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Abstract
Reactive Programming enables declarative definitions of time-
varying values (signals) and their dependencies in a way that
changes are automatically propagated. In order to use reactive
programming in an imperative object-oriented language, signals are
usually modelled as objects. However, computations on primitive
values then have to lifted to signals which usually involves a verbose
notation. Moreover, it is important to avoid cycles in the dependency
graph and glitches, both of which can result from changes to mutable
global state during change propagation.

This paper introduces reactive variables as extension to imper-
ative languages. Changes to reactive variables are automatically
propagated to other reactive variables but, in contrast to signals,
reactive variables cannot be reified and used as values. Instead, ref-
erences to reactive variables always denote their latest values. This
enables computation without explicit lifting and limits the depen-
dents of a reactive variable to the lexical scope of its declaration.
The dependency graph is therefore topologically ordered and acyclic.
Additionally, reactive updates are prevented from mutating global
state to ensure consistency. We present a working prototype imple-
mentation in JavaScript based on the sweet.js macro system and a
formalism for integration with general imperative languages.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords Reactive Programming, Syntax Extension, JavaScript

1. Introduction
Reactive Programming [1] is a programming paradigm which has
recently attracted more attention due to its benefits for programming
user interfaces. In contrast to imperative programming languages,
reactive languages do not evaluate a program statement by statement.
Instead, values are recomputed whenever their inputs are updated.
Thereby, the program can be modelled as signal-flow graph in which
the nodes are signals or behaviors, i.e. time-varying values, and
change is propagated along the edges. The declarative specification
of dependencies and update expressions essentially corresponds to
unidirectional constraints.

One challenge of reactive programming is the integration with
imperative code. While libraries can provide data structures for
signals with reactive change propagation, these library often require

1 var count = 0;
2 var paused = false;
3 setInterval(function () {
4 if (! paused) {
5 count ++;
6 $("#countBtn").text("Count:" + count );
7 }
8 }, 100);
9

10 $("#countBtn").click(function () {
11 paused = !paused;
12 $("#countBtn").text(
13 paused ? "Paused" : "Count: " + count);
14 });

Figure 1. JavaScript code with callbacks and imperative updates.

user code to be lifted onto signals which involves significant
syntactic overhead. Furthermore, the integration with imperative
code can also lead to dependency cycles and glitches [2, 3].

This paper proposes reactive variables as alternative approach to
reactive programming. Overall, the contributions of this short paper
are

• a new language feature called reactive variables,
• an implementation for JavaScript based on the sweet.js macro

system [5], and
• formal operational semantics for adding reactive variables to an

imperative language.

2. Existing Approaches
To motivate the need for reactive programming, let us consider
a common use case of an interactive user interface whose output
depends on multiple inputs.

2.1 Imperative Updates
The JavaScript application shown in Figure 1 implements a counter
which can be paused and resumed, and is displayed as text. There
are two sources of change:

1. a timing event which is triggered every 100 milliseconds, and

2. button clicks by the user.

The main disadvantage of this imperative approach is that both
events are handled with callbacks that modify shared state and
update the user interface which results in duplicated code in lines 6
and 12-13.



1 var pausedSignal = Rx.Observable
2 .fromEvent($("#countBtn"), "click")
3 .scan(function(cnt) {return !cnt;}, false)
4 .startWith(false);
5
6 Rx.Observable.interval (100)
7 .pausable(pausedSignal)
8 .scan(function(c) { return c + 1; }, 0)
9 .startWith (0)

10 .combineLatest(pausedSignal ,
11 function(count , paused) {
12 return paused ? "Paused"
13 : "Count: " + count; })
14 .subscribe(function(s) {
15 $("#countBtn").text(s); });

Figure 2. Implementation using the RxJS library (Reactive Exten-
sions for JavaScript).

2.2 Libraries for Reactive Programming
A common approach to enable reactive programming in object-
oriented languages is to use a library with data structures for creating
and combining signals.

Figure 2 illustrates how the code in Figure 1 could be rewritten
with the RxJS library1 which provides reactive extensions for
JavaScript. Here, pausedSignal is a signal of boolean values that
alternate with each button click and has an initial value of false.
The second signal is based on sampling every 100 milliseconds and
can be paused depending on the current value of the first signal.
If not paused, it increments a counter starting with 0. Finally, the
combineLatest operator causes any change in either of the two
signals to update the button label.

The main disadvantage of this solution is the verbose syntax
for expressing the signal-flow graph. Primitive operations cannot
operate on signals directly, so they have to written as functions and
passed into the library, e.g. in lines 3, 8, 12-13 and 15. Moreover,
functions passed into the update can still reference and update global
state. This can lead to non-reactive dependencies on state that are
hard to reason about, as illustrated by the following code:

var x = 1;
Rx.Observable.interval (100)

.map(function () { return x * x; })

.map(function(x2) { x++; return x2; }); // !

.subscribe(function(x2) { alert ([x, x2]); });
// Output is [2,1], [3,4], [4,9], [5,16] ...
// instead of [1,1], [2,4], [3,9], [4,16] ...

3. Reactive Variable Declarations
The need to lift primitive operations when using reactive program-
ming libraries stems from the use of special signal values to model
streams of values/events 2.

In this paper, we propose to model dependencies with reactive
variables that cannot be reified, so all values in the language are
primitive and do not require lifting. In contrast to reactive values
(signals), a reactive variable can only be referenced in a limited,
lexical scope which is declared with rlet.

A reactive variable reference always evaluates to its current/last
value. Additionally, a reference used in another reactive variable dec-
laration, or explicitly as part of a subscription, denotes a dependency
such that updates are automatically propagated.

1 https://github.com/Reactive-Extensions/RxJS
2 A good type system might help to avoid confusing primitive values with
signal (see e.g. Elm[4]) but still requires lifting.

Only reactive variables in the lexical scope can be referenced,
therefore there can be no cyclic dependencies. Furthermore, reactive
variables sorted by their lexical scope are also topologically ordered
regarding their dependencies, so propagating changes from outer to
inner reactive variable definitions cannot cause a variable to change
more than once (which would be considered a glitch [2]).

3.1 Example
The example code in Figure 3 illustrates how reactive variables
support reactive programming. The example implements the same
application as in Figure 1 and 2 and its dependencies graph resulting
from nested reactive variables declarations is shown in Figure 4.

1 rlet paused = subscribe($("#countBtn").click)
2 initially(false) !paused;
3 rlet count = subscribe(interval (100))
4 initially (0)
5 paused ? count : count + 1;
6 rlet txt =
7 paused ? "Paused" : "Count: " + count;
8 subscribe(txt) { $("#countBtn").text(txt); }

Figure 3. First-class reactive variables with rlet.
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Figure 4. Dependency graph for reactive variables shown in Figure
3. The edges are labeled with the feature used for change propagation
as described in Section 3.2.

3.2 Evaluation and Change Propagation
Reactive variables and their dependencies can be declared with
rlet but the actual change propagation will always be initiated by
imperative updates, which cause a recomputation of all outdated
reactive variables, before the imperative evaluation continues. This
simple evaluation technique is therefore synchronous but more
sophisticated systems could also support asynchronous change
propagation in which multiple updates can overlap.

3.2.1 Triggering a Reactive Update
If txt is a reactive variable in scope, the imperative push syntax
can be used to assign a new value and automatically propagate the
change, ignoring its update expression3, e.g.

rlet txt;
push(txt , "foo"); // or just ’txt = "foo";’

In addition to simple ‘push updates’, reactive variable declara-
tions also provide syntactic sugar to subscribe to standard JavaScript
event sources that expect a callback function:

rlet txt = subscribe(input.changed) input.text;

3 This simplifies imperative updates but violates the constraint character of
reactive variables. Alternatively, the system could differentiate between
reactive variables and imperative event sources (which have no update
expressions).



3.2.2 Propagating Changes to Dependent Variables
As explained above, referencing other reactive variables in a dec-
laration automatically sets up a dependency. It is also possible to
manually subscribe to another reactive variable in order to react to
its changes independent of its value.

rlet len = txt.length; // implies subscribe(txt)
rlet lastChanged = subscribe(txt) Date.now ();

Global variables cannot be mutated during change propagation.
However, it is still possible to support stateful computation by
referencing a reactive variable in its own update expression which
then denotes the previous value (an explicit initial value i can be
supplied for the first update)4:

rlet numChanged = subscribe(txt)
initially (0) numChanged + 1;

3.2.3 Reacting to Updated Variables
After all changes have been propagated according to the depen-
dency graph, the normal imperative evaluation resumes and reactive
variables might have new values.

console.log(numChanged ); // "23"
push(txt , "bar");
console.log(numChanged ); // "24"

Additional syntax could be added to execute imperative code in
response to reactive changes:

subscribe(numChanged) { console.log("goo"); }
push(txt , "bar"); // "goo"

4. Implementation
Instead of implementing a custom language runtime, we added
reactive variables to JavaScript as a syntax extension based on the
sweet.js macro system [5]. Macros help to provide a better syntax
for reactive programming compared to a pure library approach (see
Section 2.2) while remaining compatible to the remaining JavaScript
ecosystem.

Figure 5 illustrates the macro expansion of reactive variable
declarations to regular JavaScript code. Here, the Signal class is
used for modelling signals, similarly to RxJS and Flapjax [10]. The
first argument of the constructor is a list of signals to subscribe to,
the second is the update expression and the third an initial value.
In addition to expressions and reactive variables explicitly listed
in subscribe, the macro expansion will also include all reactive
variables referenced in the update expression as dependency.

In order to avoid state mutation by the update, all references to
variables from the surrounding scopes in the update expression will
be replaced by a call to IMM (as shown in Figure 5) which wraps the
object with an immutability proxy membrane [13, 14] that prevents
field updates to the wrapped objects and anything reachable from
the wrapped object5.

Both the source code of the implementation and a live online
demo are publicly available 6.

5. Formalism
For clarity, we also illustrate the semantics of reactive variables via
the operational semantics in Figure 6. Here, the target language is

4 Alternatively, there could be special syntax for referring to the previous
and current value of a variable in order to retain the constraint character of
the reactive variable declaration.
5 As a side effect, this rewriting turns assignments to global variables into
invalid JavaScript, thereby preventing mutation of global state.
6 Source code and demo at https://github.com/levjj/rlet

1 // helper signal for subscribe($("# coun ...)
2 var _s0 = new Signal ([]);
3
4 $("#countBtn"). click(function () {
5 push(_s0 , null); // click invokes update
6 });
7
8 // signal for "paused"
9 var s_paused = new Signal(

10 [_s0], // dependencies
11 function () { // update expression
12 return !IMM(s_paused );
13 },
14 false ); // initial value

Figure 5. Macro expanded JavaScript code for lines 1-3 of Figure
3 based on a simple ‘Signal’ class for managing dependencies.

the imperative lambda calculus with reference cells extended with
reactive variables.

In addition to the mutable heap H , the evaluation environment
consists of a signal-flow graph S, represented as list of reactive
updates (r(rs...)← e; )..., and the reactive variables R, which are
mapped to their respective heap locations l.

A reactive variable declaration is evaluated by checking that
its dependencies rs are currently in scope R, allocating a new
signal with a heap location l, and then adding the update expression
r(rs...)← e2 to the signal-flow graph S.

Evaluating a ‘push update’ of a reactive variable r assigns a new
value to r and then initiates the reactive change propagation which
evaluates the current signal-flow graph S with r marked as changed
in the set of changed variables C.

The reactive change propagation itself evaluates the list of
reactive updates S normally but without performing assignments to
non-reactive variables. Also, reactive variable updates r(rs...)← v
will be ignored if none of the dependencies rs... have been changed.
Otherwise, the reactive variable will be updated with the new
computed value v and marked as changed for subsequent updates.

6. Related Work
The Functional Reactive Programming (FRP) model was first
introduced by Elliot and Hudak [7] as the Fran library for animations
in Haskell. It established the term behavior for time-varying values
with continuous semantics which can be sampled to obtain discrete
events. A more modern implementation of FRP called Elm [4] uses
signals to model both continuous and discrete time-varying values.
Signals in Elm are first-order, so the result signal-flow graph itself
is static which is also true for reactive variables. While evaluation
for reactive variables is assumed to be synchronous, Elm allows
multiple changes to propagate concurrently and even enables the
evaluation to violate the global order of events, so long-running
background computations do not block other signals.

There has been prior work on integrating reactive programming
with an imperative, object-oriented programming (OOP). Most
notably, Flapjax [10] enabled reactive programming in JavaScript
and inspired popular libraries like RxJS (see Section 2.2). Similar to
the Fran library, Flapjax differentiates between continuous behaviors
and discrete event streams and offers many different operators to
combine and convert these. These operators are often specifically
tailored to facilitate programming of web applications. In contrast
to Flapjax, reactive variables have no notion of ‘events’ and instead
interact with the imperative program with a push/subscribe model.
Additionally, the Flapjax library requires explicit lifting of primitive
operations which can only be avoided by using the Flapjax compiler



v := () | λx.e | l (v : Value, x : Regular variable, r : Reactive variable, e : Expression, l : Heap location)

e := v | x | r | e(e) | ref e | e := e | !e | rlet r = subscribe(r...) initially(e) e in e | push(r, e) | r(r...)← e

E[◦] = ◦ | E(e) | v(E) | E; e | ref E | E := e | l := E | !E | push(r, E) | r(rs...)← E (Evaluation context)

S : (r(rs...)← e; )... (Reactive Updates) R : r → l (Reactive Variables) C : P(r) (Changed) H : l→ v (Heap)

Pure computation (R,H ` e→ e)

E-APP
R,H ` (λx.e)(v)→ e[x/v]

E-SEQ
R,H ` (v; e)→ e

H(l) = v
E-DEREF

R,H ` !l→ v

R(r) = l H(l) = v
E-RVAR

R,H ` r → v

Imperative evaluation (S,R ` H, e� H, e)

S,R ` H, e� H ′, e′
I-CTX

S,R ` H,E[e]� H ′, E[e′]

R,H ` e→ e′
I-PURE

S,R ` H, e� H, e′
l fresh H ′ = H[l := v]

I-REF
S,R ` H, ref v � H ′, l

H ′ = H[l := v]
I-ASG

S,R ` H, l := v � H ′, v

{rs...} ⊆ dom(R) l fresh S′ = S; r(rs...)← e2 R′ = R[r := l] S′, R′ ` H, l := e1; e3 �∗ H ′, v
I-RLET

S,R ` H, rlet r = subscribe(rs...) initially(e1) e2 in e3 � H ′, v

R(r) = l C = {r} H ′ = H[l := v] R ` C,H ′, S  ∗ C′, H ′′, ()
I-PUSH

S,R ` H, push(r, v)� H ′′, ()

Reactive change propagation (R ` C,H, e C,H, e)

R ` C,H, e C′, H ′, e′
R-CTX

R ` C,H,E[e] C′, H ′, E[e′]

R,H ` e→ e′
R-PURE

R ` C,H, e C,H, e′
C ∩ {rs...} = ∅

R-UNCHANGED
R ` C,H, r(rs...)← v  C,H, ()

C ∩ {rs...} 6= ∅ R(r) = l C′ = C ∪ {r} H ′ = H[l := v]
R-CHANGED

R ` C,H, r(rs...)← v  C′, H ′, ()

Figure 6. Operational semantics for reactive variables in a lambda calculus with reference cells.

which automatically rewrites JavaScript to lift all operations in the
program to behaviors.

Other efforts to combine OOP with reactive programming in-
troduce first-class events and language constructs to dispatch and
subscribe to events. OOP with first class events is particularly useful
for GUI programming as user interfaces are often modelled as ob-
jects reacting to events. REScala [12] integrates declarative, reactive
values and events handling in Scala but, in contrast to reactive vari-
ables, still requires primitive operations to be lifted. KScript [11]
follows a different approach which allows regular object fields to
be event streams. Additionally, KScript uses a pull-based update
model and resolves sources of streams at each update which enables
dynamic reconfiguration.

Instead of separating functional reactive programming from
imperative programming, it is also possible to loosen the strict
sequential execution of an otherwise imperative program with
mutable state such that statements are automatically reordered and
re-executed in reaction to changes [6, 9].

Finally, FRP, which propagates changes unidirectionally, can be
generalized to constraint programming. When relations between
time-varying reactive values are expressed as constraints, updates
can propagate bidirectionally. Babelsberg/JS [8] is an example of an
object constraint programming languages which can be executed by
a standard JavaScript runtime. Different constraint solvers usually

have different trade-offs in terms of performance and expressiveness,
so Babelsberg/JS can use multiple different solvers depending on
the concrete domain.

7. Discussion
Reactive variable declarations as presented in this paper offer an
alternative approach to reactive programming that does not allow
reification of signals. One the one hand, this simplifies reasoning
about dependencies, which then have to follow scoping rules, and
avoids the need to lift primitive computations. On the other hand,
more research is necessary to evaluate whether this approach is
practical for larger applications. In particular, it is not easily possible
to provide generic functionality, e.g. filter or pausable, as a library
function because reactive variables cannot be passed around as
values. Additional, reactive variables and their dependencies cannot
be dynamically reconfigured at runtime which limits the system to
first-order reactive programming.

The static mapping of reactive dependencies to lexical scopes
might be promising for future work on debugging and development
tools that provide better visualizations and feedback for reactive
programming. Furthermore, it would be possible to support asyn-
chronous updates of reactive variables and a second type of reactive
variable with continuous semantics that does not propagate updates
with unchanged values.
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