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Abstract. Refactoring is a code transformation performed at develop-
ment time that improves the quality of code while preserving its ob-
servable behavior. Macro expansion is also a code transformation, but
performed at compile time, that replaces instances of macro invocation
patterns with the corresponding macro body or template. The key in-
sight of this paper is that for each pattern-template macro, we can au-
tomatically generate a corresponding refactoring tool that finds complex
code fragments matching the macro template and replaces them with
the equivalent but simpler macro invocation pattern; we call this novel
refactoring process macrofication.

Conceptually, macrofication involves running macro expansion in reverse;
however, it does require a more sophisticated pattern matching algorithm
and additional checks to ensure that the refactoring always preserves
program behavior.

We have implemented a macrofication tool for a hygienic macro system in
JavaScript, integrated it into a development environment and evaluated
it by refactoring a popular open source JavaScript library. Results in-
dicate that it is sufficiently flexible for complex refactoring and thereby
enhances the development workflow while scaling well even for larger
code bases.

1 Introduction

Refactoring is the process of changing code to improve its internal structure
without changing its external behavior [15]. Complex restructuring of code usu-
ally requires careful design decisions by the developer but refactoring tools still
provide support and automation for detecting code smell, selecting the right
transformation and performing it in a way that preserves behavior.

As an example, consider the JavaScript code fragment in Listing 1, which em-
ploys a well-known pattern to define a constructor function Person that creates
new objects with sayHello and rename methods.
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function Person(name) {
this.name = name;

}

Person.prototype.sayHello = function sayHello() {
console.log("Hi, I’m " + this.name);

};

Person.prototype.rename = function rename(n) {
this.name = n;

};

Listing 1. JavaScript example with prototype-based inheritance.

class Person {
constructor (name) {

this.name = name;
}
sayHello () {
console.log("Hi, I’m " + this.name);
}
rename (n) {
this.name = n;
}

Listing 2. Declarative class definition corresponding to Listing 1.

The most recent version of JavaScript (ECMAScript 2015/ES6 [23]) adds
declarative class definitions to the language which enable us to simplify the code
as shown in Listing 2.

Rewriting existing code to use class definitions instead of the object prototype
pattern is a tedious and error-prone process; clearly a refactoring tool to perform
this transformation automatically would be desirable.

In addition to class definitions, ES2015/ES6 also adds a more concise ar-
row syntax (=>) for anonymous function definitions, allowing us to rewrite the
following example in a more compact way:

a.map (function(s) { return s.length; 1}); // ES5 code
a.map(s => s.length); // equivalent ES2015 code

Again, an automatic refactoring tool to perform this transformation for ex-
isting code would be most helpful.

Of course, programmers should not have to wait on browser implementations
to be able to use such nice syntactic extensions. In fact, many languages allow
programmers to define syntactic extensions with macro systems. These include
string-based macros as commonly used in C [24] or Assembler, and parser-level
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macro class {
rule {
$cname {
constructor $cparams $cbody
$($mname $mparams $mbody) ...
}
Fes2d
function $cname $cparams $cbody
$($cname.prototype.$mname = function $mparams $mbody;) ...
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function Person(name) {
this.name = name;

class Person {
constructor(name) {

o
()

14 } this.name = name;

15 Person.prototype.sayHello = function() { '

16 console.log("Hello, I'm " + this.name); sayHello() {

17 }; console.log("Hello, I'm " + this.name);

}
}

Fig. 1. The shown sweet.js macro named class adds declarative class definitions to
JavaScript that expand to a object prototype pattern. Macrofication automatically
detects a refactoring candidate in lines 12 to 17, so the development environment
highlights the code and shows a preview of the refactored code with the class definition
in an overlay.

macros as supported by Lisp [50], Scheme [49], Racket [53] and more recently
Rust [1] and JavaScript [10].

In the most general form, a macro is a syntax transformer, a function from
syntax to syntax, which is evaluated at compile time. The kind of macros we
consider are of a more restricted form called pattern-template macros (in Scheme
these macros are defined with syntax-rules and are also known as “macro by
example” [26,6]). These pattern-template macros are defined with a pattern that
matches against syntax and a template that generates syntax. The template can
reference syntax that was matched in the pattern via pattern variables. Once all
macros have been expanded, the resulting program will be parsed and evaluated
according to the grammar and semantics of the target language. In a hygienic
macro system [21], the macro expansion also respects the scopes of variables and
thereby prevents unintended name clashes between the macro and the expansion
context.

Sweet.js [10], a macro system for JavaScript, enables syntactic extensions
such as declarative class definitions and arrow notation for functions as de-
scribed above. As an example, the class macro shown in Listing 3 introduces
syntax for class definitions by matching a class name, a constructor and an arbi-
trary number of methods, and expanding to a constructor function and repeated
assignments to the prototype of this constructor.

In addition to defining this macro, the programmer also has to rewrite the
existing code to benefit from it and be consistent throughout the code base.
This involves finding all applicable code fragments (as in Listing 1 above) and
replacing them with correct macro invocation patterns (as in Listing 2) which
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macro class {
rule {
$cname {
constructor $cparams $cbody
$($mname $mparams $mbody)...

}
} =>
function $cname $cparams $cbody
$($cname.prototype.$mname = function $mparams $mbody;)...

}

Listing 3. Macro for expanding class definitions to ES5 code based on prototypes.

is essentially the class refactoring mentioned above and therefore would equally
benefit from automated tool support.

This paper takes of advantage of this similarity between refactoring and
macro expansion to introduce macrofication, the idea of refactoring via reverse
macro expansion. Pattern-template macros, such as the macro for class defini-
tions, allow the algorithm to automatically discover all matching occurrences of
a macro template in the program that can be replaced by a corresponding macro
invocation.

Fig. 1 shows our development environment with the class macro and the pre-
vious code example which uses the object prototype pattern. The macrofication
option automatically highlights lines 12 to 17, indicating that the code can be
refactored with a macro invocation. Additionally, the environment also shows
a preview of the refactored code which is a more readable class definition with
the same behavior as the original code. By simply clicking on the preview, the
source code will be transformed accordingly.

Conceptually, macrofication is the inverse of macro expansion; macro expan-
sion replaces patterns with templates, whereas macrofication replaces templates
with patterns. However, macrofication requires a more complicated matching al-
gorithm than is used in current macro systems due to differences in the handling
of macro variables in patterns and templates. For example, variables are often
repeated in the template (e.g. $cname in Fig. 1) whereas current macro systems
do not support repeated variables in patterns. Repetitions (denoted with ellipses
‘...”) introduce additional complexities which we solve with a pattern matching
algorithm that takes the nesting level of variables in repetitions into account to
enable the correct macrofication of complex macro templates (as illustrated by
$cname in Fig. 1 line 9 which has to be the same identifier for all methods of a
class declaration).

Macrofication should preserve program behavior. Even if the syntax involved
in a particular macrofication was replaced correctly, the surrounding code might
lead to a different expansion and thereby a different program behavior. Fur-
thermore, a hygienic macro system separates the scopes of variables used in the
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macro and in the expansion context, therefore refactoring a scoped variable po-
tentially introduces problems if the refactoring does not account for hygienic
renaming. The refactoring algorithm in this paper addresses these issues by en-
suring syntactic equivalence after expansion and thereby guarantees that the
resulting program behaves the same as the original program.

In addition to the expansion and macrofication algorithm, this paper also
evaluates a working prototype implementation for JavaScript based on sweet.js
including an integration into a development environment which highlights refac-
toring candidates. This implementation was successfully used to refactor the
popular Backbone.js JavaScript library by changing its prototype-based code to
ECMAScript 6 classes with a complex rule macro. A cursory performance anal-
ysis of refactoring both Backbone.js and the ru-lang library, which uses macros
internally, indicates that this approach scales well even for large code bases.

Overall, the contributions of this paper are

— it introduces macrofication as a new kind of code refactoring for inferring
macro invocations,

— a macrofication algorithm based on reverse expansion that takes the macro
expansion order and hygiene into account,

— an advanced matching algorithm for patterns with nested pattern repetitions
and repeated pattern variables,

— an implementation for sweet.js including an integration into the sweet.js
development environment,

— and an evaluation of its utility and performance by refactoring Backbone.js,
a popular JavaScript library.

2 Macro expansion

In order to define macrofication, it is useful to first review how macro expansion
works. Our formalism is mostly independent of the target language and only
assumes that the code has been lexed into a sequence of tokens which have been
further processed into a sequence of token trees by matching delimiters such as
open and close braces. If k ranges over tokens in the language (such as identifiers,
punctuation, literals or keywords), then a token tree h is either a single token &
or a sequence enclosed in delimiters {s}.

ha=k|{s} k : Token
The syntaz of the program is simply a sequence s of token trees.
su=k-s|{s} -s|e

The actual characters used for delimiting token trees are irrelevant for the
algorithm, so a sophisticated reader/lexer could support many different delim-
iters (e.g. { }, [] or ()), including implicit delimiters for syntax trees so this
approach supports both Lisp-like and JavaScript-like languages.
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As an example, the JavaScript statement “arr[i+1];” could be represented
as the following token tree sequence where the square brackets “[” and “]”
become simple tokens k after delimiter matching.

arr [ i + 1 ] 5

koo {k-k-k-k kel k-e

A macro has a name n, which is a single token (usually an identifier), and a
list of rules. Each rule is a pair of a pattern p and a template ¢, both of which
might include pattern variables z. Pattern variables might be represented with
a leading dollar sign $ or question mark 7, e.g. $x or 7x in the target language
but the concrete syntax for pattern variables is insignificant for the algorithm
presented in this paper.

Here, we define a pattern or template as a sequence of tokens, variables and
pattern/template sequences enclosed in delimiters.

ptu=k-p|{p}-plxz-ple x : Pattern Variable

In the context of the expansion and macrofication algorithm, a macro with
multiple rules is equivalent to multiple macros with the same name, each having
a single rule. Therefore, it is possible to represent all macro rules in the macro
environment X as an ordered sequence of (name, pattern, template) tuples.

2 (np,t)

A pattern variable x is either unbound or bound to a token tree h. We use
O to denote the environment of variables bindings.

O:x—h

In the simplest case, all macros are known in advance of the expansion and
have global scope!. Given a fixed list of macros X, macro expansion transforms
a token tree sequence s (which does not include macros definitions) into a new
token tree sequence with all macros matched and expanded:

expandy @ s —= s

For every token k, expand will look up its macro environment X' for a macro
named k with a pattern p matching the following tokens. If there is no such
macro, it will proceed with the remaining syntax, otherwise the first such macro
is used to match the syntax, yielding new variable bindings @ which are then used
to transcribe the template t. The resulting token sequence might include other
macro calls, so expand continues recursively until all macros have been expanded.
This process is not guaranteed to terminate as rule macros are Turing-complete.
For example, the following macro will result in an infinite expansion:

macro omega { rule {} => {omegal} }
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macro unless {
rule { $x $y > => { if (! $x) $y }
}

unless (success) fail();

expandy, (unless - (success) fail();)

< match (z -y, (success) fail(Q); , @)
— match (y, failQ) ;, [x — (success)])
— match (¢, ;, [x — (success),y — fail()])
< transcribe ( if (! z) -y, [z — (success),y — fail()])
— if (!(success)) failQ);

Fig. 2. Detailed expansion process of the unless macro.

The algorithms for matching and transcribing generally follow the recursive
structure of the provided pattern or template. Match uses the pattern p to
enforce equivalence with the token tree sequence s while adding variables x to
the pattern environment ©. Transcribe uses the template ¢ to generate new
syntax s by replacing all free pattern variables x with their substitutions based
on 6.

match :pXxsx 6 — (6,s) transcribe 1t X @ — s

Fig. 2 shows a simple example of matching and transcribing as part of macro
expansion. The complete algorithm is shown in Fig. 3.

3 Macrofication

The goal of refactoring is to improve the code without changing its behav-
ior. Analogously, macros are often used to introduce a more concise notation
for equivalent, expanded code. An automatic refactoring tool in the context of
macros could therefore automatically find fragments of code that can be replaced
by a corresponding and simpler macro invocation. This section describes an al-
gorithm for this macrofication refactoring which is based on pattern-template
macros and essentially applies them in reverse, i.e. using the template of the
macro for matching code and inserting the macro name and its macro invoca-
tion pattern with correct substitutions for variables. However, macro expansion
and macrofication are not entirely symmetric due to non-determinism, overlap-
ping macro rules and the way repeated variables are handled.

3.1 Basic reverse matching

Macro expansion uses a deterministic left-to-right recursion to process syntax
until all macros have been expanded. This process takes advantage of the fact

L A slightly modified algorithm could also match macros and add them to the macro
environment during expansion (see also Section 6).
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k,n  Token

x Pattern Variable

O :x — h Bound variables

expandy, : §— s

expandy, (k- s)

expandy, (k- s)
expandy, ({s}-s)
expandy, (€)

macrofyy, :s— s*

macrofyy, (h-s)

macrofy s, (€)

match :p X sx 6O — (O,
match (k-p, k- s,0)
match ({¢} -p,{r}-s,0)
match (z-p,h-s,0)
match (e, s, O)

tX 6O —s
k-t,0)
{t}-t,6)
z-t,0)
€,0)

transcribe
transcribe
transcribe
transcribe

transcribe

—~ ~ o~
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h:=k| {s} Token tree
s,ru=k-s|{s}-s]e

pgti=k-pl{p}-plz-ple
2 (n,p,t)"

Syntax Sequence
Pattern/Template

Macro Environment

= let (n,p,t) = first in X' s.t. k =n A match (p, s, D)

U
U

b »
N

>

I

(©,7) = match (p,s, )

in expandy (transcribe(t, ©) - r)

k - expandy (s) (otherwise)
{ expandy; (s) }

€

- expandy; (s')

{h-7|r € macrofyy, (s)}
{{r'}-s| h={s'} A r € macrofyy, (s')}
{n - "
(n,p,t) € ¥ A match (t,h-s,9))=(0,r")}
%]

transcribe (p, ©) - r

match (p, s, ©)

match (p, s, O’)
match (p, s, Oz — h])
(©,5)

(k=Fk)
(match (q,7,0) = (O',¢))

k - transcribe (¢, ©)
{ transcribe (¢,0) } - transcribe (¢',0)
©(z) - transcribe (t,O)

€

Fig. 3. Basic macro expansion and macrofication algorithm without repetitions.
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that macro invocations always start with the macro name, so if the current
head of the syntax sequence does not correspond to a macro, that token will
not be part of any other subsequent expansion, so the expansion recursively
progresses with the rest of the syntax. During the macrofication process, however,
a substitution might cause the refactored code to be part of a bigger pattern that
also includes previous tokens as illustrated by the following example.

macro inc {
rule { $x } => { $x + 1 }
}
macro inc2 {
rule { $x } => { 1 + inc $x 1}
}

macrofyy, (1 + 2 + 1) — 1 + inc 2
macrofyy, (1 + inc 2) — inc2 2

Another asymmetry between expansion and macrofication is caused by the
fact that different syntax might expand to the same resulting syntax. So, while
the expansion process always produces a single deterministic result for a given
syntax, the macrofication process produces multiple possible candidates of refac-
tored programs which all expand to the same result and behave identically. In
the following example, two different macrofications expand to the same program.

macro inc {
rule { $x } => { $x + 1 }
}

3+1+1
macrofy macrofy

expand
inc 3 + 1 3 + inc 1

For these reasons, macrofication returns a set of programs instead of a single
result (see Fig. 3). If & is the head of the syntax and s the tail, the result is the
union of three sets:

1. all macrofications of s that do not involve h,

2. if h is syntax in delimiters {s}, then also macrofications of s’, and

3. the program resulting from replacing a matched template ¢ with the macro
invocation consisting of the macro name n and substituted pattern p.

It is important to note that algorithm does not recurse on macrofied token
trees, so each returned result is a token tree with exactly one step of macrofi-
cation. Our development environment based on this algorithm enables the pro-
grammer to choose the best refactored program amongst these candidates ac-
cording to her design decisions and then repeat this process.
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3.2 Repeated variables

The pattern matching described in Section 2 as part of the macrofication algo-
rithm processes pattern variables by simply adding the matched token tree to
the environment ©. This corresponds to the common pattern matching behavior
in most macro systems. However, the pattern does not enforce variables to be
unique, so z - x is a valid pattern. Most existing macros systems including those
of Racket [53], Rust [1] and JavaScript [10] do not properly handle repeated
pattern variables.

This restriction of the pattern language is usually inconsequential as macro
patterns are specially chosen to bind pattern variables in a concise way without
unnecessary repetition. However, this repetition is actually intended when pat-
tern variables occur more than once in the template of a macro. For example, the
twice macro shown in Fig. 4 binds $f and $x in the pattern ($f $x) and then
uses $f multiple times in the template ($£($£($x))). The macrofication algo-
rithm described in Section 3 uses this template for pattern matching, therefore
it has to handle repeated variable bindings by enforcing the tokens to exactly
repeat the previously bound token tree. The following examples illustrate the
desired pattern matching for repeated variables in the pattern x x.

match (z z, a a, ) — [z aq
match (z z, ab, @) — no match
match (z z, {a b} {abd}, @) — [z~ {ab}]

To support repeated variables, it is possible to extend the match function
in the simple algorithm shown in Fig. 3 with an additional case analysis. If the
variable x was not assigned before, it gets bound to the corresponding token
tree h in the sequence. If, on the other hand, the variable is already part of the
pattern environment ©, then the syntax h has to be identical to the previously
bound syntax.

match (p, s, Oz — h]) (z & dom(O))
match (p, s,0) (B(z) =h)

>

match (x-p, h-s, O)
match (x-p, h-s, O)

>

While this extended matching algorithm correctly handles repeated variables
in simple patterns and templates, Section 5 outlines a more sophisticated algo-
rithm which also supports arbitrarily nested pattern repetitions with ellipses.

In contrast to matching repeated variables in patterns, repeated variables
in templates are inconsequential for the transcription process. Variables can
be used zero or more times in a template without affecting other parts of the
transcription process.

4 Refactoring correctness

The macrofication algorithm presented in Section 3 finds all reverse macro
matches that could expand again to the original program. In addition, the ad-
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macro twice {
rule { $f $x } => { $£($£(3$x)) }
}

inc (inc(a))

macrofy, (inc(inc(a)))
< match (f-(f - (z))), inc (inc(a)), o)
— ([ : a, f: inc],€)
< twice - transcribe (f - z,[x : a, f: inc])

— twice inc a

inc (dec(a))

macrofy s, (inc(dec(a)))
— match (f-(f - (z))), inc (dec(a)), )

— no match

Fig. 4. Macrofication with a macro that uses repeated variables in its template. During
the matching process, the pattern variable $£ will be bound to inc at its first occurrence
and subsequently matched at all remaining occurrences of $f.

vanced pattern matching algorithms described in Sections 3.2 and 5 ensure that
even repeated variables are handled correctly. However, this algorithm by itself
might inadvertently alter the behavior of the refactored code. In order to guar-
antee correctness, the refactoring algorithm also needs to take the order of macro
expansions and variable scoping in a hygienic macro system into account.

4.1 Problem 1: Conflicts between macro expansions

It is possible for multiple macros patterns to overlap. If more than one macro rule
matches, the macro expansion algorithm will always expand the first such rule.
Due to this behavior, the order of macro rules is significant for the expansion. A
nailve refactoring algorithm might inadvertently alter the behavior by refactoring
with a rule that is not used during expansion due to other rules with higher
priority. As an example, the following macro declares two rules with overlapping
patterns.

macro inc {
rule { 1 } => { 3 }
rule { $x } => { $x + 1 }

For the program 1 + 1, macrofication would match the template of the sec-
ond rule and use it to refactor the program to inc 1. However, inc 1 would
macro expand to 3 via the first rule, so macrofication would have changed the
behavior of the original program.
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macrofy |1 + 1 — inc 1

Y

expand
inc 1 - > 3
inc 1 —+ 3

In fact, the order of macro expansion also affects refactoring correctness even
if there is just one single rule:

macro inc {
rule { $x } => { $x + 1 }
}

The program 2 + 1 + 1 can be correctly macrofied to inc 2 + 1 but a sec-
ond macrofication on the new program breaks program behavior — despite the
fact that both macrofications apply the same rule on the same matched tokens.

2+1+1 2+1+1

macrofy |2 + 1 — inc 2

A\

expand
inc 2 + 1 2+ 1+ 1
inc 2 -2 + 1
macrofy |2 + 1 — inc 2
Y expand expand
inc inc 2 - - > inc + 1 2 - >+ + 1 1 2
inc inc inc +
— inc + 1 — o+ o+ 1

In order to prevent the incorrect second macrofication, an improved version of
the macrofication algorithm would need to look back at the preceding syntax and
consider all macro expansions that might affect the matched code. Unfortunately,
there is no clear upper bound on the length of the prefix that has to be considered
because macrofication operates on unexpanded token trees which may include
additional macro invocations.

4.2 Problem 2: Hygiene

The basic premise of a hygienic macro system is that macro expansion preserves
alpha equivalence, which requires that the scope of variables bound in a macro
is separate from the scope in the macro expansion context [21].

So far, the expansion and macrofication algorithms presented in this paper
do not address hygiene, scoped variables or the concrete grammar and semantics
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of the target language. However, most macro systems used in practice respect
hygiene and rename variables accordingly. As an example, the following macro
uses an internal variable declaration in its template which will be renamed during
hygienic macro expansion.

macro decprint {
rule { $x; } => { var a = $x - 1;
print(a); 3}

var aj 23;
expand |var az = a; - 1;
decprint a |Print(az); // 22
print(ay;); // 23

var a = 23;
decprint a;
print(a);

The implementation details of hygienic macro expansion are beyond the scope
of this paper? but the symmetric relationship between expansion and macrofi-
cation suggests that renaming of scoped variables by hygienic expansion also
affects macrofication.

In the general case, hygiene is compatible with macrofication as variables with
different names in the original code also have different names in the expanded
code. The renaming itself is inconsequential for the behavior as long as the
expanded macrofied program is a-equivalent to the original program.

However, the same mechanism that ensures that name clashes between the
macro and the expansion context are resolved causes problems if the original
code actually intended variable names to refer to the same variable binding in
the expansion context and the matched macro template. Macrofying this code
will result in a macro expansion that inadvertently renames variables and there-
fore causes the refactored program to diverge from its original implementation.

var a = 23; var a = 23;
var a = a - 1; = var a = a - 1;
print(a); print(a); // 22
print(a); print(a); // 22
macrofy
Y

var a; = 23;
expand |var az = a; - 1;
decprint a “|print(a); // 22
print(a;); // 23

var a = 23;
decprint a;
print(a);

2 For a hygienic macro system for JavaScript, see sweet.js [10].



14 Christopher Schuster, Tim Disney, and Cormac Flanagan

4.3 Rejecting incorrectly macrofied code

The previous two sections showed macrofied code with different behavior than
the original code which has to be avoided for refactoring as behavior-invariant
code improvement.

Approaches to fix these problems with an improved matching algorithm are
limited by the fact that the correctness of a refactoring operation depends on the
surrounding syntax including an arbitrary long prefix (see Problem 1). While this
problem could be solved with a complex dynamic check during macrofication,
additional difficulties arise from scoped variables that are renamed due to hygiene
(see Problem 2). In contrast to the simple expansion and macrofication process,
hygiene requires information about variable scopes which are usually defined in
terms of parsed ASTs of the program instead of unexpanded token trees that
may still include macro invocations.

We address these problems via a simple check performed after the macrofica-
tion. It rejects macrofication candidates that, when expanded, are not syntacti-
cally a-equivalent to the original program. This simple check successfully resolves
these correctness concerns without complicating the macrofication algorithm3.

refactors(s) = { r |r € macrofyy(s) Aexpandy(s) = expandy(r)}

Here, a-equivalence = is used as alternative to perfect syntactic equiva-
lence which also accommodates hygienic renaming. However, enforcing syntactic
equivalence might still reject otherwise valid refactoring opportunities if there
are difference that would not affect program behavior, e.g. additional or miss-
ing optional semicolons. Further relaxing this equivalence to a broader semantic
equivalency might improve the robustness of macrofication but semantic equiv-
alence itself is undecidable in the general case.

5 Repetitions in patterns

Extending the macrofication algorithm described in the previous section with a
more expressive pattern and template language does not affect the basic idea of
macrofication or the correctness of the results. However, a more sophisticated
pattern matching algorithm for matching arbitrarily nested pattern repetitions
is necessary to correctly support macros like the class macro shown in Fig. 1.
The details of the extended algorithm described in this section are not crucial
for the remainder of the paper and could be skipped on a first reading.

Pattern repetitions in a pattern allow the use of a single pattern to model
an unlimited sequence of that pattern. These pattern repetitions are supported
by many macro systems and typically denoted by appending ellipses ( )... to the
part of the pattern which gets repeated.

ptu=k-p|{p}-pla*-p|(p)..ple

3 Additional macro expansions performed as part of this check could potentially be
further optimized to improve performance. However, performance problems due to
this check did not surface during the evaluation.
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Without pattern repetitions, pattern variables can only be assigned a single
token tree h = h®. However, if a variable is used in a pattern repetition, it
can hold multiple term trees, one for each time the inner pattern was repeated.
Pattern repetitions can be nested, so for the purposes of the matching algorithm,
every pattern variable 2 has a level i which is automatically determined based
on the nesting of pattern repetitions. In the simplest case, the level of a variable
corresponds to the nesting of repetitions, such that z would have level 0 in the
pattern k- 2% - k and level 1 if in a repetition group like k- (z* - k)., etc. After a
successful match, a variable z' will hold a sequence of h° token trees, 22 variables
a sequence of sequences of h® token trees, and more generally z* a sequence of
hi~1 groups.

ho=k|{s} R® == h R u=h"1 Rt e

After successfully matching a complete pattern, the final pattern environ-
ment © always maps variables z* to groups h' of the same level. However, the
environment used while matching inner patterns builds groups in the pattern en-
vironment © recursively, so a variable x? might also hold a group of lower level
during the matching process but the level j of its group h? can never exceed the
level ¢ of the variable.

Ozt — U h?
0<j<i

In order to track the current nesting level during the matching process, the
match algorithm shown in Figure 3 has to be extended with an additional pa-
rameter j € N which will initially be 0 at the top level.

match :px sx OxN — (6,s)

For any nesting level j during the matching process, the intermediate pattern
environment @ always maps free pattern variables z' in a (sub-)pattern p to
groups of level ¢ — j.

Vp,s,j. match(p,s, @,7) = (0,r) = Vz'c FV(p). O(z") € h'™

5.1 Transcribing templates with repetitions

Transcribing a template (¢). -t with a given environment ©, unrolls all groups
used in ¢ and then proceeds with ¢'. If there is only one group variable z* in ¢t with
length n = |©(x%)|, then the template ¢ will be transcribed n times, each time
with a different assignment for 2. The final result will then be the concatenation
of all these repetitions.

transcribe(a 20, [0 — b)) —ab
transcribe((z!). [#! — [a,b,c]]) —abec
transcribe((a zt) [#1 = [b,c]]) —abac
transcribe((z1). 4%, [zt —[,9" = a]) = a
transcribe((a (22).).., [z? = [[b,c],[d]]]) —wabcad
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If more than one group variable is used in a repetition, all variables are
unrolled at the same time which is equivalent to zipping all the groups. The first
repetition assigns each ! the first element of each group, the second repetition
assigns each z? the second element, etc.

transcribe((z' )., [z' — [a,b], y" = [c,d]]) 2 acbd

The inner template gets repeatedly transcribed until all the groups are empty
which implies that all groups of currently repeating variables need to have the
same length.

VO. 3neN. Vi'edom(0). |6z =n

As mentioned in Section 3.2, repeated variables in a template are insignificant
for the transcription process. The same is true for transcribing templates with
pattern repetitions. The complete transcription algorithm is shown in Appendix
A /Figure 6.

5.2 Matching patterns with repetitions

Matching a pattern (p).. -p’ is essentially the inverse operation to transcribing a
template (¢).-t'. Without repeated variables, the inner pattern p will be greedily
matched as many times as possible until finally the remaining syntax s’ and a
new pattern environment @’ will be returned and used to match the remaining
pattern p’. Instead of destructing groups as in the transcription algorithm, each
repetition constructs groups by adding the matched syntax to the corresponding
group for all repeating variables.

match(a 2° a b, @) — [0+ b]
match((a y ) ., abac @) — [yt = [b,c]]
match(2°(y!)., abe, @) — [2° = a,yt > [b, ]
match((z* )., a becd, @) — [#' = [a,c], y* > [b,d]]

Unfortunately, the greedy matching of repetitions does not support patterns
like (a)... a as the repetition would have consumed all a tokens at the point the
second a would try to match. A more sophisticated pattern matching algorithm
might use either lookahead or backtracking to prevent or recover from consuming
too many tokens in a repetition. However, this matching would be less efficient
and macros with these kinds of pattern repetitions are unusual in practice.

5.3 Matching repeated variables in patterns with repetitions

As explained in Section 3.2, the pattern matching necessary for macrofication
also needs to support repeated variables in patterns and templates. If a pattern
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variable is repeated at the same group level, the number of times the group
matches as well as all matched token trees have to be identical.

match(z® b 29, aba) — [2° — d]
match(z® b 20, abc) — no match
e, {ablab) — [t [a,b]]
Ja@Y .., {ab} ac) — nomatch
(x').,abacbc) =[xt — [b,c]]
B (zY.,abacbd) — nomatch

If the pattern variable is used once inside and once outside a repetition,
all occurrences of that variable within the repetition have to repeat the same
syntax as outside the repetition. This means that the variable assignment will
be constant while repeatedly matching the pattern repetition, essentially using
a lower level than the nesting would indicate.

As an example, the pattern 2°(z% y!) . uses two variables z° and y* where y*
is only used once and in a repetition, so a successful match will result in a group
of tokens h' with one assignment per repetition. In contrast, the variable z° is
used multiple times, so every occurrence of z° in the pattern has to match the
exact same syntax. Since z° is used outside of repetitions, its final assignment
has to be a single token h° and additionally, all repetitions have to repeat this
exact same syntax — instead of building up a group.

match (2°(z° y1)., aabac) — [2°— a,yt— [b,c]]
match (2°(2% y!). , aabdc) — nomatch

match (2°(z° 4°).. 4%, aabb) — (2% a,y® — b]
match (2°(2° ¢°) . 4, aababb) — [2°— a,y° — b
match (2°(2° ¢°) . 4%, aababc)— nomatch

This causes the matching processes to become more complicated as variable
levels can diverge from the level of nesting. If the level of a variable is higher
in the template than in the pattern, it will be matched and used as a lower
level variable, i.e. as constant in a pattern repetition, in order to be compatible
with the pattern. This is especially important for macrofication, as the template
might use variables within a repetition that are assumed constant in the pattern.
For example, the class name variable $cname in the template of the class macro
in Fig. 1 appears once on the top level and once inside the repetition for every
method, so the matching algorithm has to ensure that all methods use the same
class name and therefore treat $cname as a constant at each repetition.

In order to support repeated variables in patterns with repetitions, it is neces-
sary to extend the match algorithm. Conceptually, the first time a group variable
2'Z1 is encountered in a pattern, the elements are collected by greedily matching
syntax and recursively constructing a group h’. However, once a pattern variable
has been assigned, all subsequent uses of that variable in a repetition will cause
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the pattern repetition to be unrolled following the approach of the transcribe
algorithm described in Section 5.1.

Fig. 6 in Appendix A shows the complete algorithm for matching and tran-
scribing arbitrarily nested pattern repetitions with repeated variables to correctly
support macros like the class macro shown in Fig. 1.

6 Implementation

Our implementation is part of sweet.js, a hygienic macro system for JavaScript
which supports pattern-template macros [10]. The source code * as well as a live
online demo® are both publicly available, and sweet.js is now using the extended
pattern matching algorithm for macrofication and regular macro expansion.

Much of our implementation is a straightforward application of the algo-
rithms described in the previous sections. However, there are a few JavaScript
specific details. In particular, due to the complexity of JavaScript’s grammar,
sweet.js provides the ability for a pattern variable to match against a specific pat-
tern class in addition to matching on a single or repeating token. A pattern class
also allows a macro to match on multiple tokens, e.g. all tokens in an expression.
To restrict a pattern variable $x to match an expression, the programmer can
annotate the variable with the pattern class :expr (see Listing 4).

macro m {

rule {
($bind: ($id:ident = $val:expr) (,)...)
P => A
$(var $bind;)
}
}
ma=2+1, // --> var a = 2 + 1;
b = 3 // var b = 3;

Listing 4. A sweet.js macro with pattern classes :ident, :expr, a named pattern
($bind) and ellipses (. ..). In order to support macrofication of this macro, the pattern
classes used in the pattern also have to apply to pattern variables in the template.

Considering the code fragment arr[i + 1], a pattern variable $x matches
just the single token arr whereas the pattern $x:expr matches the entire ex-
pression arr[i + 1]. Pattern class annotations only appear in patterns, not
templates, so to support pattern classes in macrofication we move pattern class
annotations from the pattern to the corresponding variables in the template
prior to matching the template with the code.

Another difference between the algorithm in Fig. 3 and the implementation in
sweet.js is the handling of the macro environment X'. The algorithm assumes that
the macro definitions are clearly separated from the program and globally scoped.

4 http://github.com/mozilla/sweet.js (see src/reverse.js, src/patterns. js)
® http://sweetjs.org/browser/editor.html
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In contrast, sweet.js macro definitions are defined in the code and cannot be used
unless in scope. The current implementation of the refactoring algorithm only
supports global macros but could be modified such that the macro environment
X respects the scopes of macro definitions.

The sweet.js refactoring tool is usable from the command line as well as in the
web-based sweet.js editor. Fig. 1 and 5 show screen shots of this editor integra-
tion. As discussed in Section 3, not all refactoring options actually improve the
code and could be mutually exclusive. To solve this issue, the development envi-
ronment displays all options by highlighting code and opening a pop-up overlay
of the refactored code on demand. This integration provides unobtrusive visual
feedback about refactoring opportunities but other ways to displaying these may
be preferable if there is large number of macrofication candidates.

1 macro let {

2 fule “f $x () =08y ) s g )
3 => S varsSxa=a Sy L )

4

5 var a = 22; Replace with macro?

6 | vanpsbi=Rls lfetia Taib =278 e

Fig.5. A sweet.js macro which expands a parallel let declaration to multiple single
declarations. The editor automatically detects a refactoring candidate in line 5 and 6
and shows a preview of the substituted code.

7 Evaluation

We evaluated the utility and performance of the macrofication refactoring tool
by performing a complex refactoring of a JavaScript library with a specifically
tailored macro and second case study on a JavaScript project with a large number
of existing macros.

7.1 Experimental Results

Macros can be used to extend the language with additionally facilities that are
not part of the grammar. For JavaScript, one of the most requested language
features is a declarative class syntax, which can be desugared to code with pro-
totypical inheritance (see Fig. 1). Indeed, the most recent version of JavaScript
(ECMAScript 2015/ES6 [23]) adds class definitions to the languageS.

A particularly popular JavaScript framework that relies on inheritance to
integrate with user-provided code is Backbone.js 7. It is open source, widely de-
ployed and has 1633 lines of code. The prototype objects defined by Backbone.js

5 See also the es6-macros project [31] which includes macros for many ES6 features.
" http://backbonejs.org/
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macro class {
rule {
$name extends Events {
constructor $cargs $cbody
$( $mname $margs $mbody )

[

> {
var $name = Backbone.$name = function $cargs $cbody;
_.extend ($name.prototype, Events.prototype, {
$(
$mname: function $margs $mbody
) ()
1

Listing 5. Custom class macro for refactoring Backbone.js.

generally adhere to a simple class-based inheritance approach. Therefore, the
code would benefit from declarative class definitions in the language.

Refactoring the Backbone.js code by automatic macrofication required a cus-
tom class macro which matches the concrete pattern used by Backbone.js to
declare prototypes with the _.extend function. Here, ‘.’ is a variable in the
Backbone.js library with common helper functions like extend to add proper-
ties to objects. Since the Backbone.js code does not use any super calls, the
simple macro shown in Listing 5 is sufficient to desugar classes to the prototype
pattern used in Backbone.js. As additional manual refactoring step, non-function
default properties in the Backbone.js code had to be moved into the constructor
since they are not yet supported by the ES2015/ES6 class syntax®. After this
minor change in the code, the sweet.js macrofication successfully identified all
five prototypes used in Backbone.js and refactored these with class declarations
without changing the program behavior.

A second case study was performed using the open source project ru  which
is a collection of 66 macro rules for JavaScript inspired by Clojure. For refactoring
the ru-lang library, only 27 macro rules were considered because case macros and
custom operators are not currently supported by the macrofication tool. While
the tool reported a large number of correct macrofication options, some of these
did not improve the code quality. For example, some macrofication candidates
introduce an invocation of the cond macro with just a single default else branch.
While this macrofication correctly expands to the original code, it essentially
corresponds to replacing a JavaScript statement “x;” with “if (true) x;”.

8 Tt would also be possible to perform this transformation automatically with a more
complex and less generic macro.
° http://ru-lang.org/
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Project LOC Time to read Time to refactor Macros Macrofications
Backbone.js 1633 151ms 984ms 1 5
ru-lang 257 1350ms 17921ms 27 52

Table 1. Results of refactoring the JavaScript libraries Backbone.js and ru-lang.

Table 1 shows the runtime of the macrofication step and the reading step as
measured with the sweet.js command line running on NodeJS v0.11.13; all times
reported averaged across 10 runs. The macrofication step including the expansion
of the refactored code was about 6.5 to 13 times slower than the time to read/lex
the input and load the macro environment. While future optimizations could
improve performance, the runtime of macrofication seems generally feasible.

7.2 Discussion

Overall, the experimental results show that macrofication has major advantages
over a manual refactoring approach.

1. Macrofication is guaranteed to preserve the behavior of the program and
hence avoids the risks of human error.

2. The time and effort of the refactoring is dominated by the time and effort
of writing the macros. Refactoring code with a given macro requires little
manual effort, is fast enough for interactive use in an editor and scales well
even for large code bases.

However, the experiment also showed three limitations of macrofication.

1. The macro has to be pre-existing or provided by the programmer in advance
of the refactoring.

2. While small macros can be generic, larger macros may need to be specifically
tailored to the code.

3. Minor differences between the macro template and the code, e.g. the order of
statements or additional or missing semicolons in a language with optional
semicolons, cause the macrofication algorithm to miss a potential refactoring
option due to the strict syntactic equivalence check of the algorithm.

The first limitation could be overcome with an algorithm for automated
macro synthesis/inference which might be a promising area for future research
(see Section 9).

The second limitation applies to all currently used macro systems to a certain
degree. Small, generic macros, e.g. new syntax for loops, may be universally
applicable but larger macros are usually specific to the code. For macrofication,
this applies both to the pattern as well as its template. For example, the class
macro shown in Fig. 1 had to be adapted for refactoring Backbone.js.
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The programmer can work around the third limitation by specifying multiple
macro rules with the same pattern but in order to tolerate discrepancies between
the template and the unrefactored code during the matching process, it would
be helpful to remove the syntactic equivalence constraint in favor of behavioral
equivalence based on the semantics of the language. This is difficult to integrate
into the refactoring as semantic equivalence is generally undecidable. A conser-
vative and decidable approximation of semantic equivalence that is more precise
than syntactic equivalence might significantly help macrofication but remains a
topic for future work.

8 Related Work

Our tool combines ideas from two streams of research, macro systems that give
programmers additional language abstractions through syntactic extensibility
and automated refactoring tools for code restructuring.

8.1 Macro Systems

Macros have been extensively used and studied in the Lisp family of languages
for many years [14,37]. Scheme in particular has embraced macros, pioneering
the development of declarative definitions [26] and hygiene conditions for term
rewriting macros (rule macros) [6] and procedural macros (case macros) [22].
In addition there has been work to integrate procedural macros and module
systems [13,19]. Racket takes this work even further by extending the Scheme
macro system with deep hooks into the compilation process [53,12] and robust
pattern specifications [7].

Recently work has begun on formalizing hygiene for Scheme [2]. Prior pre-
sentations of hygiene have either been operational [22] or restricted to a typed
subset of Scheme that does not include syntax-case [21].

Languages with macro systems of varying degrees of expressiveness not based
on S-expressions include Fortress [4], Dylan [5], Nemerle [48], and C++ templates
[3]. Template Haskell [47] makes a tradeoff by forcing the macro call sites to
always be demarcated. The means that macros are always a second class citizen;
macros in Haskell cannot seamlessly build a language on top of Haskell in the
same way that Scheme and Racket can.

Some systems such as SugarJ [11], and OMeta [56] provide extensible gram-
mars but require the programmer to reason about parser details. Multi stage
systems such as mython [42] and MetaML [52] can also be used to create macros
systems like MacroML [16]. Some systems like Stratego [54] and Marco [28]
transform syntax using their own language, separate from the host language.

As mentioned before, our tool is built on top of sweet.js [10] which enables
greater levels of macro expressiveness without s-expressions as pioneered by
Honu [41,40], a JavaScript-like language. ExJS [55] is another macro system
for JavaScript however their approach is based on a staged parsing architec-
ture (rather than a more direct manipulation of syntax as in Lisp/Scheme and
sweet.js) and thus they only support pattern macros.
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While the goal of macrofication is to introduce new syntactic sugar, recent
work on Resugaring aims to preserve or recover syntactic sugar during the exe-
cution to improve debugging [38,39]. In contrast to macrofication, resugaring at
runtime operates on ASTs of a concrete language rather than syntax trees.

Macro systems can be generalized to term rewriting systems which have been
studied extensively in the last decades. Most noteworthy, it might be possible to
statically analyze properties like confluence and overlapping of macro rules (as
discussed in Section 4.1) by adapting prior research on orthogonal term rewriting
systems [25].

8.2 Refactoring

Refactoring [15,33] as an informal activity to improve the readability and main-
tainability of code goes back to the early days of programming. Most currently
used development environments for popular languages provide built-in auto-
mated refactoring tools, e.g. Visual Studio, Eclipse or IntelliJ IDEA.

Early formal treatments look into automated means of refactoring functional
and imperative [20] and object-oriented programs [34] that preserve behavior.
Since then much work has been done on building tools that integrate auto-
mated refactoring directly into the development environment [43], find code
smells like duplicated code [29], correctly transform code while preserving behav-
ior [36,44,45,46], and improve the user experience during refactoring tasks [18].

Additionally, prior work on generic refactoring tools includes scripting and
template languages for refactoring in Erlang [30], Netbeans [27] and Ekeko/X [8].
However, while these refactoring languages operate on parsed ASTs, macros
describe a program transformation in terms of unexpanded token trees.

Much of the work relating refactoring and macro systems have taken place in
the context of the C preprocessor (cpp), which introduces additional complexity
in traditional refactoring tasks since cpp works at the lexical level rather than the
syntactic level and can expand to fragments of code. Garrido [17] addresses many
of the refactoring issues introduced by cpp and Overbey et al. [35] systematically
address many more by defining a preprocessor dependency graph.

Kumar et al. [51] present a demacrofying tool that converts macros in an
old C++ code base to new language features introduced by C++11. In a sense
they preform the opposite work of macrofication; where demacrofying removes
unnecessary macros to aid in the clarity of a code base our refactoring macros
add macro invocations to a code base to similar effect.

8.3 Pattern Matching

Pattern matching in macro systems is part of a broad class of pattern matching
algorithms. In particular, the handling of repeated variables in the extended pat-
tern matching algorithm in Section 5 is conceptually a first-order syntactical uni-
fication which is well known in the context of logic programming languages [32].

In a broader sense, the macrofication algorithm is also related to research on
optimizing compilers, e.g. reverse inlining to decrease code size [9].
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9 Future Work

While the algorithm is based on refactoring macro invocations, it would also
be possible to perform non-macro refactorings with this approach. For example,
identifiers can be renamed with a simple, temporary, scoped macro.

As discussed in Section 6, the macrofication algorithm presented in this paper
assumes a static macro environment. Future work could extend this algorithm
such that it also refactors macro definitions, modifies macro templates, removes
existing overlapping macros, or even automatically synthesizes new macros. How-
ever, the search space of possible macros is vast, so a carefully designed search
which optimizes some metric for code quality would be necessary to provide only
the best macro candidates to the programmer.

An additionally promising topic of future research is the extension of the
presented algorithm to syntax-case macros. In contrast to pattern-template
macros, syntax-case macros use a generating function instead of a template.
Finding refactoring options therefore needs to find syntax that can be generated
by a macro which is equivalent to finding the input of a function given its output.
Despite the undecidable nature of this problem, it might still be useful to find
an incomplete subset of potential macro candidates.

10 Conclusions

The algorithm presented in this paper allows automatic refactoring by macrofy-
ing code with a given set of pattern-template macros. The algorithm correctly
handles repeated variables and repetitions in the pattern and template of a macro
with an extended pattern matching algorithm. The order of macro expansions
and hygienic renaming cause a naive macrofication approach to produce incor-
rect results. To ensure that the behavior is preserved during refactoring, the
algorithm checks syntactic a-equivalence of the fully expanded code before and
after the macrofication. The algorithm is language-independent but was eval-
uated for JavaScript with an implementation based on sweet.js and used to
refactor Backbone.js, a popular JavaScript library with more than one thousand
lines of code. The runtime performance indicates that the approach is feasible
even for large code bases. Finally, the IDE integration supports and automates
the macro development process with promising extensions for future research.
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k,n Token h:u=k|{s} Token tree
s,ru=k-s|{s}-s|e Syntax Sequence
x* Variable p,q,t:=k-p| {p}-p| ztp | (p)...-p| e Pattern/Template

1,7 : N Levels hei=h TS X A Group of level 4
X (n,p,t)" Macro Environment
; ; Pattern
O:z" — h’
U ) Environment
0<j<i
é . ,/,Ei N U h]' Repetition
’ J Environment
1<<i

match : px s x @ xN — (0, s) (See Fig. 3)
match((p)... - p’,5,0,5) = let (©',s") = matchRep(p, s, groups(p, ©), O, 5)
in match(p’,s’, 0, 5)

matchRep : p x s x © x @ x N = (6, 5)
matchRep(p, s,0,0,7) = if Va' € dom(0). O(z') # e
let ©, = repeating(©,©’)
(©',s') = match(p, s, © 1 head(6), j + 1)
(0", s") = matchRep(p, s', tail(®), 0" \ 6., j)
in (@ 1 cons(6,,0"),s")
matchRep(p,&é,@,j) =if Va'e dom((:)). é(ml) =€
(© [z €| a' € FV(p) Az & dom(O) Ni > j],s)

transcribe : t Xx © — s (See Fig. 3)
transcribe((t)... - t',©) = transcribeRep(t, groups(t, ©),©) - transcribe(t’, ©)

transcribeRep : t x © x © — s

transcribeRep(t, 0, 0) = if V' € dom(6). O(z") # ¢
transcribe(t, © 1 head(0)) - transcribeRep(t, tail(©), ©)

transcribeRep(t,0,0) = if Vz' € dom(0). O(z') = €

016 =0 9'(9;1') | 2 € dom(©)]

cons(©, 6) [ac s O) - O) | € dom(©) A x € dom(é)]
head(9) [x L | B(at) = hH.hﬂ']

tail(0) [m s b7 | O(z') = hi~! -hj]

groups(p, ©) =2 W 2" € FV(p) A O')=h Aj>1]
repeating(©, ©') = [2' =k | O@") =W A 2" ¢gdom(O) A i>j]

Fig. 6. (Appendix A) The complete algorithm for matching and transcribing pat-
terns/templates with repeated variables and arbitrarily nested pattern repetitions as
described in Section 5. Differences with the algorithm in Fig. 3 are shown in black.
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