A Modular Checker for Multithreaded Programs

Cormac Flanagan!, Shaz Qadeer!, and Sanjit A. Seshia?*

1 Compaq Systems Research Center, Palo Alto, CA
2 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA

Abstract. Designing multithreaded software systems is prone to errors
due to the difficulty of reasoning about multiple interleaved threads of
control operating on shared data. Static checking, with the potential to
analyze the program’s behavior over all execution paths and for all thread
interleavings, is a powerful debugging tool. We have built a scalable and
expressive static checker called Calvin for multithreaded programs. To
handle realistic programs, Calvin performs modular checking of each
procedure called by a thread using specifications of other procedures
and other threads. The checker leverages off existing sequential program
verification techniques based on automatic theorem proving. To evaluate
the checker, we have applied it to several real-world programs. Our ex-
perience indicates that Calvin has a moderate annotation overhead and
can catch defects in multithreaded programs, including synchronization
errors and violation of data invariants.

1 Introduction

Mission-critical software systems, such as operating systems and databases, are
often multithreaded. Ensuring the reliability of these systems is an important but
difficult problem. Design of multithreaded software is particularly prone to errors
because of subtle interactions between multiple interleaved threads of control
operating on shared data. Static checking can analyze the program’s behavior
over all execution paths and for all thread interleavings. However, current static
checking techniques do not scale to large programs.

A common way to achieve scalability is to use modularity, i.e., to analyze each
component of the system separately using a specification of other components.
A standard notion of modularity for sequential programs is procedure-modular
reasoning [17], where a call site of a procedure is analyzed using a precondi-
tion/postcondition specification of that procedure. But this style of procedure-
modular reasoning does not generalize to multithreaded programs [5,15]. An
orthogonal notion of modularity for multithreaded programs is thread-modular
reasoning [14], which avoids the need to explicitly consider all possible inter-
leavings of threads. This technique analyzes each thread separately using a
specification, called an environment assumption, that constrains the updates
to shared variables performed by interleaved actions of other threads. But this
style of thread-modular reasoning handles a procedure call by the inherently
non-scalable method of inlining the procedure body. Consequently, approaches
based purely on any one of procedure-modular or thread-modular reasoning are
inadequate for large programs with many procedures and many threads.

* Supported in part by a NDSEG Fellowship.

In this paper, we describe a combination of thread-modular and procedure-
modular reasoning for verifying safety properties of multithreaded programs. In
our methodology, the specification of each procedure consists of an environment
assumption and an abstraction. The environment assumption, as in pure thread-
modular reasoning, is a two-store predicate that constrains updates to shared
variables performed by interleaved actions of other threads. The abstraction is
a program that simulates the procedure implementation in an environment that
behaves according to the environment assumption. Since each procedure may
be executed by any thread, the implementation, environment assumption and
abstraction of each procedure are parameterized by the thread identifier tid.

For each procedure p and for each thread tid, there are two proof obligations.
First, the abstraction of p must simulate the implementation of p. Second, each
step of the implementation must satisfy the environment assumption of p for ev-
ery thread other than tid. It is sound to prove these obligations by inlining the
abstractions rather than the implementations of the called procedures. Moreover,
these obligations need to hold only in an environment that behaves according
to the environment assumption of p. We reduce the two checks to verifying
the correctness of a sequential program and present an algorithm to produce
this sequential program. We leverage existing techniques for verifying sequential
programs based on verification conditions and automatic theorem proving. Our
approach is scalable since each procedure is verified separately using an envi-
ronment assumption to model other threads and abstractions to model called
procedures.

We have implemented our methodology for multithreaded Java [3] programs
in a checking tool called Calvin. We have applied Calvin to several multithreaded
programs, the largest of which is a 1500 line portion of the web crawler Merca-
tor [13]. Our experience indicates that Calvin has the following useful features:

1. Tt naturally scales to programs with many procedures and threads since each
procedure implementation is analyzed separately using the specifications for
the other threads and procedures.

2. The checker is sufficiently expressive to handle the variety of synchronization
idioms commonly found in systems code, e.g., readers-writer locks, producer-
consumer synchronization, and time-varying mutex synchronization [9]. Yet,
it uses the conceptually simple framework of reducing the verification of
multithreaded programs to the well-studied problem of verifying sequential
programs.

3. Although a procedure abstraction can describe complex behaviors (and in
an extreme case could detail every step of the implementation), in gen-
eral the appropriate abstraction for a procedure is concise. In addition, the
necessary environment assumption annotations are simple and intuitive for
programs using common synchronization idioms, such as mutexes or reader-
writer locks.

Related Work. In an earlier paper [9], we presented an implementation of
thread-modular reasoning for Java programs. However, a procedure call could
be handled only by inlining the procedure body.

Static checkers have been built for detecting data races in multithreaded
programs [2, 6,8, 20]; however, these tools are limited to checking a small subset
of the synchronization mechanisms found in systems code. Moreover, these tools
cannot verify invariants or check refinement of abstractions.

Recently, a few tools for checking invariants on multithreaded programs have
appeared. These tools are based on a combination of abstract interpretation
and model checking. The Bandera toolkit [7] uses programmer-supplied data
abstractions to translate multithreaded Java programs into the input languages
of various model checkers. Yahav [21] describes a method to model check multi-
threaded Java programs using a 3-valued logic [19] to abstract the store. Since
these tools explicitly consider all interleavings of the multiple threads, they have
difficulty scaling to large programs. Ball et al. [4] present a technique for model
checking a software library with an unspecified number of threads, but this
method applies only when all the threads are identical and finite-state.

The compositional principle underlying our technique is assume-guarantee
reasoning, of which there are several variants. We refer the reader to our earlier
paper [9] for a detailed discussion; here we only discuss the closely related work
of Jones [14] and Abadi and Lamport [1]. Abadi and Lamport consider a com-
position of components, where each component modifies a separate part of the
store. Their system is general enough to model a multithreaded program since
a component can model a collection of threads operating on shared state and
signaling among components can model procedure calls. However, their proof
rule does not allow each thread in a component to be verified separately. The
proof rule of Jones does allow each thread in a multithreaded program to be
verified separately; however the program for each thread does not have any pro-
cedure calls. Our work can be viewed as a synthesis of the two approaches, which
is necessary to tackle the verification of programs that have a large number of
procedures and threads.

2 The parallel language Plato

Verifying properties of multithreaded programs in a large and realistic language
such as Java is quite complex. To help structure and modularize this process,
our checker first translates the given Java program into a simpler intermedi-
ate language. This translation eliminates many of the complexities of the Java
programming language and is outlined elsewhere [16]. In this paper, we focus
on the subsequent verification of the resulting intermediate program, which we
assume is expressed in the idealized language Plato (parallel language of atomic
operations). B

A Plato program P is a parallel composition Sy || --- || Sy, of several state-
ments, or threads. The program executes by interleaving atomic steps of its vari-
ous threads. The threads interact through a shared store o, which maps program
variables to values. The sets of variables and values are left intentionally unspec-
ified, as they are mostly orthogonal to our technical presentation. Statements in
the Plato language include the empty statement skip, atomic operation {p}X
(described below), sequential composition Si;S2, the nondeterministic choice
construct S710S55, which executes either S; or Ss, the iteration statement S*,

which executes S some arbitrary number of times, and procedure calls. The
set Proc contains the procedure names and the mapping B provides the imple-
mentation corresponding to a procedure name. To simplify our presentation, the
language does not include procedure arguments or return values.

Plato syntax
I

1

S € Stmt ::= skip no op Be Defn = Proc — Stmit
| {p} X atomic op P € Program == 51 | --- || Sn

| SOS choice o€ Store Var — Value

| S;S composition X,Y € Action C Store x Store
| S* iteration
| p(O procedure call

Perhaps the most notable aspect of Plato is that it does not contain con-
structs for conventional primitive operations such as assignment and assertions.
Instead, such primitive operations are combined into a general mechanism called
an atomic operation {p}X, where p is a state predicate that should hold in the
pre-state of the operation, and X is an action, or two-state predicate that de-
scribes the transition from the pre-state to the post-state.

To execute the atomic operation {p}X from a pre-state o, if p(o) does not
hold, then the execution terminates in a special state wrong indicating that an
error occurred. Otherwise an arbitrary post-store ¢’ is chosen that satisfies the
constraint X (o,0”), and the execution of the program continues with the new
store o’. If no post-store ¢’ satisfies the constraint X (o, ¢’), then the thread
blocks; execution proceeds only on the other threads.

Although an action X is a two-state predicate, it is typically written as a
formula in which primed variables refer to their value in the post-store o', and
unprimed variables refer to their value in the pre-store ¢. In addition, for any
action X and set of variables V' C Var, we use the notation (X)y to mean the
action that satisfies X and only allows changes to variables in V' between the
pre-store and the post-store, and we use (X) to abbreviate (X)y. Finally, we
abbreviate the atomic operation {true}X to simply the action X. We also allow
state predicates and actions to refer to thread identifier tid, a non-zero integer
parameter that uniquely identifies the currently executing thread.

Using atomic operations, Plato can express many conventional constructs, in-
cluding assignment, assert, assume, if, and while statements. In addition, atomic
operations can also express less common constructs, such as the atomic compare-
and-swap instruction CAS(1,e,n), which tests if variable 1 has value e and swaps
the values of n and 1 if the test passes; otherwise their values are unchanged.

Expressing conventional constructs in Plato
I

x=e < (x' =e)x if (e) { S} o (assume ¢; S)0(assume —e)
assert e = e}(true) while (e) { S} = (assume e;S)*; (assume —e)
assume e & (e)

aef /A1l#e=(1'=1An"=n)
CAS(1,e,n) = </\1:e:>(l':n/\n':l)]
,0

2.1 Semantics

The execution of a Plato program is defined as an interleaving of the executions
of its individual, sequential threads, and is formalized as a transition system. A
sequential state @ is either a pair of a store and a statement, or the special state
wrong (indicating that the execution went wrong by failing an assertion).

® € SeqState ::= (0,5) | wrong

In the sequential state (o, .5), the statement S identifies the code remaining to be
executed, thus avoiding the need for a program counter. Given the environment 3
associating procedure names with their implementations, the semantics of an
individual thread i is defined via the transition relation —; on sequential states.
We write B F (0,5) —; @ to indicate the execution of the “first instruction”
in S from store o, interpreting any occurrence of tid in S as i. This instruction
may go wrong, yielding & = wrong, or it may terminate normally, yielding a
sequential state & = (0/,.5") consisting of a (possibly modified) store ¢’ and a
statement S’ that remains to be executed.

A parallel state © is either a pair of a store and a program (representing the
threads being executed), or the special state wrong.

O € ParState ::= (0, P) | wrong

We write B+ (o, P) —, © to indicate the execution of a single sequential step of
an arbitrarily chosen thread in P from store o. If that sequential step terminates
normally, then execution continues with the resulting post-state. If the sequential
step goes wrong, then so does the entire execution. The details of the transition
relations —; and —, are given in our technical note [11].

3 Overview of modular verification

SimpleLock program
I 1

// module Top // module Mutex

int x = 0; int m = 0;

void t1() { void t2() { void acquire() { void release()
acquire(); acquire(); var t = tid; {
X++; x = 0; while (t == tid) m = 0;
assert x > 0; release(); CAS(m,0,t); }
release(); } }

}

We start by considering an example that provides an overview and motivation of
our modular verification method. The multithreaded program SimpleLock con-
sists of two modules, Top and Mutex. The module Top contains two threads that
manipulate a shared integer variable x (initially zero) protected by a mutex m.
The module Mutex provides acquire and release operations on that mutex. The
mutex variable m is either the (non-zero) identifier of the thread holding the lock,
or else 0, if the lock is not held by any thread. The implementation of acquire
is non-atomic, and uses busy-waiting based on the atomic compare-and-swap
instruction (CAS) described earlier. The local variable t cannot be modified by

other threads. We assume the program starts execution by concurrently calling
procedures t1 in thread 1 and t2 in thread 2.

We would like the checker to verify that the assertion in t1 never fails. This
assertion should hold because x is protected by m and because we believe the
mutex implementation is correct.

To avoid considering all possible interleavings of the various threads, our
checker performs thread-modular reasoning, and relies on the programmer to
specify an environment assumption constraining the interactions among threads.
In particular, the environment assumption E;;4 for thread tid summarizes the
possible effects of interleaved atomic steps of other threads. For SimpleLock, an
appropriate environment assumption is:

Fiiq © Am=tid=m=n'
Am=tid=x=%'
ANl =T

The first two conjuncts states that if thread tid holds the lock m, then other
threads cannot modify either m or the protected variable x. The final conjunct
states that every action preserves the invariant that whenever the lock is not

held, x is at least zero: def

I = m=0=x>0
This invariant is necessary to ensure, after t1 acquires the lock and increments x,
that x is strictly positive.

3.1 Thread-modular verification

For small programs, it is not strictly necessary to perform procedure modular
verification. Instead, our checker could inline the implementations of acquire
and release at their call sites. Suppose that InlineBody(S) inlines the imple-
mentation of called procedures in a statement S. Then I'nline Body(B(t1)) enjoys
the following technical property:

“InlineBody(B(t1))” is simulated by E3 from the set of states satisfying
m = 0 A x = 0 with respect to the environment assumption E.

The notion of simulation is formalized later in the paper. For now, the stated
property intuitively means that, when executed from an initial state where both x
and m are zero, each action of procedure t1 does not go wrong and satisfies Fs,
provided that each interleaved action of the other thread satisfies F;.

The procedure t2 enjoys a corresponding property with the roles of F1 and Fo
swapped. Using assume-guarantee reasoning, our checker infers from these two
facts that the SimpleLock program does not go wrong, no matter how the sched-
uler chooses to interleave the execution of the two threads.

3.2 Adding procedure-modular verification

Analyzing a large system is impossible using the simple approach sketched above
of inlining procedure implementations at call sites. Instead, our checker performs
a procedure-modular analysis that uses procedure specifications to model called
procedures. We next tackle the question: what is the appropriate specification
for the procedure acquire in a multithreaded program?

A traditional precondition/postcondition specification for acquire is:
requires I; modifiesm; ensuresm=tidAx>0

This specification records that m can be modified by the body of acquire and
asserts that, when acquire terminates, m is equal to the current thread identi-
fier and that x is at least 0. This last postcondition is crucial for verifying the
assertion in t1.

However, although this specification suffices to verify the assertion in t1,
it suffers from a serious problem: it mentions the variable x, even though x
should properly be considered a private variable of the separate module Top.
This problem arises because the postcondition, which describes the final state
of the procedure’s execution, needs to record store updates performed during
execution of the procedure, both by the thread executing this procedure, and
also by other concurrent threads (which may modify x).

In order to overcome the aforementioned problem and still support modular
specification and verification, we propose a generalized specification language
that can describe intermediate atomic steps of a procedure’s execution, and
need not summarize effects of interleaved actions of other threads.

In the case of acquire, the appropriate specification is that acquire first
performs an arbitrary number of stuttering steps that do not modify m; it then
performs a single atomic action that acquires the lock; after which it may perform
additional stuttering steps before returning. This code fragment A(acquire)
concisely specifies this behavior:

A(acquire) dof (true)*; (m =0 Am = tid)y; (true)*
This abstraction specifies only the behavior of thread tid and therefore does not
mention x. Our checker validates the specification of acquire by checking that
the statement A(acquire) is a correct abstraction of the behavior of acquire,
i.e.: the statement B(acquire) is simulated by A(acquire) from the set of states
satisfying m = 0 with respect to the environment assumption true.

After validating a similar specification for release, our checker replaces calls
to acquire and release from the module Top with the corresponding abstrac-
tions A(acquire) and A(release). If InlineAbs denotes this operation of in-
lining abstractions, then InlineAbs(B(t7)) is free of procedure calls, and so we
can apply thread-modular verification, as outlined in Section 3.1, to the module
Top. In particular, by verifying that “InlineAbs(B(t1))” is simulated by Ej from
the set of states satisfying m = 0 A x = 0 with respect to Fj, and verifying a
similar property for t2, our checker infers by assume-guarantee reasoning that
the complete SimpleLock program does not go wrong.

4 Modular verification

In this section, we formalize our modular verification method sketched in the pre-
vious section. Consider the execution of a procedure p by the current thread tid.
We assume p is accompanied by a specification consisting of three parts: (1) an
invariant Z(p) C Store that must be maintained by all threads while executing p,
(2) an environment assumption £(p) € Action, parameterized by tid, that mod-
els the behavior of threads executing concurrently with tid’s execution of p, and

(3) an abstraction A(p) € Stmt, also parameterized by tid, that summarizes the
behavior of thread tid executing p. The abstraction A(p) may not contain any
procedure calls.

In order for the abstraction A(p) to be correct, we require that the im-
plementation B(p) be simulated by A(p) with respect to the environment as-
sumption £(p). Informally, this simulation requirement holds if, assuming other
threads perform actions consistent with £(p), each action of the implementation
corresponds to some action of the abstraction. The abstraction may allow more
behaviors than the implementation, and may go wrong more often. If the abstrac-
tion does not go wrong, then the implementation also should not go wrong and
each implementation transition must be matched by a corresponding abstraction
transition. When the implementation terminates the abstraction should be able
to terminate as well.

We formalize the notion of simulation between (multithreaded) programs. A
relation R C Store x Program x Program is a simulation relation if, whenever we
have R(o, Si || .- || Sns Th || --- || Tn) then the following conditions hold:

1. it S; = skip then Bt (0,T;) —7 (o, skip).

2. if B+ (o,8;) —; wrong then B+ (0,T;) —; wrong

3. if BF (0,5;) —i (¢/,S]) holds then there exists a statement 7, such that
Bt (0,T;) —f (¢/,T!) holds and

(2

R, Sl oo IS o IS Tl oo [T - | T)

A program P is simulated by a program @ from a set of states X if there
exists a simulation relation R such that R(o, P, Q) holds for each state o € X.
A statement B is simulated by a statement A with respect to an environment
assumption F from a set of states X, if for all non-zero integers j, we have that
the program (B || E*)[tid := j] is simulated by (A || E*)[tid := j] from X.

The implementation B(p) must also satisfy two other properties. While a
thread tid executes p, every atomic operation must preserve the invariant Z(p)
and satisfy the environment assumption £(p)[tid := j] of every thread j other
than tid. We can check that B(p) is simulated by A(p) and also satisfies the
aforementioned properties by checking that B(p) is simulated by a derived ab-
straction A(p) obtained from A(p) as follows: for every atomic operation {p}X
in A(p), replace X by the action

XAZ() = T(P)AVj: (G £0A] # tid = E(p)[tid = j]).

Moreover, this simulation must hold only in an environment that preserves the
invariant Z(p). Therefore, we also define a derived environment assumption

4\ def

E(p) = E(p) A (Z(p) = T'(p))-

In order to check simulation for a procedure p, we first inline the derived
abstractions for procedures called from B(p). We use InlineAbs : Stmt — Stmt
to denote this abstraction inlining operation. We also require that for any pro-
cedure ¢ called from p, the environment assumption of p must ensure the envi-
ronment assumption of ¢ (£(p) = £(q)), and the invariant of p must ensure the
invariant of ¢ (Z(p) = Z(q)). Finally, if the program starts by executing a set

of concurrent procedure calls t; () || --- || £, (), then we require that the initial
store satisfy the invariant Z(t;) of every ¢; and that InlineAbs(B(t;)) ensures
the environment assumption of the other threads. As formalized in the following
theorem, if all these conditions hold, then the multithreaded program will not
go wrong. Thus, this theorem formalizes our method for combining procedure-
modular and thread-modular verification.

Theorem 1. Let P =t,() || --- || tn O be a parallel program. Let Init be the
set of initial stores of the program. Suppose the following conditions hold.

1. For all procedures p € Proc, the statement InlineAbs(B(p)) is simulated by
fl(p) from Z(p) with respect to the environment assumption £ (p).

2. For all procedures p,q € Proc, if p calls q then E(p) = £(q) and Z(p) = Z(q).

3. Init satisfies the invariant Z(t;) for all i € 1..n.

4. Let G be the action Vj € 1.n: (j # tid = é(tj)[tid :=j]). Foralli € 1..n,
the statement InlineAbs(B(t;))[tid := i is simulated by G*[tid := i] from
Init with respect to the environment assumption &(t;)[tid = i].

Then

1. the program P is simulated by A(t1) || ... || A(tn) from Init.
2. for any store o € Init, we have B - (o, P) /4, wrong and if B+ (o, P) —7
(o', P") then o' satisfies Z(t;) for all i € 1..n.

Discharging the proof obligations in this theorem requires a method for check-
ing simulation, which is the topic of the following section.

5 Checking simulation

In this section, we present a method for checking simulation between two state-
ments without procedure calls. We first look at the simpler problem of checking
that the atomic operation {p}X is simulated by {¢}Y. This simulation holds if
(1) whenever {p} X goes wrong, then {q}Y also goes wrong, i.e., -p = —¢, and
(2) whenever {p}X performs a transition, {¢}Y can perform a corresponding
transition or may go wrong, i.e., pA X = —¢q VY. The conjunction of these two
conditions can be simplified to (¢ = p) A (¢A X =Y).

The following atomic operation sim({p}X, {q}Y’) checks simulation between
the atomic operations {p} X and {¢}Y’; it goes wrong from states for which {p} X
is not simulated by {¢}Y", and otherwise behaves like {p}X. The definition uses
the notation V Var’ to quantify over all primed (post-state) variables.

sim({PIX,{q)Y) = {(g=p)A(Var'. gAX = V)}Ha A X)

We extend our method to check simulation between an implementation B
and an abstraction A from a set of states X with respect to an environment as-
sumption E. We assume that the abstraction A consists of n atomic operations
({true}Y; for i € 1..n) interleaved with stuttering steps {true} K, preceded by
an asserted precondition {pre}(true), and ending with the assumed postcondi-
tion {true}(post):

A {pre}(erue);)
({true}K; ;{true}Yy); ...; ({true}K ;{true}Y,);
{true}K"; {true}(post)

This restriction on A enables efficient simulation checking and has been suffi-
cient for all our case studies. Our method can be generalized to arbitrary ab-
stractions A at the cost of more complexity.

Our method translates B, A, and F into a sequential program such that if
that program does not go wrong, then B is simulated by A with respect to E. We
need to check that whenever B performs an atomic operation, the statement A
performs a corresponding operation. In order to perform this check, the pro-
grammer needs to add a witness variable pc ranging over {1,2,...,n+ 1} to B,
to indicate the operation in A that will simulate the next operation performed
in B. An atomic operation in B can either leave pc unchanged or increment it
by 1. If the operation leaves pc unchanged, then the corresponding operation
in A is K. If the operation changes pc from i to i 4+ 1, then the corresponding
operation in A is Y;. Thus, each atomic operation in B needs to be simulated by
the following atomic operation:

n
W e {true}(\/(pc =iApd =i+1AY;)V (pc=pd ANK))
i=1

Using the above method, we generate the sequential program [B]% which per-
forms the simulation check at each atomic action, and also precedes each atomic
action with the iterated environment assumption that models the interleaved
execution of other threads. Thus, the program [B]% is obtained by replacing
every atomic operation {p}X in the program B with E*;sim({p}X,W). The
following program extends [B]% with constraints on the initial and final values
of pc.

assume pre A X A pc = 1; [B]4; E*; assert post A pc =n + 1

This program starts execution from the set of states satisfying the precondi-
tion pre and the initial predicate Y and asserts the postcondition post at the
end. Note that this sequential program is parameterized by the thread identi-
fier tid. If this program cannot go wrong for any nonzero interpretation of tid,
then we conclude that B is simulated by A from X' with respect to E. We lever-
age existing sequential analysis techniques (based on verification conditions and
automatic theorem proving) for this purpose.

6 Implementation

We have implemented our modular verification method for multithreaded Java
programs in an automatic checking tool called Calvin. For the sake of simplicity,
our checker assumes a sequentially consistent memory model and that reads and
writes of primitive Java types are atomic (although neither of these assumptions
is strictly consistent with Java’s current memory model).

In Java, threads are objects of type Thread. Therefore, in our implementa-
tion the current thread identifier tid refers to the object corresponding to the

currently executing thread. The implicit lock associated with each Java object is
modeled by including in each object an additional abstract field holder of type
Thread, which is either null or refers to the thread currently holding the lock.

6.1 Checker architecture

The input to Calvin is an annotated Java program. In addition to the usual
field and method declarations, a Java class can contain invariants, environment
assumptions, procedure abstractions, and assertions to be checked. An invariant
and an environment assumption are declared once for each class. The environ-
ment assumption &(p) (invariant Z(p)) for a procedure p is the conjunction of
the environment assumptions (invariants) in (1) the class containing p, and (2)
all those classes whose methods are transitively called by p.

Calvin parses, type checks, and translates the annotated input Java program
into an intermediate representation language similar to Plato. Calvin then uses
the techniques of this paper, as summarized by Theorem 1, to verify the inter-
mediate representation of the program. To verify that each procedure p satisfies
its specification, Calvin first inlines the abstraction of any procedure call from p.
If the abstraction is not provided, then the implementation is inlined instead.
Next, Calvin uses the simulation checking technique of the previous section to
generate a sequential “simulation checking” program S. To check the correct-
ness of S, Calvin translates it into a verification condition [12] and invokes the
automatic theorem prover Simplify [18] to check the validity of this verification
condition.

If the verification condition is valid, then the procedure implements its spec-
ification and the stated invariants and assertions are true. Alternatively, if the
verification condition is invalid, then the theorem prover generates a counterex-
ample, which is then post-processed into an appropriate error message in terms
of the original Java program. The error message may identify an atomic step that
violates one of the stated invariants, environment assumptions, or abstraction
steps. The error message may also identify an assertion that could go wrong.
This assertion may be explicit, as in the SimpleLock program, or implicit, for
example, that a dereferenced pointer is never null.

The implementation of Calvin leverages extensively off the Extended Static
Checker for Java [10], a powerful checking tool for sequential Java programs.

6.2 Optimizations

Calvin reduces simulation checking to the correctness of the sequential “simula-
tion checking” program. The simulation checking program is often significantly
larger than the original procedure implementation, due in part to the iterated
environment assumption inserted before each atomic operation. To reduce ver-
ification time, Calvin simplifies the program before attempting to verify it. In
addition to traditional sequential optimization techniques, we have found the
following two additional optimizations particularly useful for simplifying the
simulation checking program.

In all our case studies, the environment assumptions were reflexive and tran-
sitive. Therefore, our checker optimizes the iterated environment assumption E*

to the single action F after using the automatic theorem prover to verify that £
is indeed reflexive and transitive.

The environment assumption of a procedure can typically be decomposed
into a conjunction of actions mentioning disjoint sets of variables, and any two
such actions commute. Moreover, assuming the original assumption is reflexive
and transitive, each of these actions is also reflexive and transitive. Consider
an atomic operation that accesses a single shared variable v. An environment
assertion is inserted before this atomic operation, but all actions in the environ-
ment assumption that do not mention v can be commuted to the right of this
operation, where they merge with the environment assumption associated with
the next atomic operation. Thus, we only need to precede each atomic operation
with the actions that mention the shared variable being accessed.

7 Applications
7.1 The Mercator web crawler

Mercator [13] is a web crawler which is part of Altavista’s Search Engine 3
product. It is multithreaded and written entirely in Java. Mercator spawns a
number of worker threads to perform the web crawl and write the results to
shared data structures in memory and on disk. To help recover from failures,
Mercator also spawns a background thread that writes a snapshot of its state
to disk at regular intervals. Synchronization between these threads is achieved
using two kinds of locks: Java monitors and readers-writer locks.

We focused our analysis efforts on the part of Mercator’s code (1500 LOC)
that uses readers-writer locks. We first provided a specification of the readers-
writer lock implementation in terms of two abstract variables—writer, a ref-
erence to a Thread object and readers, a set of references to Thread objects.
If a thread owns the lock in write mode then writer contains a reference to
that thread and readers is empty, otherwise writer is null and readers is the
set of references to all threads that own the lock in read mode. The procedure
beginWrite acquires the lock in write mode by manipulating a concrete boolean
variable hasWriter. The annotations specifying the abstraction of beginWrite
and the corresponding Plato code are shown below.

/*@

requires holder == tid .
modifies hasWriter {h°1der = tld} <true*>;

action: {true} <true>hasWriter)

alsomodifies writer {true} Awriter = null)

ensures writer == null Awriter’ = tid {naswriter writer}7
, && writer’ == tid {true}<true>hasWriter*

*

public void beginWrite()

The next step was to annotate and check the clients of ReadersWriterLock
to ensure that they follow the synchronization discipline for accessing shared
data. The part of Mercator that we analyzed uses two readers-writer locks—
L1 and L2. We use the following writable if annotation to state that before
modifying the variable tbl, the background thread should always acquire lock

L1 in write mode, but a worker thread need only acquire the mutex on lock
object L2.

/*@ writable_if (tid == backgroundThread && L1.writer == tid)
|| (tid instanceof Worker && L2.holder == tid) */
private long[][ltbl; // the in-memory table

We did not find any bugs in the part of Mercator that we analyzed; however,
we injected bugs of our own, and Calvin located those. In spite of inlining all
non-public methods, the analysis took less than 10 minutes for all except one
public method. The exception was a method of 293 lines (after inlining non-
public method calls), on which the theorem prover ran overnight to report no
errors.

7.2 The java.util.Vector library

We ran Calvin on java.util.Vector class (7400 LOC) from JDKv1.2. There
are two shared fields: an integer elementCount, which keeps track of the number
of valid elements in the vector, and an array elementData, which stores the
elements. These variables are protected by the mutex on the Vector object.

/%@ writable_if this.holder == tid */
protected int elementCount;

/%@ writable_if this.holder == tid */
protected Object elementDatal];

Based on the specifications, Calvin detected a race condition illustrated in
the following excerpt.

public int lastIndexOf (Object elem) {
return lastIndexOf (elem, elementCount-1); // RACE!
}
public synchronized int lastIndex0f(Object elem, int index) {

for (int i = index; i >= 0; i--)
if (elem.equals(elementDatali]))

Suppose there are two threads manipulating a Vector object v. The first
thread calls v.lastIndex0f (Object), which reads v.elementCount without ac-
quiring the lock on v. Before the first thread calls lastIndex0f (Object,int),
the other thread removes all elements from v.elementData and resets it to an
array of length 0, and sets v.elementCount to 0. Now the first thread tries to
access v.elementData based on the old value of v.elementCount and triggers
an array out-of-bounds exception. An erroneous fix for this race condition is as
follows:

public int lastIndexOf (Object elem) {
int count;
synchronized(this) { count = elementCount-1; }
return lastIndexO0f (elem, count);

Even though the lock is held when elementCount is accessed, the original defect
still remains. RCC/Java [8], a static race detection tool, caught the original
defect in the Vector class, but will not catch the defect in the modified code.
Calvin, on the other hand, still reports this error as what it is: a potential array
out-of-bounds error.

References

1

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

M. Abadi and L. Lamport. Conjoining specifications. ACM TOPLAS, 17(3):507—
534, 1995.

A. Aiken and D. Gay. Barrier inference. In Proc. 25th POPL, pages 243-354, 1998.
K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley,
1996.

T. Ball, S. Chaki, and S. Rajamani. Parameterized verification of multithreaded
software libraries. In TACAS, pages 158-173, 2001.

A. Birrell, J. Guttag, J. Horning, and R. Levin. Synchronization primitives for a
multiprocessor: A formal specification. In Proc. 11th SOSP, pages 94-102, 1987.
C. Boyapati and M. Rinard. A parameterized type system for race-free Java pro-
grams. In Proc. OOPSLA, pages 5669, 2001.

M. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. Pasareanu, Robby, W. Visser,
and H. Zheng. Tool-supported program abstraction for finite-state verification. In
Proc. 23rd ICSE, pages 177-187, 2001.

C. Flanagan and S. N. Freund. Type-based race detection for Java. In Proc. PLDI,
pages 219-232, 2000.

C. Flanagan, S. N. Freund, and S. Qadeer. Thread-modular verification for shared-
memory programs. In Proc. 11th ESOP, pages 262-277, 2002.

C. Flanagan, K. R. M. Leino, M. Lillibridge, C. Nelson, J. Saxe, and R. Stata.
Extended static checking for Java. In Proc. PLDI, 2002.

C. Flanagan, S. Qadeer, and S. A. Seshia. A modular checker for multithreaded
programs. Technical Note 2002-001, Compaq Systems Research Center, 2002.

C. Flanagan and J. B. Saxe. Avoiding exponential explosion: Generating compact
verification conditions. In Proc. 28th POPL, pages 193-205, 2001.

A. Heydon and M. Najork. Mercator: A scalable, extensible web crawler. In Proc.
8th WWW Conf., pages 219-229, December 1999.

C. B. Jones. Tentative steps toward a development method for interfering pro-
grams. ACM TOPLAS, 5(4):596-619, 1983.

L. Lamport. Specifying concurrent program modules. ACM TOPLAS, 5(2):190—
222, 1983.

K. R. M. Leino, J. B. Saxe, and R. Stata. Checking Java programs via guarded
commands. Technical Note 1999-002, Compaq Systems Research Center, 1999.
B. Liskov and J. Guttag. Abstraction and Specification in Program Development.
MIT Press, 1986.

C. G. Nelson. Techniques for program verification. Technical Report CSL-81-10,
Xerox Palo Alto Research Center, 1981.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
In Proc. 26th POPL, pages 105-118, 1999.

N. Sterling. WARLOCK — a static data race analysis tool. In USENIX Tech.
Conf. Proc., pages 97-106, Winter 1993.

E. Yahav. Verifying safety properties of concurrent Java programs using 3-valued
logic. In Proc. 28th POPL, pages 27-40, 2001.

