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Abstract
When an application fails to ensure information flow security, it
may leak sensitive data such as passwords, credit card numbers,
or medical records. News stories of such failures abound. Austin
and Flanagan [2012] introduce faceted values – values that present
different behavior according to the privileges of the observer – as
a dynamic approach to enforcing information flow policies for an
untyped, imperative λ-calculus.

We implement faceted values as a Haskell library, elucidating
their relationship to types and monadic imperative programming.
In contrast to previous work, our approach does not require modi-
fication to the language runtime. In addition to pure faceted values,
our library supports faceted mutable reference cells, secure facet-
aware socket-like communication, and robust declassification.

1. Introduction
When a program deals with sensitive data, one may take precau-
tions against that data being misused, intentionally or accidentally.
Secure information flow refers generally to properties that embody
this idea. For example, when one enters a password on a web form
it is expected that it will be communicated to the site in question,
but not written to disk.

Unfortunately, enforcing these policies is problematic. Develop-
ers are primarily concerned with features and correct functionality;
enforcement of security properties is generally only given proper
attention after an exploit has occurred.

Just as memory-safe languages relieve developers from having
to reason about memory management (and the host of bugs re-
sulting from its mismanagement), information flow analysis is a
promising mechanism to enforce security properties in a systemic
fashion. Information flow controls require a developer to mark sen-
sitive information, but otherwise automatically protect any “leaks”
of this data. Formally, we refer to this property as noninterference;
that is, public outputs do not depend on private inputs1.

1 We refer to sensitive values as “private” and non-sensitive values as “pub-
lic”, as confidentiality is generally given more attention in the literature on
information flow analysis. However, the same mechanism is also able to en-
force integrity properties, such as that trusted outputs are not influenced by
untrusted inputs.

[Copyright notice will appear here once ’preprint’ option is removed.]

Secure multi-execution [Devriese and Piessens 2010; Jaskelioff
and Russo 2012; Rafnsson and Sabelfeld 2013] has risen in pop-
ularity as an information flow enforcement technique. A program
execution is split into two versions: the “high” execution has access
to all sensitive information, but may only write to private chan-
nels; the “low” execution may write to public channels, but does
not have access to any sensitive information. With this elegant ap-
proach, noninterference is ensured.

Austin and Flanagan [2012] presented faceted values as a tech-
nique for simulating secure multi-execution with a single process.
A faceted value contains both a public and private facet. During
program execution, these values keep track of both the public and
private views of sensitive information. With this approach, a sin-
gle execution can provide many of the same guarantees that secure
multi-execution provides.

This paper extends the ideas of faceted values from an untyped
variant of the lambda calculus to Haskell, showing how these con-
cepts may be adapted to a typed language. The contributions of this
paper are:

• We present the first formulation of faceted values and computa-
tions in a typed context. As a consequence of this formulation,
we clearly demonstrate the division between the public inter-
face and private implementation of faceted values.
• We show how faceted values may be integrated into a language

as a library, rather than requiring modifications to the language
runtime environment.
• We also present a novel clarification of the relationship between

explicit flows in pure calculations and implicit flows in impure
computations. Specifically, we show that implicit flows between
faceted computations manifest as explicit flows in the faceted
expressions that determine which computation to run. These
two interact via a single function that is a distributive law
between the pure and impure faceted monads.

1.1 Information Flow and Faceted Values Overview
In traditional information flow systems, information might be
tagged with a label to mark it as confidential to particular par-
ties. For instance, if pin should be restricted to bank, our language
might allow us to write that as:

pin = 4321bank

In order to protect this value, we must prevent an unauthorized
viewer from seeing any effect from this value. In particular, we
must defend against explicit flows where a confidential value is
directly assigned to a public variable or reference cell, and implicit
flows where a confidential value may be deduced by reasoning
about the control flow of the program. The following code shows
an explicit flow from pin to the variable x.
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pin = 4321bank

x = pin + 1

Protecting against explicit flows is straightforward, and is han-
dled by the taint mode of programming languages like Perl and
Ruby; in contrast, handling implicit flows is much more complex
and subtle. Continuing our example, consider the following block
of code, using a mutable IORef:

do above2K <- newIORef False
if (pin > 2000) then

writeIORef above2K True
else

return ()

This code illustrates a simple implicit flow; the value of above2K
reflects information about pin, even though the value of pin is
never directly assigned to above2K. Several strategies have been
proposed for handling these types of flows:

1. Disallow the update to above2K within the context of the sen-
sitive conditional pin. When this restriction is enforced at run-
time, this approach is referred to as the no sensitive-upgrade
strategy [Zdancewic 2002; Austin and Flanagan 2009]. It is also
the approach used in many information flow type systems [Vol-
pano et al. 1996; Heintze and Riecke 1998]. This strategy is
demonstrated in the No-Sensitive-Upgrade column of Figure 1.

2. Allow the update, but mark above2K as sensitive since it was
changed in a sensitive context. This strategy is often used in
dynamic enforcement techniques; it has proven as a useful
mechanism for auditing information flows “in the wild” [Jang
et al. 2010], but does not guarantee noninterference, as shown
in the Naive column of Figure 1.

3. Ignore the update to above2K in a sensitive context, an ap-
proach first used by Fenton [1974]. This strategy guarantees
noninterference by sacrificing correctness (the program’s result
may not be internally consistent). This strategy is demonstrated
in the Fenton column of Figure 1.

Faceted values introduce a third aspect to sensitive data; in
addition to the sensitive value and its label, faceted values include
a default public view. Following this syntax used by Austin and
Flanagan [2012], we specify ‘0000’ as the default view of the PIN
as follows:

pin = 〈bank ? 4321 : 0000〉

Then, when above2K is updated as above, the result will be
〈bank ? True : False〉. The bank sees the correct value of True,
but an unauthorized viewer instead sees False, giving a consistent
picture to the unauthorized viewer.

Label-based information flow systems can reason about multi-
ple principles by joining labels together (e.g. 3A + 4B = 7AB).
In a similar manner, faceted evaluation can nest faceted values to
represent different principals

〈A ? 3 : 0〉+ 〈B ? 4 : 0〉 = 〈A ? 〈B ? 7 : 3〉 : 〈B ? 4 : 0〉〉
essentially constructing a tree2 matching permissions to values.

Figure 1, adapted from Austin and Flanagan [2012], demon-
strates a classic code snippet first introduced by Fenton [1974]; it
illustrates how the use of two conditional statements may evade
some information flow controls.

The input parameter x is a confidential boolean value, repre-
sented as 〈k ? False : ⊥〉 for false and 〈k ? True : ⊥〉 for true,

2 Alternately, a faceted value can be interpreted as a function mapping sets
of labels to values, and the syntax above as merely a compact representation.

where⊥means roughly ‘undefined’. Boolean reference cells y and
z are initialized to true; by default, they are public to maximize the
permissiveness of these values. When x is set to 〈k ? False : ⊥〉,
the value for y remains unchanged. Similarly, since the update to
z depends only on y it remains public as well. Since no private in-
formation is involved in the update to z, all strategies work in the
same manner, shown in the All Strategies column of Figure 1.

The difference between these strategies lies in how they handle
the update to y in the first conditional statement when the value of
x is 〈k ? True : ⊥〉. Since this update depends upon the value of x,
we must be careful to avoid the potential implicit flow from x to y.
We now compare how each approach handles this update.

In the Naive column of Figure 1, the influence of x is tracked by
labeling it with k. Since y is false, z remains unchanged, and also
remains public. Thus, as can be seen by comparing the Naive and
the All strategies columns, one bit of information leaks, violating
noninterference.

The No-Sensitive-Upgrade approach instead terminates execu-
tion on this update, guaranteeing termination-insensitive noninter-
ference, but at the cost of potentially rejecting valid programs. Sim-
ilarly, the Fenton strategy forbids this update, but allows execution
to continue. This approach avoids abnormal termination, but it may
return inaccurate results, as shown in Figure 1.

Faceted evaluation solves this dilemma by simulating different
executions of this program. In the Faceted Evaluation column, we
see that the update to y results in the creation of a new faceted value
〈k ? False : True〉. Any authorized viewer able to see k-sensitive
data3 is able to see the true value of y; unauthorized viewers
instead see True, thus hiding the value of x. The value of z is
updated in a similar manner in the second conditional assignment.
The result of this function call therefore provides noninterference,
avoids terminating execution abnormally, and provides accurate
results to authorized users.

1.2 Faceted I/O
Austin and Flanagan [2012] treat both facet-aware reference cells
and facet-aware file I/O, though with strikingly different mecha-
nisms. While reference cells may contain faceted values, the as-
sumption is that external systems might not share the same capa-
bility. Therefore, we must be able to send non-faceted, or “raw”
values across channels. Consider the following code that writes a
faceted character 〈 k ? ’a’ : ’b’ 〉 to a handle h:

hPutChar h 〈 k ? ’a’ : ’b’ 〉

When executing the above code, we must determine whether to
send ’a’, ’b’, or no value at all. The solution offered by Austin
and Flanagan [2012] associates a fixed set of security labels to a
given channel. If k-sensitive data is permitted on the channel h,
then the value ’a’ is written; otherwise ’b’ is sent instead.

Additionally, some writes are restricted altogether if they are
performed in a context that should not be visible. For example,
consider the following code where a write is performed in the
context of a sensitive boolean value:

if 〈 bank ? True : False 〉 then
hPutChar publicChannel ’z’

else
return ()

Even though the value ’z’ is public – all constants are public
– the write to publicChannel must not be allowed unless it is
authorized to see private banking information.

3 That is, authorized to see data marked as sensitive to principal k.

2 2014/7/3



x = 〈k ? False : ⊥〉 〈k ? True : ⊥〉
do... All strategies Naive No-Sensitive-Upgrade Fenton Faceted Evaluation
y <- newIORef True y = True y = True y = True y = True y = True
z <- newIORef True z = True z = True z = True z = True z = True
vx <- readIORef x − − − − −
when vx − pc = {k} pc = {k} pc = {k} pc = {k}
(writeIORef y False) − y = 〈k ? False : ⊥〉 stuck ignored y = 〈k ? False : True〉

vy <- readIORef y − − − −
when vy pc = {} − − pc = {k}
(writeIORef z False) z = False − − z = 〈k ? True : False〉

readIORef z − − − −
Result: False True stuck False 〈k ? True : False〉

Figure 1. A Computation with Implicit Flows

When we add interactive I/O, more subtleties arise. Consider
the following code that writes to handle h and then reads the result
from the same channel:

hPutChar h 〈 k ? ’a’ : ’b’ 〉
hGetChar h

If the channel h may view k-sensitive data, the attacker might
attempt to use the above code to break noninterference, effectively
using I/O to serve as a form of declassification. To prevent this
attack, reading from the channel incorporates the same sensitive
influences; the result is 〈 k ? ’a’ : ⊥〉 in this case, hiding the k-
sensitive value from unauthorized viewers.

When the channel h may not view k-sensitive data, the proper
result is less clear. The original paper addresses this issue by in-
corporating the negative influences of the view; that is, the result
would return 〈 k ?⊥ : ’b’ 〉, where the confidential value has dis-
appeared from the system. While this approach guarantees nonin-
terference, it also requires the system to keep track of all possible
labels, thereby leading to practical challenges for a system with an
arbitrary number of labels.

In this paper, we refine the earlier approach by simply ignoring
the negative influences when reading a file. In other words, if
channel h cannot observe k-sensitive data, reads will return an
unfaceted value of ’b’. In our experience, this appears to be a more
natural approach when writing code and avoids many challenges of
implementing a system supporting faceted values.

2. Library Overview
We implement faceted computation in Haskell as a library that en-
forces information flow security dynamically, using abstract data
types to prevent circumvention of dynamic protections. In con-
trast, the original formulation of Austin and Flanagan [2012] added
faceted values pervasively to the semantics of a dynamically-typed,
imperative λ-calculus. Because of the encapsulation offered by
Haskell’s type system, we do not need to modify the language se-
mantics. We are also able to implement pure faceted values entirely
separately from side-effecting computations upon faceted reference
cells and facet-enabled input/output channels. A preliminary ver-
sion of our library is available via Hackage (https://hackage.
haskell.org/) and our open-source code can be found at
https://github.com/haskell-faceted/haskell-faceted.

Our library can be conceptually divided into the following com-
ponents:

1. Pure faceted values of type a, represented by the type Faceted a.
(Section 2.1)

2. Imperative faceted computations influenced by the control flow
path, represented by the type FIO a. (Section 2.2)

type Label = String

data Faceted a

makePublic :: a -> Faceted a
makeFaceted :: Label -> Faceted a -> Faceted a

-> Faceted a

instance Functor Faceted
instance Applicative Faceted
instance Monad Faceted

Figure 2. Interface for pure fragment of the Faceted library.

3. Faceted reference cells, represented by type FIORef a. (Sec-
tion 2.3)

4. Facet-enabled file handles / network sockets, represented by
type FHandle. (Section 2.4)

5. Robust declassification, which selectively releases private data
if the control flow has not been tainted. (Section 2.5)

2.1 Pure Faceted Values: Faceted a
Interface The public interface for the pure fragment of our library
for faceted values is shown in Figure 2.

Information flow security is defined with respect to security la-
bels. For simplicity and concision of presentation, we presume that
security labels are strings, and set type Label = String, though
leaving the type of labels abstract is straightforward. Our approach
is compatible with other label systems, such as the decentralized
label model of Myers [1999]. A security label may represent the
privilege necessary to view a value or, dually, the level of integrity
of a value. A view is a set of security labels. Intuitively, if a view L
contains a label k, then that view has the privilege of viewing data
protected by k or, dually, trusts data influenced by k.

A value of type Faceted a simultaneously represents the val-
ues, or facets, of type a observable to any view. The facets are not
directly observable; the data type is abstract.

The function makePublic injects any type a into the type
Faceted a: It accepts a value v of type a and returns a faceted
value that behaves just like v for any view.

The function makeFaceted constructs a value of type Faceted a
from a label k and two other faceted values priv and pub, each of
type Faceted a. To any view including k, the result behaves as
priv. To all other views, the result behaves as pub (and so on,
recursively).

From makeFaceted we can define a variety of derived con-
structors for creating faceted values with a minimum of effort. Con-
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sider the following two examples, which we provide with the li-
brary, but which do not increase expressivity.

bottom :: Faceted a
bottom = makePublic undefined

makePrivate :: Label -> a -> Faceted a
makePrivate k v = makeFaceted k (makePublic v) bottom

makeFacets :: Label -> a -> a -> Faceted a
makeFacets k priv pub = makeFaceted k (makePublic priv)

(makePublic pub)

The value bottom injection undefined (which we occa-
sionally abbreviate ⊥) into Faceteda for any a. The function
makePrivate creates a faceted value from a label k and a value v
of type a. This value behaves as v for any view containing k, and is
otherwise undefined. The function makeFacets creates a faceted
value from a label k and two non-faceted values, simply allowing
the programmer to elide tedious calls to makePublic.

The remainder of the public interface for the pure fragment of
our library consists only of a type class instances for Functor,
Applicative, and Monad. The first two are necessarily determined
by the instance for Monad, which is formulated to propagate se-
curity labels appropriately. Consider the following example, us-
ing Haskell’s specialized do syntax to multiply two values of type
Faceted Int.4

do x <- (makePrivate "k" 7)
y <- (makePrivate "l" 6)
return (x * y)

The result will behave as 42 to any view containing both "k"
and "l". To all other views, the result will appear undefined.

Implementation The private implementation of faceted values is
a simple algebraic data type:

data Faceted a =
Raw a

| Faceted Label (Faceted a) (Faceted a)

The term Raw x denotes a faceted value with no visibility con-
straints. The term Faceted k priv pub (written 〈 k ? priv : pub 〉
by Austin and Flanagan [2012] and in our introduction; we now
abandon that notation in favor of concrete Haskell syntax.) denotes
a value that behaves as priv to any view containing k and behaves
as pub to any other view (and so on, recursively).

In fact, this data type may be recognized as the free monad5 over
the following non-recursive data type Facets:

data Facets a = Facets Label a a

data Free f a = Pure a | Free (f (Free f a))
type Faceted = Free Facets

This fact provides ready-made instances of Monad, Applicative,
and Functor which are guaranteed to obey the appropriate equa-
tional laws. However, computing with Haskell implementation of
the free monad introduces an extra layer of data constructors per-
vasively. So for concision and clarity, we continue our presentation
using the recursive data type Faceted.

4 This computation may also be written as
(*) <*> (makePrivate "k" 7) <$> (makePrivate "l" 6).
In general, computations on faceted values may be written tersely using
Monad and Applicative combinators such as liftM2, liftA2, <*>,
<$>, etc, according to taste. Here we choose to use Haskell’s do-notation
as it is readable and familiar to even novice Haskell programmers.
5 A Haskell implementation of free monads over functors is available on
Hackage in the library free [Kmett 2014]

The implementations of makePublic and makeFaceted are
simple wrappers on the appropriate constructors:

makePublic = Raw
makeFaceted = Faceted

The instances of Functor, Monad, and Applicative are
straightforward – they are all consequences of Faceted being a
free monad. Here are their implementations in full:

instance Functor Faceted where
fmap f (Raw x) = Raw (f x)
fmap f (Faceted k x y) = Faceted k (f x) (f y)

instance Applicative Faceted where
pure x = Raw x
(Raw f) <*> x = fmap f x
(Faceted k f g) <*> x = Faceted k (f <*> x) (g <*> x)

instance Monad Faceted where
return x = Raw x
(Raw x) >>= f = f x
(Faceted k x y) >>= f = Faceted k (x >>= f) (y >>= f)

2.2 Side-effecting faceted computations: FIO a
Information flow security is nearly trivial for the pure language of
Section 2.1 because all dependencies between values are explicit.
There are no implicit flows. An implicit flow occurs when a value
is computed based on side effects that may differ depending on the
value of private data.

In the following classic example, assume that secret has type
Int and the variable x is a reference cell of type IORef Int that
initially contains the value 0.

do if secret == 42
then writeIORef x 1
else return ()

readIORef x

The return value will be 1 if and only if secret == 42. Note,
however, that the value stored at x does not explicitly depend on
secret.

Suppose we opt to protect the confidentiality of secret by
setting secret = makePrivate k 42. The type of secret is now
Faceted Int. Then our example can be reformulated as

do v <- secret
do if v == 42

then writeIORef x 1
else return ()

readIORef x

The outer do begins a computation in the Faceted monad,
while the inner do begins a computation in the IO monad. This
expression has type Faceted (IO Int), so it cannot be “run” as part
of a Haskell program. Using only the pure fragment of our library,
implicit flows are prevented. Unfortunately, all implicit flows are
prevented, even those that do not violate information flow security.

Guided by the types, we need a way to convert a value of type
Faceted (IO a) to a value of type IO (Faceted a). This latter
should then be run to yield a value of type Faceted a, where
the implicit flow is taken into account in the facets. In terms of
our example, for any view for which secret is visible, the value
returned should behave as 1, while for all other views it should
behave as 0. The remainder of this section focuses on the general
design of faceted IO computations, while Section 2.3, Section 2.4,
and Section 2.5 illustrate implementations of specific side-effects.

Interface Faceted IO computations take place in the FIO monad
(the name is short for “Faceted I/O”). Figure 3 shows the public
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data FIO a

instance Monad FIO

secureRunFIO :: FIO a -> IO a
branch :: Faceted (FIO a) -> FIO (Faceted a)

Figure 3. Interface for FIO

interface for this fragment of the library. When control flow is
influenced by faceted data, the result of a computation implicitly
depends on the facets observed in determining the control flow
path; the implementation of FIO manages this transparently.

The Monad instance for FIO allows for sequencing computa-
tions in the usual way, so FIO should act as a (limited) drop-in re-
placement for IO. If fio1 and fio2 each have type FIO Int, then
the following expression also has type FIO Int.

do v1 <- fio1
v2 <- fio2
return v1 + v2

The function secureRunFIO converts a value of type FIO a to a
value of type IO a visible to the empty view. Thus any computation
depending on private data is not observable.

The novel, and vital, component of this interface is the function
branch function that mediates between Faceted values and side-
effecting FIO computations:

branch :: Faceted (FIO a)→ FIO (Faceted a)

Consider the following fragment, where someFacetedBool
has type Faceted Bool and each of fio1 and fio2 have type
FIO a.

fio :: Faceted (FIO a)
fio = do v <- someFacetedBool

if v then fio1 else fio2

runnable :: FIO (Faceted a)
runnable = branch fio

The type of fio is Faceted (FIO a). As in the prior example,
it cannot be run. To run fio in a sound way, we use the function
branch to convert from Faceted (FIO a) to FIO (Faceted a).
The side effects of the resulting computation accounts for the im-
plicit flow from someFacetedBool.

Implementation Somewhat analogous to how a value of type
Faceted a simultaneously represents value of type a for all views,
a computation of type FIO a simultaneously represents many com-
putations of type IO a. For each set of influences on the control
flow path, the computation performed may differ. For a particular
label k, the control flow path may have been influenced by data
from a private facet protected by k, data from the public facet of a
value faceted on k, or neither. We call the influence of a label on
the current control flow a branch and model it directly via the data
type Branch as either Private k or Public k (The notations of
Austin and Flanagan [2012] for these are k and k, respectively).

data Branch = Private Label | Public Label

The branch Private k denotes a control flow path that has been
influenced by the private facet of a value faceted on k. The branch
Public k denotes a control flow path that has been influence by
the public facet of a value faceted on k.

A program counter label is a finite set of such branches describ-
ing all the influences on the current control flow path. We model a
program counter label with a list here for readability.

type PC = [Branch] -- finite

Now we may precisely state that a value of type FIO a simulta-
neously represents some underlying IO a for any program counter
label. In other words, a faceted computation may be represented as
a function of type PC→ IO a.

data FIO a = FIO { runFIO :: PC -> IO a }

This data type is private to the library, and we expose only the
limited ability to run an FIO with an empty program counter label.

secureRunFIO fio = runFIO fio []

The implementation of branch simulates an optimized multi-
execution, adding the appropriate branches to the program counter
label when determining which computations to perform. Incon-
sistent facets – where the program counter label contains both
Public k and Private k for any k – are pruned.

branch (Raw fio) = FIO (\pc -> fio >>= (return . Raw))

branch (Faceted k priv pub) = FIO branchOnPC
where branchOnPC pc
| Private k ‘elem‘ pc = runFIO (branch priv) pc
| Public k ‘elem‘ pc = runFIO (branch pub) pc
| otherwise =

do privV <- runFIO (branch priv) (Private k : pc)
pubV <- runFIO (branch pub) (Public k : pc)
return (Faceted k privV pubV)

If the label on the faceted value is already visible (resp. not vis-
ible) for current program counter label pc, then the private (resp.
public) computation is run. If the program counter label has not
been influenced by Private k or Public k, then each compu-
tation is run under the appropriate added assumption about k. In
this last case, the computations are sequenced, creating an apparent
asymmetry. However, for the actual FIO operations we provide –
discussed below in Section 2.3, Section 2.4, and Section 2.5 – the
two computations operate on disjoint facets. So the result is sym-
metrical, and could be executed in the opposite order. This behavior
is a design constraint for any FIO operation.

Another way to describe branch is as a distributive law –
meaning it respects the monad structures of FIO and Faceted in
particular ways, see Barr and Wells [1985] – between the Faceted
and FIO monads. Via branch, the composition FIO ◦ Faceted
forms a compatible monad, where any number of “layers” of FIO
and Faceted are collapsed. Delving further into category theory
is not the aim of this paper, but intuitively this monad appears
similar to the computational domain of prior work, where faceted
computation and faceted values are conflated. We do conjecture
that, relative to the appropriate semantic interpretation of Faceted
and FIO, the function branch forms a strong distributive law [Lüth
and Ghani 2002] making this compatible monad equivalent to the
coproduct FIO⊕ Faceted.

2.3 Faceted Reference Cells: FIORef a
A value of type of type FIORef a (short for “facet-aware IORef”)
is a mutable reference cell where initialization, reading, and writing
are all FIO computations that operate on Faceted values and adjust
facets according to influences on the control flow path.

Interface Figure 4 presents the core of the public interface to
FIORef a. The interface directly parallels that of conventional
reference cells of type IORef a.6

6 Haskell has many structures providing functionality of mutable references;
we are gradually adding support for other types of mutable references as
well as the plethora of convenience functions provided in Haskell’s standard
library.
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data FIORef a

newFIORef :: Faceted a -> FIO (FIORef a)
readFIORef :: FIORef a -> FIO (Faceted a)
writeFIORef :: FIORef a -> Faceted a -> FIO ()

Figure 4. Interface for FIORef

When a reference cell x of type FIORef a is read using
readFIORef, it yields a value v of type Faceted a that is faceted
according to the explicit and implicit flows that led to v being writ-
ten to x.

When a reference cell x is initialized via newFIORef or written
via writeFIORef, the value v (of type Faceted a) is stored at x
in a way that takes into account all the influences that led to the
initialization or write being performed.

Using this interface, we can express a minimal example of an
implicit flow using FIO and FIORef. In the following, secret has
type Faceted Int and x has type FIORef Int and x is initially set
to makePublic 0.

do branch (do v <- secret
if v == 42

then writeFIORef x 1
else return ())

readFIORef x

Note the necessity of branch. The argument to branch has
type Faceted (FIO ()), and is converted to a value of type
FIO (Faceted ()) so it can be run. The resulting faceted value read
from x will account for the influence from the facets of secret.
What is an implicit flow in classical examples is actually quite
explicit here!

This pattern is extremely common, and can be encapsulated in
the helpful combinator ifF:

ifF :: Faceted Bool -> FIO a -> FIO a -> FIO Faceted a
ifF facetedBool thenBranch elseBranch =

branch (do v <- facetedBool
if v then thenBranch else elseBranch)

The above example may then be written

do ifF (do { v <- secret; return v == 42 })
(writeFIORef x 1)
(return ())

readFIORef x

Implementation The private representation for a value of type
FIORef a is simply a reference cell that stores a faceted value, of
type IORef (Faceted a).

data FIORef a = FIORef (IORef (Faceted a))

The appropriate facets are always established upon writing a
value, so reading an FIORef requires no special logic.

readFIORef (FIORef x) = FIO (\pc -> readIORef x)

Initialization and subsequent writes to an FIORef incorporate
the current program counter label, building facets to indicate that
the value being stored may depend on any labels in the program
counter. Thus process is implemented in the auxiliary function pcF,
corresponding to 〈〈 pc ? x : y 〉〉 from Austin and Flanagan [2012].
The value pcF pc x y behaves as x to any view consistent with pc
and behaves as y to any other view.

pcF :: PC -> Faceted a -> Faceted a -> Faceted a
pcF [] x _ = x
pcF ((Private k) : bs) x y = Faceted k (pcF bs x y) y
pcF ((Public k) : bs) x y = Faceted k y (pcF bs x y)

data FHandle

type View = [Label] -- finite

openFileF :: View -> FilePath -> IOMode -> FIO FHandle

hGetCharF :: FHandle -> FIO (Faceted Char)
hPutCharF :: FHandle -> Faceted Char -> FIO ()

Figure 5. Interface for FHandle

To initialize a new FIORef a requires an initial value v. The
value stored is faceted according to the current program counter,
with a default value of bottom.

newFIORef v = FIO $ \pc ->
do var <- newIORef (pcF pc v bottom)

return (FIORef var)

Writing a faceted reference cell updates the stored (faceted)
value in such a way that it appears unchanged to any view that
is inconsistent with the current program counter label, but updated
for any view that is consistent.

writeFIORef (FIORef x) v = FIO $ \pc ->
do old <- readIORef x

writeIORef x (pcF pc v old)

Together, these definitions ensure that the value stored for any
FIORef always contains facets that incorporate influences due to
implicit flows.

2.4 File I/O and Network Communication: FHandle
Faceted file I/O differs from reference cells in that the network and
file system, which we collectively refer to as the environment, lies
outside the purview of our programming language. The environ-
ment has no knowledge of facets and cannot be retrofitted. In addi-
tion, it must be assumed that there are other agents/programs able
to read from and write to the file. Thus we assume that the environ-
ment’s access controls are used appropriately to restrict other users
of the handle. We merely provide facilities within Haskell to ex-
press the same policy that the environment is presumed to uphold.

Because the contents of the file can be written or read without
warning, writing to a file and sending a message on a asynchronous
channel are considered equivalent, while reading from a a file and
receiving a message over an asynchronous channel are likewise
considered equivalent. For the purposes of demonstrating functions
that closely match standard Haskell functions, we will use files but
with this network send/receive semantics.

Interface Figure 5 shows the core of the public interface for
facet-aware file handles, type FHandle (short for “facet-aware
Handle”). Since there are a great many operations for handles,
we present just those necessary to discuss how I/O interacts with
faceted computation. In particular, we focus on sends and receives
of a single value of type Char via hGetChar and hPutChar.7

The policies that we support are those expressed by associating
to each file handle h a finite view8 (a finite set of labels) viewh

of type View that indicates the minimum confidentiality for data
written to h and, dually, the maximum integrity of data read from
h. The detailed discussion below of reading and writing to facet-
aware handles clarifies the meaning of these policies.

7 Providing performant faceted wrappers for a wide variety of operations on
handles remains a work in progress.
8 Finiteness of views for file I/O is a stronger property than absolutely
necessary. Our design requires at least that inclusion and non-inclusion of a
label in a view be effectively computable.
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The function openFileF accept a view viewh along with a file
path and mode and returns a (computation that returns a) facet-
aware handle h protected by the policy expressed by viewh.

When writing to a handle h via hPutCharF, the view viewh

serves as an upper bound on the confidentiality assured by the
external world (a lower bound on the integrity expected) for data
written to h. In other words, we trust that the external world will
protect the data with those labels in viewh. Dually, we certify that
no labels beyond those in viewh have influenced the values sent.
Thus if the program counter label has been influenced by higher
confidentiality (lower integrity) values, the write must not occur.
Furthermore, the exact facet that is written is just that visible to
viewh. Consider the following example.

fio :: FIO ()
fio = do h <- openFileF ["z", "w"] "/tmp/foo" WriteMode

hPutCharF h (makeFacets "z" ’a’ ’b’)
hPutCharF h (makeFacets "x" ’c’ ’d’)

First, consider running runFIO fio ["z", "w", "x"]. Be-
cause the label "x" is in the PC passed to runFIO, it is considered to
have influenced control flow, and no writes will occur because "x"
is not contained in viewh. Information confidential to "x" would
be leaked by the mere fact of a write occurring.

Next, consider running runFIO fio ["z"]. Because ["z"]
is a subset of viewh, the writes are permitted. The first call to
hPutChar will output ’a’ because "z" is a contained in viewh.
The second call to hPutChar will output ’d’ because "x" is not
contained in viewh.

When reading from a handle h via hGetCharF, we treat viewh

as a lower bound on the confidentiality expected by the external
world (an upper bound on the integrity it promises) for data read
from h. In other words, we trust that the external world will prevent
tainting from data with labels not in viewh. Dually, we certify that
we will protect the data with sufficient security to avoid leaking to
lesser views.9 For example, consider the following computation.

do h <- openFileF ["k", "l"] "/tmp/socket.0" ReadMode
hGetCharF h

The character thus read from h is confidential, observable only
to views that include labels "k" and "l". Dually, the value is con-
sidered to be tainted by labels "k" and "l", which may represent
untrusted parties that should not be able to influence control flow.

Implementation The representation of a value of type FHandle
is as a pair of a Handle and a View. The function openFileF is a
simple wrapper on the standard library function openFile.

data FHandle = FHandle View Handle

openFileF :: View -> FilePath -> IOMode -> FIO FHandle
openFileF view path mode = FIO $ \pc ->

do handle <- openFile path mode
return (FHandle view handle)

The implementation of hGetCharF creates appropriate facets to
provide information flow security for values received from a handle
h. To any view that is not a superset of viewh, the value will appear
undefined.

hGetCharF :: FHandle -> FIO (Faceted Char)
hGetCharF (FHandle view handle) = FIO hGetCharForPC

where hGetCharForPC pc =
do ch <- hGetChar handle

return (pcF (map Private view) (Raw ch) bottom)

9 We assume an asynchronous protocol, so an external writer can never
observe whether a read has taken place.

The implementation of hPutCharF actually performs a write
only when viewh is visible to the current program counter label, as
computed by the auxilliary function visibleTo. When writing a
faceted character ch, the non-facted character written is the projec-
tion of ch to the view viewh, as computed by the auxillary function
project.

visibleTo :: PC -> View -> Bool
visibleTo pc view = all consistent pc

where consistent (Private k) = k ‘elem‘ view
consistent (Public k) = k ‘notElem‘ view

project :: View -> Faceted a -> a
project view (Raw v) = v
project view (Faceted k priv pub)

| k ‘elem‘ view = project view priv
| k ‘notElem‘ view = project view pub

hPutCharF :: FHandle -> Faceted Char -> FIO ()
hPutCharF (FHandle view handle) ch = FIO hPutCharForPC

where hPutCharForPC pc
| view ‘visibleTo‘ pc =

hPutChar handle (project view ch)
| otherwise = return ()

For example, if viewh is ["k"] then the computation

hPutCharF h (Faceted "k" (Faceted "l" ’a’ ’b’) ’c’))

will write the character ’b’ to h, because the private component of
the "k" facet will be selected, while the public component of the
"l" facet will be selected.

To briefly return to the fact that Faceted is the free monad
over the Facets functor from Section 2.1, we note that each pro-
jection project view can be expressed as a monad algebra for
Free Facets generated from the following function proj view:

proj :: View -> Facets a -> a
proj view (Facets k priv pub)

| k ‘elem‘ view = priv
| k ‘notElem‘ view = pub

foldFree :: (f a -> a) -> (Free f a -> a)
foldFree f (Pure x) = x
foldFree f (Free fx) = f (fmap (foldFree f) fx)

project view = foldFree (proj view)

2.5 Robust Declassification
Faceted values support robust declassification [Zdancewic and My-
ers 2001]. This requires that labels indicate both secrecy and in-
tegrity. We still leave the type of labels as String to keep our
presentation consistent. A label k can be interpreted by the pro-
gram variously as “secret to k” or “untrusted by k”, according to
the string. We emphasize that this is for demonstration purposes
only; a finalized design for a system with declassification should
have structured types for principals and labels, interfaced with our
library through appropriate type classes.

Interface Figure 6 shows the interface for declassification, in-
cluding functions untrustedBy and secretTo that provide labels
with the appropriate semantics.

Since the decision to declassify a value depends on the program
counter label, declassification takes place “in” the FIO monad. If
the program counter label has been influenced by untrusted labels,
then the declassification operation is not performed.

Implementation The implementations of untrustedBy and
secretTo need not be private nor cryptographically secure (la-
bels in our system are forgeable in general) so we simply prepend
"untrustedBy" or "secretTo" to a label.
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type Principal = String

untrustedBy :: Principal -> Label
secretTo :: Principal -> Label

declassify :: Principal -> Faceted a -> FIO (Faceted a)

Figure 6. Interface for declassification

untrustedBy k = "untrustedBy" ++ k
secretTo k = "secretTo" ++ k

Due to the tight format here, we alias untrustedBy to u and
secretTo to s in the following definition for declassify.

u = untrustedBy
s = secretTo

declassify :: Principal -> Faceted a -> FIO (Faceted a)
declassify p v = FIO $ \pc ->

if (untrustedBy p) ‘notElem‘ pc
then return downgrade p v
else return v

downgrade :: Principal -> Faceted a -> Faceted a
downgrade p (Raw x) = Raw x

downgrade p v@(Faceted k priv pub)
| k == s p = Faceted (u p) v priv

downgrade p (Faceted k priv pub)
| k == u p = Faceted (u p) priv (downgrade p pub)

downgrade p (Faceted k priv pub) =
Faceted k (downgrade p priv) (downgrade p pub)

If the program counter label is such that declassification is
permissible, the function downgrade performs the declassification
for principle p as follows:

For raw values and undefined values, downgrade behaves as the
identity function.

For a value v faceted by the label secretTo p, the result is
faceted on untrustedBy p. The private facet of v is moved into
the public facet of the result – indicating that it is trusted by p –
while the private facet of the result remains as v. Thus for any view
containing the label untrustedBy p, the result behaves as the fully
classified value v.

For a value faceted by the label untrustedBy p, only the public
facet (trusted by p) is downgraded.

For a value faceted by any other label, the two facets are down-
graded independently.

These rules ensure that declassification, when allowed, moves
data from private facets of secretTo p to public facets, but no
other facets are changed.

3. Termination-Insensitive Noninterference
Faceted computations ensure a form of security known as termination-
insensitive noninterference. This means that for any two terminat-
ing programs, low confidentiality return values and outputs cannot
be influenced by high-confidentiality values or inputs.

Faceted computations ensure termination-insensitive noninter-
ference by simulating separate computations for each view. Any
faceted value has a projection for every view, which is the non-
faceted value visible to that view. To demonstrate termination-
insensitive noninterference, we formalize the intuition that faceted
computations simulate secure multi-execution, by explicitly de-
scribing the non-faceted computations being simulated for each
view.

3.1 Projection Properties for Pure Faceted Values
Recall that a view is a set of labels. A view L thus defines a com-
plete partition of the universe of labels: Those that are contained in
L, for which the private facet should be considered, and those that
are not, for which the public facet should be considered. A value of
type Faceted a may be interpreted as simultaneously representing
a value of type a for any view L. This is formalized by the follow-
ing interpretation of a faceted term as a function from Faceted a to
a. This interpretation appears identical to the Haskell implementa-
tion of project in Section 2.4, but is mathematically well-defined
for all views, not only those expressible as Haskell lists.10

[[−]] :: Faceted a → P(Label) → a

[[Raw e]](L) = e

[[Faceted k a b]](L) | k ∈ L = [[a]](L)

| k /∈ L = [[b]](L)

The Functor, Applicative, and Monad structures upon faceted
values adhere to simple properties with respect to this interpreta-
tion.
Lemma 1 (View Projection for Pure Values). For any view L and
faceted values of the necessary types for each equation,

[[fmap f e]](L) = f [[e]](L)

[[f <*> e]](L) = [[f ]](L) [[e]](L)

[[e >>= f ]](L) = [[f [[e]](L)]](L)

However, the above interpretation is not the same as the projec-
tion of the literature; the result of interpretation may still be faceted.
The interpretation of a value of type Faceted (Faceted a) for a
particular view L has type Faceted a. The same information flow
guarantees apply to this value. The intuition behind projection is
that it should remove all facets from a program, leaving the resid-
ual program that characterizes what L may observe. Also, we ex-
pect projection to fulfill the standard idempotence criterion: For a
function f to be a projection, we must have f ◦ f = f . This is
clearly not true of any transformation that always removes only a
single layer of facets.

Formalizing this intuition, we write bac to denote the type of the
output of projection. We define this type generically by induction
on the structure of a, as constructed from products, sums, and
arrows. User-defined types have natural definitions derived from
these.

b−c :: * → *

bFaceted ac = bac
bKc = K

ba× bc = bac × bbc
ba+ bc = bac+ bbc
ba→ bc = bac → bbc

For example, bFaceted (Faceted Int)c is Int. This extends
to algebraic data types such as lists in the obvious manner; for
example, b[Faceted a]c is [a]. Note that bbacc = bac; the type-
level function b−c is idempotent. The most important case to note
is that for a function type a→ b, where facets in the argument type
a are removed covariantly.

We now define idempotent projection for all Haskell values,
which removes all possibly-nested facets recursively. We write

10 Note that, as for project in Section 2.4, this interpretation is induced via
the free monad structure of Faceted via a corresponding functor algebra
over Facets.
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L(e) to denote the projection of the expression e according to the
view L. We define the projection by L generically by induction
over the structure of Haskell types, denoting projection for type a
as La. For any type a, the component of the projection La is a
map from a to bac.11 Projection is the identity on base types and
extends naturally to products and sums, but to define projection
across all Haskell data types, including contravariant arrow types,
we provide an embedding-projection pair. That is, the projection by
L is defined simultaneously with the injection L̃, where L◦ L̃ v id.
Injection on Faceted a is Raw and extends to products, sums, and
arrows in a manner exactly dual to projection.12

L :: a → bac
LFaceted a(v) = La([[v]](L))

LK(v) = v

La×b(x, y) = (La(x),Lb(y))

La+b(Inl x) = Inl La(x)

La+b(Inr y) = Inr Lb(y)

La→b(f) = Lb ◦ f ◦ L̃a

L̃ :: bac → a

L̃Faceted a(v) = Raw v

L̃K(v) = v

L̃a×b(x, y) = (L̃a(x), L̃b(y))

L̃a+b(Inl x) = Inl L̃a(x)

L̃a+b(Inr y) = Inr L̃b(y)

L̃a→b(f) = L̃b ◦ f ◦ La

Taking all components of projection as together defining a func-
tion over all Haskell data, we have that for any view L and argument
e, L(L(e)) = L(e). (Note that at the type level, bbacc = bac).

3.2 The Projection Property for Reference Cells
In order to discuss the projection property for stateful computa-
tions, we provide a minimal semantics to a small model of just
those operation of interest, following work such as Peyton Jones
et al. [1996] and Swierstra and Altenkirch [2007]. We other-
wise presume an informal understanding of the semantics of pure
Haskell expressions.

The only IO constructors we consider are the following, and
assume all values of type IO a are constructed from them, treating

11 We exclude polymorphism from our presentation because the most nat-
ural way to discuss it requires introducing System-F style explicit in-
stantiation. The equation for universally quantified types is L∀X.a(e) =
ΛX.LX(e) and existential types may be derived. But this considerably
complicates the presentation.
12 Hinze and Jeuring [2003] discuss mechanisms for defining generic
embedding-projection pairs in Generic Haskell, but here we define it only as
a meta-function. This is also why we favor mathematical notation a×b and
a + b for product and sum types rather than the respective Generic Haskell
syntax of a:*:b and a:+:b.

this as the recursive specification of a GADT.

return :: a → IO

(>>=) :: IO a → (a → IO b) → IO b

newIORef :: a → IO (IORef a)

readIORef :: IORef a → IO a

writeIORef :: IORef a → a → IO ()

Each of these operates on a standard store which may be modeled
as a partial function from locations of type IORef a to values of
type a. The following use of mathematical symbols Σ and ⇀ is to
emphasize that this is a model, not Haskell code.

Σ :: IORef a ⇀ a

The following meta-function run maps a value of type IO a to its
interpretation as a function from a store to a pair of a store and a
return value. These semantics are completely standard, available in
Haskell as an instance of the State monad, but reproduced here
only for ease of reference.

run (return e) Σ = (Σ , e)

run (newIORef e) Σ = (Σ [l 7→ e], l) l /∈ dom(Σ)

run (readIORef l) Σ = (Σ ,Σ(l))

run (writeIORef l e) Σ = (Σ [l 7→ e], ())

run (e >>= f) Σ = run (f v) Σ ′

where run e Σ = (Σ ′, v)

We can similarly characterize all the constructors of interest for
the type FIO a:

return :: a → FIO a

(>>=) :: FIO a → (a→ FIO b) → FIO b

newFIORef :: a → FIO (FIORef a)

readFIORef :: FIORef a → Faceted (FIO a)

writeFIORef :: FIORef a → a → FIO ()

branch :: Faceted (FIO a) → FIO (Faceted a)

Any faceted computation of type FIO a projects to a non-faceted
computation of type IO bac, in which all faceted reference cells of
type FIORef a have been projected to non-faceted reference cells
of type IORef bac. In other words,

bFIO ac = IO bac
bFIORef ac = IORef bac

Projection and injection for reference cells is a no-op that just
coerces the type. The projection and corresponding injection for
faceted computations are each straightforward. Since the types are
necessary and inferable, we omit subscripts on L to save space and
clutter.

L(FIORef l) = l

L̃(l) = FIORef l
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LFIO a :: FIO a → IO bac
L(return e) = return La(e)

L(e >>= f) = L(e) >>= (L ◦ f)
L(newFIORef e) = newIORef L(e)

L(readFIORef l)) = readIORef L(l) >>= L

L(writeFIORef l v) = writeIORef L(l) L(v)

L(branch e) = L(e)

L̃ = FIO ◦ const

Projection of a store Σ is extended point-wise to each of the
locations in Σ . Formally

L(Σ)(l) = L(Σ(l))

Projection changes the types for every location in the store; the
types for each projected IORef in a program change accordingly.

Having defined the semantics of IO with reference cells and
projection for FIO computations, we can state the key projection
property for faceted computations:
Lemma 2 (Projection with Mutable Reference Cells). For any store
Σ , program counter label pc, and expression e :: FIO a, if

run (runFIO e pc) Σ = (Σ ′, v)

then for any view L which is consistent with pc,

run L(e) L(Σ) = (L(Σ ′),L(v)))

Proof: Proceed by induction on the construction of e. Each each
case follows by basic equational reasoning.�

3.3 The Projection Property for I/O
To keep the formal demonstration easy to read, we develop the
semantics and projection property for I/O orthogonally to that for
reference cells. The constructors we are interested in for IO in this
case are:

hGetChar :: Handle→ IO Char

hPutChar :: Handle→ Char→ IO ()

For simplicity we omit openFile and simply presume some
global set of handles are available.

We redefine the interpretation of I/O now to be a mapping from
streams of input characters to output characters – one input stream
per handle, and one output stream per handle.

R,W :: Handle→ [Char]

The semantics of a program are the following. Again, this is
a straightforward elaboration of standard semantics, easily imple-
mented with a combination of the Reader and Writer monads,
fully elaborated here for ease of reference.13 Below, list concate-
nation ++ on W is performed point-wise for each handle, and ∅
denotes a mapping from every handle to an empty stream.

13 We could avoid having the residual input streams in our output if we
embraced the following nondeterministic split of the input.

run (e >>= f) (R++R′) = (W++W ′, v′)
where run eR = (W, v)

and run (f v)R′ = (W ′, v′)

This would make our semantics more like a judgment-based big-step se-
mantics instead of a straightforward-to-implement denotation.

run (return e)R = (R, ∅, e)
run (hPutChar h c)R = (R, [h 7→ c], ())

run (hGetChar h)R = (R[h 7→ es], ∅, e)
where R(h) = e:es

run (e >>= f)R = (R′′,W++W ′, v′)
where run eR = (R′,W, v)

and run (f v)R′ = (R′′,W ′, v′)

We can characterize the FIO constructors of interest for I/O as
well:

hGetCharF :: FHandle→ FIO (Faceted Char)

hPutCharF :: FHandle→ Faceted Char→ FIO ()

Their projections should, by now, be unsurprising. We assume
that the appropriate viewh for each handle is known in order to
inject Handle into FHandle.

L(FHandle viewh h) = h

L̃(h) = FHandle viewh h

L(return e) = return L(e)

L(hGetCharF h) = hGetChar L(h) >>=L

L(hPutCharF h v)

| L ⊆ viewh = hPutChar L(h) L(v)

| otherwise = return ()

L̃ = FIO ◦ const

Projection of an input environment R is point-wise for each
handle h. Projection for a particular input streamR(h) by L leaves
R unchanged if L is permitted to read from h, in other words
L ⊇ viewh. Otherwise the input stream is projected to an input
stream containing only undefined values. Conversely, an output
stream is projected to an empty stream if L ⊆ viewh. Thus,
even if the output of a faceted computation varies, the output when
projected by L will remain empty, reflecting the fact that L cannot
be “held responsible” for the changes in the output to streams to
which it can never write.

L(R)(h) | L ⊇ viewh = R(h)
| otherwise = ⊥,⊥, · · ·

L(W)(h) | L ⊆ viewh = W(h)

| otherwise = []

The projection property follows:

Lemma 3 (Projection with File I/O). For any input environmentR,
program counter label pc, and expression e :: FIO a, if

run (runFIO e pc)R = (R′,W, v)

then for any view L which is consistent with pc,

run L(e) L(R) = (L(R′),L(W),L(v)))

Proof: Proceed by induction on the construction of e. Each case
follows by basic equational reasoning.�
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3.4 Termination-Insensitive Noninterference
Projection induces equivalence relations on stores, input streams,
output streams, and expressions, namely:

e1 ∼pc e2 , L(e1) = L(e2)

Σ1 ∼L Σ2 , L(Σ1) = L(Σ2)

R1 ∼L R2 , L(R1) = L(R2)

W1 ∼L W2 , L(W1) = L(W2)

Combining the prior semantics (they are orthogonal), we postu-
late a run function that accepts an IO computation, an initial store,
and input stream, and returns the resulting output stream and return
value. Using this version of run, termination-insensitive noninter-
ference may be stated and proved.
Theorem 1 (Termination-Insensitive Noninterference). For any ex-
pressions e1 and e2, initial stores Σ1 and Σ2, input streamsR1 and
R2 such that e1 ∼L e2 and Σ1 ∼L Σ2 andR1 ∼L R2, and

run (secureRunFIO e1) Σ1 R1 = (Σ ′1,W ′1, v1)
run (secureRunFIO e1) Σ2 R2 = (Σ ′2,W ′2, v2)

then Σ ′1 ∼L Σ ′2 andW ′1 ∼L W ′2 and v1 ∼L v2

3.5 Correctness for Declassification
In the presence of declassification, the projection property as stated
in other cases cannot hold. However, we can prove the following
lemma, following Austin and Flanagan [2012], that indicates our
downgrade function migrates data from the trusted secret view to
the trusted public view
Lemma 4 (Projection with Declassification). For any faceted value
e :: Faceted a and view L,

[[downgrade p e]](L) =

{
[[e]](L) if (untrustedBy p) ∈ L
[[e]](L ∪ {secretTo p}) otherwise

Proof: Proceed by induction on e.

4. Related Work
Most information flow mechanisms fall into one of three categories:
run-time monitors that prevent a program execution from misbe-
having; static analysis techniques that analyze the whole program
and reject programs that might leak sensitive information; and fi-
nally secure multi-execution, which protects sensitive information
by evaluating the same program multiple times.

Dynamic techniques dominated much of the early literature,
such as Fenton’s memoryless subsystems [Fenton 1974]. However,
these approaches tend to deal poorly with implicit flows, where con-
fidential information might leak via the control flow of the program;
purely dynamic controls either ignore updates to reference cells that
might result in implicit leaks of information [Fenton 1974] or ter-
minate the program on these updates [Zdancewic 2002; Austin and
Flanagan 2009]; both approaches have obvious problems, but these
techniques have seen a resurgence of interest as a possible means
of securing JavaScript code, where static analysis seems to be an
awkward fit [Dhawan and Ganapathy 2009; Jang et al. 2010; Hedin
and Sabelfeld 2012; Kerschbaumer et al. 2013].

Denning’s work [Denning 1976; Denning and Denning 1977]
instead uses a static analysis; her work was also instrumental in
bringing information flow analysis into the scope of programming

language research. Her approach has since been codified into dif-
ferent type systems, such as that of Volpano et al. [1996] and the
SLam Calculus [Heintze and Riecke 1998]. Jif [Myers 1999] uses
this strategy for a Java-like language, and has become one of the
more widespread languages providing information flow guarantees.
Sabelfeld and Myers [2003] provide an excellent history of infor-
mation flow analysis research prior to 2003. For a more detailed
comparison of the benefits of dynamic controls and static analysis
for information flow guarantees, see Russo and Sabelfeld [2010]’s
discussion between static and dynamic analyses.

Secure multi-execution [Devriese and Piessens 2010] executes
the same program multiple times representing different “views”
of the data. For a simple two-element lattice of high and low, a
program could be executed twice, once where confidential (high)
data is included but may only write to authorized channels, and
again where high data has been replaced by default values and
which writes to public channels. This approach has since been
implemented in the Firefox web browser [De Groef et al. 2012]
and as a Haskell library [Jaskelioff and Russo 2012]. Rafnsson and
Sabelfeld [2013] show an approach to handle declassification and
to guarantee transparency with secure multi-execution.

Zanarini et al. [2013] note some challenges with secure multi-
execution; specifically, it alters the behavior of programs violating
noninterference (potentially introducing difficult to analyze bugs),
and the multiple processes might produce outputs to different chan-
nels in a different order than expected. They further address these
challenges through a multi-execution monitor. In essence, their ap-
proach executes the original program without modification and
compares its results to the results of the SME processes; if output
of secure multi-execution differs from the original at any point, a
warning can be raised to note that the semantics have been altered.

Faceted evaluation [Austin and Flanagan 2012] simulates secure
multi-execution by the use of special faceted values, which track
different views for data based on the security principals involved14.
While faceted evaluation cannot be parallelized as easily, it avoids
many redundant calculations, thereby improving efficiency [Austin
and Flanagan 2012]. It also allows declassification, where private
data is released to public channels. Austin et al. [2013] exploit this
benefit to incorporate policy-agnostic programming techniques, al-
lowing for the specification of more flexible policies than tradition-
ally permitted in information flow systems.

Research on information flow analysis in Haskell has been lim-
ited, perhaps in part because idiomatic pure Haskell code avoids
the complexity of implicit flows. Nonetheless, side effects are im-
portant for Haskell programming, and information flow security for
Haskell in the presence of implicit flows has been studied before.

Li and Zdancewic [2006] implement an information flow sys-
tem in Haskell, embedding a language for creating secure modules.
Their enforcement mechanism is dynamic but relies on static en-
forcement techniques, effectively guaranteeing the security of the
system by type checking the embedded code at runtime. Their sys-
tem supports declassification, a critical requirement for specifying
many real world security policies. Russo et al. [2008] provide a
monadic library guaranteeing information flow properties. Their
approach includes special declassification combinators, which can
be used to restrict the release of data based on the what/when/who
dimensions proposed by Sabelfeld and Sands [2009].

Devriese and Piessens [2011] illustrate how to enforce informa-
tion flow in monadic libraries. A sequence operation e1 >> e2 is
distinguished from a bind operation e1 >>= e2 in that there are no
implicit flows with the >> operator. They demonstrate the general-

14 Faceted values are closely related to the value pairs used by Pottier and
Simonet [2003]; while intended as a proof technique rather than a dynamic
enforcement mechanism, the construct is essentially identical.
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ity of their approach by applying it to classic static [Volpano et al.
1996], dynamic [Sabelfeld and Russo 2010], and hybrid [Guernic
et al. 2006] information flow systems.

Stefan et al. [2011] use a labeled IO (LIO) monad to guarantee
information flow analysis. LIO tracks the current label of the ex-
ecution, which serves as an upper bound on the labels of all data
in lexical scope. IO is permitted only if it would not result in an
implicit flow. It combines this notion with the concept of a cur-
rent clearance that limits the maximum privileges allowed for an
execution, thereby eliminating the termination channel. Buiras and
Russo [2013] show how lazy evaluation may leak secrets with LIO
through the use of the internal timing covert channel. They propose
a defense against this attack by duplicating shared thunks.
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