic
analysis tool that generalizes from the observed trace
to predict atomicity violations that could occur on
other feasible traces. SideTrack performs this gener-
alization without introducing false alarms.

• We present experimental results showing that this pre-
dictive ability increases the number of atomicity vio-
lations detected by SideTrack by 40%.

• Our results also show that, despite performing on-line
generalization, SideTrack offers performance com-
petitive with other dynamic analyses.

2. MULTITHREADED PROGRAM TRACES
We begin by formalizing the notion of multithreaded pro-

gram traces, which serve as the input to our dynamic anal-
ysis. A program consists of a number of concurrently exe-
cuting threads that manipulate variables x ∈ Var and locks
m ∈ Lock . Each thread has a thread identifier t ∈ Tid . A
trace α captures an execution of a multithreaded program by
listing the sequence of operations performed by the various
threads. The set of operations that a thread t can perform
include:

• rd(t, x) and wr(t, x), which read and write from vari-
able x;

• acq(t,m) and rel(t, m), which acquire and release a
lock m;

• begin(t, l) and end(t, l), which demarcate an atomic

block labelled l;

• fork(t, u), which forks a new thread u; and

• join(t, u), which blocks until thread u terminates.

We are concerned with the traces produced from an actual
run of a source program. These traces will be well-formed ;
they fulfill expected constraints when forking, joining, ac-
quiring and releasing. For example, every release operation
has a corresponding acquire operation by the same thread
earlier in the trace, and no operations by thread u occur in
a trace prior to the forking of thread u.

Two operations in a trace conflict if they satisfy one of
the following conditions:

• Lock conflict: they acquire or release the same lock.

• Fork-join conflict: one operation is either fork(t, u)
or join(t, u) and the other operation is by thread u.

• Program order conflict: they are performed by the
same thread.

The happens-before relation <α on a trace α is the smallest
transitively-closed relation on operations in α such that if
operation a occurs before b in α and a conflicts with b, then
a happens-before b and b happens-after a.

Two traces are equivalent if one can be obtained from
the other by repeatedly swapping adjacent non-conflicting
operations. Equivalent traces yield the same happens-before
relation, and exhibit equivalent behavior.

A transaction in a trace α is the sequence of operations ex-
ecuted by a thread t starting with a begin(t, l) operation and
containing all t operations up to and including a matching
end(t, l) operation. To simplify some aspects of the formal
presentation, we assume begin(t, l) and end(t, l) operations
are appropriately matched and are not nested (although our
implementation does support nested atomic specifications).

In a serial trace, all operations from each transaction are
grouped together and not interleaved with the operations of
any other transaction. A trace is serializable if it is equiva-
lent to a serial trace.

If two operations in a trace have a fork-join or program
order conflict, then we say they have an enables conflict.
The enables relation ≺α is the smallest transitively-closed
relation on operations in α such that if operation a occurs
before b in α and a has an enables conflict with b, then a
enables b.

A lock operation a in α is concurrent with a later lock
operation b by a different thread unless there exists an oper-
ation c between a and b such that a <α c and c ≺α b. This
is a tricky definition and is important for the later discus-
sion, so it is worth developing the intuition behind it. In
essence, in a hypothetical alternate trace where b occurs be-
fore a, c would also need to occur before a. However, once
the happens-before edge between c and a is reversed, the
thread which executed c may take an alternate path of exe-
cution. Since c enables b, this means that b may not occur
if c occurs earlier.

In any good definition of concurrent, two concurrent op-
erations may execute in either order. Therefore, to identify
concurrent operations we need to ensure that a dependency
does not exist between them. The happens-before relation
identifies dependencies but is too restrictive; every pair of
lock operations on the same lock are related by happens-
before. The enables relation is too weak; the lock operations

on m by different threads in Figure 5(a) are not related by
enables, but it may not be possible to execute them in a
different order (Figure 5(b)).

Vector clocks.
SideTrack uses vector clocks [22] to identify concurrent

acquire operations within a trace. Vector clocks compactly
represent the happens-before relation. A vector clock maps
thread identifiers to integer clocks:

VC
def
= Tid → Nat

If vc is the vector clock for an acquire operation in a trace,
then vc(t) identifies the operations of thread t that happen-
before that acquire.

Vector clocks are partially-ordered (⊑) in a point-wise
manner, with an associated join operation (⊔) and minimal
element (c0). In addition, the helper function inct incre-
ments the t-component of a vector clock:

vc1 ⊑ vc2 iff ∀t. vc1(t) ≤ vc2(t)

vc1 ⊔ vc2 = λt. max(vc1(t), vc2(t))

c0 = λt. 0

inct(vc) = λu. if u = t then vc(u) + 1 else vc(u)

3. ANALYSIS
We refer to the actual trace perceived by our analysis tool

as the observed trace. In addition to the observed trace,
many other feasible traces exist for a given program. It is
not generally possible to predict all feasible traces for a pro-
gram without additional static information; for example, the
observed trace may not have complete code coverage for the
source program. Nevertheless, our analysis detects situa-
tions where a feasible but not observed atomicity violation
can be predicted dynamically.

Whenever the same lock is acquired twice within a trans-
action, there is a vulnerable window between the two ac-
quires where an acquire by another thread could cause an
atomicity violation. Our analysis keeps track of these vul-
nerable windows, and flags an error if it detects that a feasi-
ble trace exists which exploits a vulnerable window to cause
an atomicity violation. We refer to the external acquire
which could occur in the vulnerable window as a culprit ac-
quire.

Note that when predicting feasible traces dynamically, it
is not possible to predict the entire trace. For example, we
can predict that a lock acquire could have occurred between
the two previous acquires, but the trace after that point may
not be predictable based on the information obtained from
the first trace. Instead, our analysis can only predict that
there exists some alternate trace with an atomicity violation,
where the alternate trace shares a prefix with the observed
trace and executes certain synchronized blocks in a certain
order.

Because of these inherent limitations in our ability to gen-
eralize from the observed trace, some traces which appear
at first glance to have a predictable atomicity violation turn
out to be more complicated upon closer inspection. For ex-
ample, consider the trace in Figure 5(a), where it appears
the synchronized block of Thread 2 could execute inside the
vulnerable window of Thread 1. However, if the read of b
by Thread 2 executes before the write to b by Thread 1, we
can no longer predict the subsequent execution of Thread

2, and in particular cannot guarantee that Thread 2 will
still synchronize on the lock m (Figure 5(b)). The notion of
concurrency defined in Section 2 captures these constraints.

Thread 1 Thread 2

sync(n) {

 read b;

 write y;

 ...

}

sync(m) {...}

atomic {

 sync(m) {...}

 sync(m) {...}

}

sync(n) {

 write b;

}

V

(a) Thread 2 synchronizes on lock m.

Thread 1 Thread 2

sync(n) {

 read b;

 //no idea

 ...

}

atomic {

 sync(m) {...}

 sync(m) {...}

}

sync(n) {

 write b;

}

V

(b) Thread 2 may not synchronize on lock m, due to an
alternate control flow.

Figure 5: A non-vulnerable atomic block due to the

happens-before edge on the lock n, which protects

the variable b.

As stated in the introduction, our analysis detects three
different kinds of errors (before-errors, after-errors,
and in-errors), depending on where the culprit acquire oc-
curs in relation to the vulnerable window.

In a before-error, the culprit acquire occurred before
the vulnerable window, as illustrated in Figure 3(a). To de-
tect before-errors, the analysis records the vector clock
of the most recent acquire of each lock. When a lock is first
acquired in an atomic block, the analysis checks if that ac-
quire is concurrent with the previous acquire of that lock,
via a vector clock comparison. If the two acquires are con-
current, then that lock is recorded as being potentially inter-
fering in that atomic block; if the atomic block subsequently
re-acquires that lock, then a before-error atomicity vio-
lation is reported.

Note that it is not enough to keep track of the most re-
cent release of each lock. It is possible for a lock release by
Thread 1 to be concurrent with an acquire of the same lock

by Thread 2, while the corresponding acquire by Thread 1
enables the acquire by Thread 2. In the most extreme case,
Thread 1 could fork Thread 2 while holding the the lock.

In an in-error, the culprit acquire occurs in the vulnera-
ble window, as in Figure 3(b). Other dynamic atomicity
analysis tools that do not generalize to additional traces
typically catch in-errors; an in-error represents an ac-
tual atomicity violation in the observed trace. We catch
in-errors inside the vulnerable window, when the program
is about to execute the second acquire within the transac-
tion. There is an atomicity violation if a thread is about
to acquire the same lock twice within a transaction and dis-
covers the last release of that lock is concurrent with the
acquire about to happen2.

In an after-error, the culprit acquire occurs after the
vulnerable window, as in Figure 3(c). We catch after-
errors when the program is about to execute the culprit
acquire. We keep track of the most recent vulnerable window
for every lock. If the vector clock for an acquire by a different
thread is not later than the vulnerable window, than that
thread could have executed the acquire in the vulnerable
window.

Analysis formalization.
Based on these ideas, we now formally define our atomicity

analysis as an online algorithm based on an analysis state
σ = (C, V, A, R, H, I) where:

• C : Tid → VC records the vector clock of the current
operation by each thread;

• V : Lock → VC records the vector clock of the most
recent vulnerable window for each lock;

• A : Lock → VC records the vector clock of the last
acquire of each lock;

• R : Lock → VC records the vector clock of the last release
of each lock;

• H : Tid → 2LOCKS ∪ {NotInX} records the set of locks held
within the current transaction by each thread, or NotInX
if that thread is not currently within a transaction; and

• I : Tid → 2LOCKS records the set of potentially interfering
locks for each thread.

In the initial analysis state, all vector clocks are initialized
to c0, except each Ct starts at inct(c0) to reflect that the
first steps by different threads are not ordered.

σ0 = (λt. inct(c0),

λm. c0,

λm. c0,

λm. c0,

λt. NotInX,

λt. ∅)

Figure 6 shows how the analysis state is updated for each
operation a of the target program.

The first rule [enter] for begin(t, l) records that thread t
is in a new transaction by switching Ht away from NotInX

2Concurrent operations are by different threads, so this
would mean that another thread acquired the lock.

to ∅, and resets the set of interfering locks. The comple-
mentary rule for end(t, l) records that t is no longer in a
transaction. Here, H is a function, Ht abbreviates the func-
tion application H(t), and H [t := V] denotes the function
that is identical to H except that it maps t to V . Changes
to the instrumentation state are expressed as functional up-
dates for clarity in the analysis rules, but are implemented
as in-place updates in our implementation.

Read and write operations do not affect the analysis state.
If required, race conditions can be detected by running Side-
Track concurrently with a race detector such as Fast-
Track [14]. We do not yet consider reads and writes of
volatile variables which create nonblocking synchronization,
although we believe we can adapt our analysis to handle
these constructs.

We update vector clocks for fork and join operations to
reflect the structure of the enables relation. The rule [fork]
for fork(t, u) performs one “clock tick” for thread t and sets
the vector clock associated with u to be greater than previ-
ous operations by thread t. The rule [join] records that the
last operation of the joined thread enables the join opera-
tion. The vector clock for the joined thread is incremented
to preserve the invariant that the current vector clocks for
each running thread are incomparable.

There are three analysis rules associated with an acq(t, m)
operation. All three rules share three common antecedents
which:

1. update the vector clock for t to reflect that the current
time for t is later than the previous release of m;

C′ = C[t := Ct ⊔ Rm]

2. update the last acquire for m appropriately;

A′ = A[m := Ct]

3. and report an after-error if the vulnerable window
for m is not before the current clock for t:

if Vm 6⊑ Ct then after-error

The rule [outside acquire] applies to acquires that are
not within a transaction, and simply performs the above
three actions.

The rule [first acquire] applies the first time a thread
acquires a lock within a transaction. We add m to the set of
locks Ht acquired within that transaction, and check if the
previous acquire of m was concurrent. If so, we add m to
the set It of potentially interfering locks for that thread.

The rule [second acquire] applies the second time a
thread acquires a lock within a transaction. We record the
new vulnerable window for m in Vm. We flag a before-error
if there is a previous interfering lock which could have exe-
cuted after the first acquire by t. We flag an in-error if the
previous release of m is not before the current clock for t. All
previous operations by t, including the first acquire of m by
t, are before the current clock of t. Therefore, if Rm 6⊑ Ct,
then another thread released (and previously acquired) m
between the two acquires by t.

The rule [release] for rel(t,m) updates the vector clock
associated with the latest release for m. We also perform
one clock tick for thread t.

Figure 6: SideTrack Atomicity Violation Detection Algorithm

[enter]
H ′ = H [t := ∅]
I ′ = I [t := ∅]

(C, V, A,R, H, I) ⇒begin(t,l) (C, V, A, R,H ′, I ′)

[exit]
H ′ = H [t := NotInX]

(C, V, A, R,H, I) ⇒end(t,l) (C, V, A, R, H ′, I)

[read]

(C, V, A,R, H, I) ⇒rd(t,x,v) (C, V, A, R, H, I)

[write]

(C, V, A, R,H, I) ⇒wr(t,x,v) (C, V, A, R, H, I)

[fork]
C′ = C[t := inct(Ct), u := Ct ⊔ Cu]

(C, V, A,R, H, I) ⇒fork(t,u) (C′, V, A, R, H, I)

[join]
C′ = C[t := Ct ⊔ Cu, u := incu(Cu)]

(C, V, A, R,H, I) ⇒join(t,u) (C′, V, A,R, H, I)

[first acquire]
Ht 6= NotInX m /∈ Ht

if Vm 6⊑ Ct then after-error
C′ = C[t := Ct ⊔ Rm]
A′ = A[m := Ct]
H ′ = H [t := Ht ∪ {m}]
I ′ = (if Am ⊑ Ct then I else I [t := It ∪ {m}])

(C, V, A, R, H, I) ⇒acq(t,m) (C′, V, A′, R,H ′, I ′)

[second acquire]
m ∈ Ht

if m ∈ It then before-error
if Rm 6⊑ Ct then in-error
if Vm 6⊑ Ct then after-error

C′ = C[t := Ct ⊔ Rm]
V ′ = V [m := Vm ⊔ Ct]
A′ = A[m := Ct]

(C, V, A, R,H, I) ⇒acq(t,m) (C′, V ′, A′, R, H, I)

[outside acquire]
Ht = NotInX

if Vm 6⊑ Ct then after-error
C′ = C[t := Ct ⊔ Rm]
A′ = A[m := Ct]

(C, V, A,R, H, I) ⇒acq(t,m) (C′, V, A′, R,H, I)

[release]
C′ = C[t := inct(Ct)]
R′ = R[m := Ct]

(C, V, A, R,H, I) ⇒rel(t,m) (C′, V, A,R′, H, I)

Examples.
Figure 7 shows how vector clocks are updated on a sam-

ple trace fragment involving an after-error. The I and
A parts of the analysis state play no part in discovery of
after-errors, so they are omitted from the figure for sim-
plicity. After the first release by thread 0, C0 is incremented
from <5,0. . . > to <6,0,. . . > and Rm is set to <5,0. . . >.
When m is acquired a second time by thread 0, Vm is set
to the current time for thread 0 (<6,0,. . . >). At the second
release by thread 0, C0 is incremented again from <6,0. . . >
to <7,0,. . . > and Rm is updated to <6,0. . . >. When thread
1 goes to acquire m, an after-error is reported because
Vm 6⊑ C1. Once the after-error is reported, C1 is joined
with the time of the last release (Rm).

The example in Figure 8 illustrates that after-errors
are more amenable to detection than before-errors. Side-
Track finds the after-error in the bottom trace because
the acquires of m by the two threads are concurrent. In
the top trace, the synchronization on n means that the ac-
quires of m are not concurrent: the acquire of n by thread 2
(and, by transitivity, the acquire of m by thread 2) happens-
before the acquire of n by thread 1 and the acquire of n by
thread 1 enables the acquires of m by thread 1. Therefore,
a before-error is not detected in this case.

4. IMPLEMENTATION
We have developed a prototype implementation, called

SideTrack, of our dynamic atomicity analysis. SideTrack

is a component of RoadRunner, a framework designed for
developing dynamic analyses for multithreaded programs.
RoadRunner supports chaining of tools, so that multiple
analyses can be run concurrently. RoadRunner instru-
ments the target bytecode of a program during load time.
The instrumentation code generates a stream of events for
lock acquires and releases, field and array accesses, method
entries and exits, etc3. RoadRunner tools, such as Side-
Track, process this event stream as it is generated. Road-
Runner enables analysis tools to attach instrumentation
state to each thread, lock object, and data memory location
used by the target program. Tool-specific event handlers
update the instrumentation state for each operation in the
observed trace and report errors when appropriate.

Analysis implementation.
By default, SideTrack checks for the specification that

all methods are atomic. This lifts transactions to the method
call level, and nested transactions represent nested method
calls.

Each of the analysis rules in Figure 6 consists of one or
more antecedents and a single consequent. Three rules are
necessary to describe the event handler for acquires. When
implementing these rules, it is useful to break down the an-
tecedents into conditionals, checks, and updates. Condition-
als indicate where the code must branch in an event handler.

3Re-entrant lock acquires and releases are redundant and
are filtered out by RoadRunner.

⟨5,0,...⟩

⟨5,0,...⟩

⟨6,0,...⟩

rel(0,m)

⟨0,3,...⟩

⟨0,3,...⟩

⟨0,3,...⟩

⟨0,0,...⟩

⟨0,0,...⟩

⟨0,0,...⟩

⟨6,0,...⟩

⟨6,0,...⟩

⟨0,0,...⟩

⟨0,0,...⟩

⟨5,0,...⟩

⟨5,0,...⟩

⟨6,0,...⟩

⟨0,3,...⟩

⟨0,3,...⟩

⟨6,0,...⟩

⟨7,0,...⟩

⟨..⟩⟨..⟩

⟨m..⟩

⟨m..⟩

⟨m..⟩

⟨m..⟩

⟨..⟩

⟨..⟩

⟨..⟩

⟨..⟩

acq(0,m)

rel(0,m)

acq(0,m)

acq(1,m)

V

Vm !⊑ C1: after-error

⟨6,3,...⟩ ⟨6,0,...⟩ ⟨6,0,...⟩⟨7,0,...⟩ ⟨m..⟩ ⟨m..⟩

C0 H0 C1 H1 Vm Rm

Figure 7: Illustration of the Analysis State When

Discovering an after-error

Checks indicate when the analysis should flag an error. Up-
dates describe how the next analysis state is obtained.

For example, the rule [first acquire] has two branches
with negated counterparts in different rules: Ht 6= NotInX

and m /∈ Ht, and one internal branch: if Am ⊑ Ct.... The
crucial check is Vm ⊑ Ct. If this check is violated, Side-
Track issues an after-error warning.

Blame assignment.
Our analysis as presented is relatively straightforward to

implement, and successfully flags feasible atomicity viola-
tions. Accurate blame assignment requires significant ex-
tra work, especially since before-error and after-error
atomicity violations do not manifest in the observed trace.

In the presence of nested transactions, it is not sufficient
to report the (inner) transaction where the second acquire
of a vulnerable window occurs. To illustrate this difficulty,
consider the program shown in Figure 9, where we assume
that all methods should be atomic.

While methods c and d are atomic, a and b potentially
have atomicity violations. When we encounter the second
acquire in the vulnerable window inside of b, the call stack
may look like a:b:c:d. However this call stack is not pre-
cise enough to tell us which method is non-atomic. In fact,
we need the call stack for the first acquire of m inside the
vulnerable window as well: a:b:d. We need to identify the
common prefix in the two stacks, and report all methods in
this prefix as non-atomic (here, a and b). We store a call
stack for the first and second acquires for the last vulner-
able window in the instrumentation state associated with
each lock, and call stacks for all locks acquired in the cur-
rent transaction in the instrumentation state associated with
each thread. With a suitable immutable linked-list represen-
tation, recording such a stack is a constant-time operation.

Thread 1 Thread 2�� (m) {

 sync(n) {...}

}

atomic {

 sync(n) {

 sync(m) {...}

 sync(m) {...}

 }

}

Thread 1 Thread 2

sync(m) {

 sync(n) {...}

}

atomic {

 sync(n) {

 sync(m) {...}

 sync(m) {...}

 }

}

nc

Figure 8: SideTrack flags the trace on the bottom

with an atomicity violation, but not the trace on

the top.

Tool complementation.
We can combine SideTrack with Velodrome [17], a

sound and complete dynamic atomicity analysis, to increase
coverage. Velodrome finds more atomicity violations from
a particular trace than SideTrack, since Velodrome also
looks for atomicity violations involving accesses to shared
variables as well as locks. However, SideTrack finds feasi-
ble errors that Velodrome misses, since the latter does not
generalize its analysis to other feasible traces. Thus the two
tools are compatible and complementary. Since RoadRun-
ner supports tool composition, it is straightforward to run
these two together.

Test case generation.
SideTrack was tested using Tiddle [26], a trace description

language and compiler that translates trace fragments into
deterministic multithreaded Java programs. We have found
that it is substantially easier to develop a custom test suite
tailored for a particular dynamic analysis using Tiddle, as
describing “good” and “bad” trace scenarios is simply a mat-
ter of jotting down the appropriate trace fragments.

5. EVALUATION
We present encouraging experimental results for Side-

Track. We ran these experiments on a machine with 3
GB memory, 2.16 GHz dual-core CPU, running Mac OS X
10.5.6, and with Java HotSpot 64-Bit Server JVM 1.6.0.

Our benchmark set includes: elevator, a real-time dis-
crete event simulator [30]; colt, a library for high perfor-
mance scientific computing [5]; jbb, the spec jbb2000 sim-
ulator for business middleware [28]; hedc, a warehouse web-
crawler for astrophysics data [30]; barrier, a barrier syn-
chronization performance benchmark [19]; philo, a dining
philosophers application [9]; tsp, a solver for the traveling
salesman problem [30]; and sync, a synchronization perfor-
mance benchmark [19]. Benchmarks from Java Grande [19]

func a() {

 b();

}

func b() {

 d();

 c();

}

func c() {

 d();

}

func d() {

 sync(m) {...}

}

Potentially

not atomic

Atomic

Figure 9: Program Example Where Precise Blame

Assignment Is Necessary

Table 1: Atomicity Errors Found by SideTrack.
Types of
Errors

Programs M
et

h
o
d
s

w
it
h

E
rr

o
rs

b
e
f
o
r
e
-e

r
r
o
r
s

in
-e

r
r
o
r
s

a
f
t
e
r
-e

r
r
o
r
s

P
re

d
ic

te
d

b
e
f
o
r
e
s

P
re

d
ic

te
d

a
f
t
e
r
s

P
re

d
ic

te
d

T
o
ta

l

elevator 5 3 1 5 2 4 4
colt 9 4 7 9 2 2 2
jbb 10 7 5 10 5 5 5
hedc 4 1 4 4 0 0 0
barrier 1 1 1 1 0 0 0
philo 1 1 1 1 0 0 0
tsp 4 4 4 4 0 0 0
sync 4 4 4 4 0 0 0

Total 38 25 27 38 9 11 11

were configured to use 4 threads and the base data set. This
set totals over 200K lines of code. Excluding the Java stan-
dard libraries, all classes loaded by benchmark programs
were instrumented.

To check for atomicity violations, we assumed that all
methods should be atomic. In practice this assumption works
fairly well; previous experiments have validated that atom-
icity is a fundamental design principle for concurrency [13,
21].

For each benchmark, Table 1 reports both the total num-
ber of methods with atomicity violations (Column 2) as
well as the error count for each type of atomicity violation
(Columns 3 - 5). Note that there is significant overlap be-
tween the methods reported by each kind of violation. To
further clarify the benefit of SideTrack’s predictive anal-
ysis, Column 6 reports the number of before-errors that
are not in-errors (and so not detected by earlier precise
tools), and Column 7 reports on after-errors that are
not in-errors. Finally, the last column reports on errors
that are either before-errors or after-errors, but not
in-errors, and so most clearly summarizes the improve-
ment achieved via predictive analysis. SideTrack’s predic-

Table 2: Benchmark Performance Results

Programs N
u
m

T
h
re

a
d
s

L
O

C

B
a
se

R
u
n
ti
m

e
(S

ec
o
n
d
s)

S
lo

w
d
ow

n
(E

m
p
t
y
)

S
lo

w
d
ow

n
(S

id
e
T

r
a
c
k
)

colt 11 111,421 16.2 1.2 1.2
barrier 4 774 55.2 1.0 1.0
tsp 5 706 1.1 2.6 3.7
sync 4 650 68.8 0.8 0.9
crypt 7 1,241 0.6 3.9 4.3
moldyn 4 1,402 1.7 3.1 4.2
forkjoin 187 591 0.04 45.0 47.0
lufact 4 1,627 0.3 8.8 9.4
montecarlo 4 3,669 2.4 2.3 2.6
raytracer 4 1,970 1.5 5.4 13.9
series 4 967 2.9 1.5 1.8
sor 4 1,005 0.3 5.8 7.0

tive ability catches an additional 11 errors, in addition to
the 27 in-errors: an improvement of roughly 40%.

Interestingly, all 11 of these additional violations were
found by the after analysis, which suggests that the after
analysis generalizes better than the before analysis.

To confirm that the predicted errors are not false posi-
tives, we investigated the error messages in the “Predicted
Total” column by inspecting the program source code. We
found that it was easy to pinpoint the errors with the blame
assignment information. All were judged to be vulnerable
to atomicity violations. However, some of these violations
may be benign.

Table 2 reports on the performance of our analysis. For
each of the compute-bound benchmarks, we report on the
running time of that benchmark (without any instrumen-
tation), and on the slowdown incurred by RoadRunner
when running with the Empty tool (which just measures the
instrumentation overhead but performs no dynamic analy-
sis); and the slowdown when run with SideTrack. We also
measured performance for all other benchmarks in the Java
Grande suite; SideTrack reported no errors (of any of the
three types) for these additional benchmarks. The aver-
age slowdown for SideTrack was 8.1x, as compared with a
slowdown for the Empty tool of 6.8x.

There are a couple outliers. The forkjoin benchmark
taxes our instrumentation framework by forking and join-
ing almost 200 threads, each of which has an associated in-
strumentation state. Additionally, the running time of this
benchmark is so short that other effects (like printing) may
dominate the slowdown. Without forkjoin, the slowdown
for SideTrack is 4.5x and the slowdown for the Empty tool
is 3.3x. The 13.9x slowdown for raytracer is a result of the
large number of small method calls in this benchmark, each
of which must be recorded for blame assignment.

The results show that SideTrack provides a significant
improvement in performance of prior dynamic atomicity anal-
yses, such as SingleTrack [25] (10.4x), Velodrome [17]
(10.3x), and Atomizer [13]. This performance improve-
ment is largely because SideTrack does not analyze mem-
ory reads and writes, and instead assumes that the target

program is race-free and any inter-thread communication
is mediated via synchronization idioms such as locks. If
necessary, this race-free assumption can be verified by con-
currently running an efficient race detector such as Fast-
Track [14], which would incur an additional performance
overhead of 10x. We believe using separate analyses to ver-
ify race-freedom and atomicity offers benefits both in terms
of performance and modularity of the analysis code.

6. RELATED WORK

Atomicity violation detection tools.
A variety of tools have been developed to detect atomicity

violations, both statically and dynamically. Static analyses
for verifying atomicity include type systems [18, 15, 27, 16,
32] as well as techniques that look for cycles in the happens-
before graph [10]. Compared to dynamic techniques, static
systems provide stronger soundness guarantees but typically
involve trade-offs between precision and scalability.

Dynamic techniques analyze a specific executed trace at
runtime. Artho et al. [2] have developed a dynamic anal-
ysis tool to identify one class of “higher-level races” using
the notion of view consistency. Many dynamic techniques
for detecting atomicity violations exist in the literature; we
will expand on some of them here. The Atomizer [13]
uses Lipton’s theory of reduction [20] to check serializability,
similar to the reduction-based algorithms described in [31,
34]. Atomizer looks for irreducible patterns in the trace
and may find some errors that do not actually manifest in
the observed trace. However, Atomizer may also report
false positives, due to limitations in how Atomizer reasons
about different synchronization idioms. In contrast, Velo-
drome [17] reports an error if and only if the observed trace
is not serializable. Velodrome uses transactional happens-
before graphs to detect cycles, which correspond directly to
an atomicity violation. Farzan and Madhusudan [11] pro-
vide space complexity bounds for a similar analysis.

Predictive approaches.
There have been a number of recent papers about predict-

ing atomicity violations from an observed trace; note that
none of these approaches are completely online. However,
some of these tools offer increased coverage over SideTrack
by using additional static information.

HAVE [7] injects static method summaries into a dynamic
context and speculates on unexecuted control flow branches
to predict atomicity violations. This speculative technique
may lead to false positives, but experimental results indicate
that such messages are very rare. The kinds of predictions
made by HAVE are different from those made by Side-
Track, since HAVE bases its predictions on unobserved-
yet-feasible operations, while SideTrack uses the observed
trace to infer a different-but-feasible scheduling.

JPredictor [6] performs offline causality slicing on an ob-
served trace to remove irrelevant events, then generates sound
permutations of events to predict atomicity violations. Atom-
icity violations are detected by matching against 11 known
violation patterns [29]. The hybrid techniques of HAVE and
JPredictor make use of static control- and data-flow infor-
mation and thus are complementary to our purely dynamic
prediction technique.

Wang and Stoller have developed a block-based algorithm

[34] and commit-node algorithms that address both conflict-
atomicity (referred to as atomicity in this paper) and view-
atomicity [33]. They monitor execution traces at runtime,
and analyze those traces offline. By design, these algorithms
report potential serializability violations that do not occur
on the observed trace but which might occur on other traces.
Although these algorithms potentially report false positives,
this problem does not seem to arise in practice.

Farzan and Madhusudan [12] predict runs from program
models based on profiles and check serializability of the pre-
dicted runs. They develop time bounds and algorithms
for straight-line, regular, and recursive programs with and
without synchronization. Implementing prediction tools for
atomicity violations based on their theoretical results re-
mains future work.

Scheduling atomicity violations.
Sen and Park [24] have developed a tool called Atom-

Fuzzer which attempts to schedule atomicity violations. They
target the same pattern we do: one thread acquires the same
lock twice within a transaction. They use the heuristic that
every synchronized block should be atomic, instead of every
method. When a thread is about to acquire the same lock
a second time, AtomFuzzer pauses the thread (with proba-
bility 0.5), and tries to schedule another thread (which may
cause an atomicity violation) first. If all threads are paused,
one thread is chosen to continue.

AtomFuzzer may miss some errors which we are able to
catch, because it is not always possible (or desirable) to
pause every thread as long as necessary at a vulnerable
point. However, since AtomFuzzer actually produces an
atomicity violation, the user is able to see what sorts of
problems (e.g. exceptions) are caused by that violation. Ad-
ditionally, AtomFuzzer may find errors that we are unable
to report, by shaping a particular execution trace through
scheduling. For example, AtomFuzzer may be able to drive
execution to produce an atomicity violation for the trace in
Figure 5, whereas we cannot discover if such a trace is fea-
sible. These two approaches are complementary; scheduling
(also see [8]) can be used to generate more atomicity viola-
tions for a particular trace while an analysis like SideTrack
predicts other feasible violations.

7. FUTURE WORK
Several issues remain for future work. We are currently

developing formal proofs of our intended correctness prop-
erty, namely that the analysis is complete and reports no
false alarms on data-race-free programs. We are also extend-
ing our analysis to handle accesses to volatile variables and
other synchronization idioms, such as barriers, wait-notify,
etc. We would also like to extend this general approach for
trace generalization to other specification idioms, such as
race freedom and deterministic parallelism [25, 4].

8. REFERENCES

[1] S. V. Adve and K. Gharachorloo. Shared memory
consistency models: A tutorial. IEEE Computer,
29(12):66–76, 1996.

[2] C. Artho, K. Havelund, and A. Biere. High-level data
races. In International Workshop on Verification and
Validation of Enterprise Information Systems, 2003.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[4] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Simmons,
H. Sung, and M. Vakilian. A type and effect system
for Deterministic Parallel Java. Technical Report
UIUCDCS-R-2009-3032, Department of Computer
Science, University of Illinois at Urbana-Champaign,
2009.

[5] CERN. Colt 1.2.0. Available from
http://dsd.lbl.gov/˜hoschek/colt/, 2007.

[6] F. Chen, T. F. Şerbănuţă, and G. Roşu. jPredictor: a
predictive runtime analysis tool for Java. In
International Conference on Software Engineering,
221–230. ACM, 2008.

[7] Q. Chen, L. Wang, Z. Yang, and S. D. Stoller. HAVE:
Integrated dynamic and static analysis for atomicity
violations. In International Conference on
Fundamental Approaches to Software Engineering
(FASE), 2009.

[8] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby,
and S. Ur. Framework for testing multi-threaded java
programs. In Concurrency and Computation: Practice
and Experience, volume 15, 2003.

[9] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: a
race and transaction-aware Java runtime. In ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 245–255, 2007.

[10] A. Farzan and P. Madhusudan. Causal atomicity. In
Computer Aided Verification (CAV), 315–328, 2006.

[11] A. Farzan and P. Madhusudan. Monitoring atomicity
in concurrent programs. In Computer Aided
Verification (CAV), 52–65, 2008.

[12] A. Farzan and P. Madhusudan. The complexity of
predicting atomicity violations. In Tools and
Algorithms for the Construction and Analysis of
Systems (TACAS), 2009.

[13] C. Flanagan and S. N. Freund. Atomizer: A dynamic
atomicity checker for multithreaded programs. In
ACM SIGPLAN - SIGACT Symposium on Principles
of Programming Languages (POPL), 256–267, 2004.

[14] C. Flanagan and S. N. Freund. FastTrack: Efficient
and precise dynamic race detection. In ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2009. To appear.

[15] C. Flanagan, S. N. Freund, M. Lifshin, and S. Qadeer.
Types for atomicity: Static checking and inference for
Java. Transactions on Programming Languages and
Systems, 30(4):1–53, 2008.

[16] C. Flanagan, S. N. Freund, and S. Qadeer. Exploiting
purity for atomicity. IEEE Transactions on Software
Engineering, 31(4):275–291, 2005.

[17] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A
sound and complete dynamic atomicity checker for
multithreaded programs. In ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), 2008.

[18] C. Flanagan and S. Qadeer. A type and effect system
for atomicity. In ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), 338–349, 2003.

[19] Java Grande Forum. Java Grande benchmark suite.
http://www.javagrande.org, 2008.

[20] R. J. Lipton. Reduction: A method of proving
properties of parallel programs. Communications of
the ACM, 18(12):717–721, 1975.

[21] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes: a comprehensive study on real world
concurrency bug characteristics. SIGPLAN Notices,
2008.

[22] F. Mattern. Virtual time and global states of
distributed systems. In International Workshop on
Parallel and Distributed Algorithms. 1988.

[23] R. H. B. Netzer and B. P. Miller. What are race
conditions? Some issues and formalizations. ACM
Letters on Programming Languages and Systems
(LOPLAS), 1:74–88, 1992.

[24] C.-S. Park and K. Sen. Randomized active atomicity
violation detection in concurrent programs. In ACM
SIGSOFT International Symposium on Foundations
of Software Engineering (FSE), 135–145. ACM, 2008.

[25] C. Sadowski, S. N. Freund, and C. Flanagan.
SingleTrack: A dynamic determinism checker for
multithreaded programs. In European Symposium on
Programming (ESOP), 2009.

[26] C. Sadowski and J. Yi. Tiddle: A trace description
language for generating concurrent benchmarks to test
dynamic analyses. In International Workshop on
Dynamic Analysis (WODA), 2009. To appear.

[27] A. Sasturkar, R. Agarwal, L. Wang, and S. D. Stoller.
Automated type-based analysis of data races and
atomicity. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming
(PPoPP), 83–94, 2005.

[28] SPEC. Standard Performance Evaluation Corporation
JBB2000 Benchmark.
http://www.spec.org/osg/jbb2000/, 2000.

[29] M. Vaziri, F. Tip, and J. Dolby. Associating
synchronization constraints with data in an
object-oriented language. In ACM SIGPLAN -
SIGACT Symposium on Principles of Programming
Languages (POPL), 334–345, 2006.

[30] C. von Praun and T. Gross. Static conflict analysis for
multi-threaded object-oriented programs. In ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 115–128, 2003.

[31] L. Wang and S. D. Stoller. Runtime analysis for
atomicity. In International Workshop on Runtime
Verification (RV), 2003.

[32] L. Wang and S. D. Stoller. Static analysis of atomicity
for programs with non-blocking synchronization. In
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), 61–71,
2005.

[33] L. Wang and S. D. Stoller. Accurate and efficient
runtime detection of atomicity errors in concurrent
programs. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming
(PPoPP), 137–146, 2006.

[34] L. Wang and S. D. Stoller. Runtime analysis of
atomicity for multithreaded programs. IEEE
Transactions on Software Engineering, 32:93–110, Feb.
2006.

