
Performance Issues of Enterprise Level Web Proxies

Carlos Maltzahn and Kathy J. Richardson
Digital Equipment Corporation
Network Systems Laboratory

Palo Alto, CA
carlosm@cs.colorado.edu, kjr@pa.dec.com

Dirk Grunwald
University of Colorado

Department of Computer Science
Boulder, CO

grunwald@cs.colorado.edu

Abstract

Enterprise level web proxies relay world-wide web traffic between
private networks and the Internet. They improve security, save
network bandwidth, and reduce network latency. While the per-
formance of web proxies has been analyzed based on synthetic
workloads, little is known about their performance on real work-
loads. In this paper we present a study of two web proxies (CERN
and Squid) executing real workloads on Digital’s Palo Alto Gate-
way. We demonstrate that the simple CERN proxy architecture
outperforms all but the latest version of Squid and continues to
outperform cacheless configurations. For the measured load lev-
els the Squid proxy used at least as many CPU, memory, and disk
resources as CERN, in some configurations significantly more re-
sources. At higher load levels the resource utilization requirements
will cross and Squid will be the one using fewer resources. Lastly
we found that cache hit rates of around 30% had very little effect
on the requests service time.

1 Introduction

Enterprise web proxies service large user communities, typically
large corporations or Internet service providers. They forward
HTTP requests from an internal network to the Internet and relay
the corresponding responses to the internal network, thus acting
as a firewall. Web proxies can be configured to cache relayed
responses. This saves network bandwidth and reduces average
response latency.

For our work we must define the main workload characteris-
tics and basic performance requirements for enterprise level web
proxies. The main workload characteristics are high traffic volume
(currently over one million requests per day), high cost for degen-
erated proxy service or outage (24 hours a day, seven days a week),

To appear in the 1997 ACM SIGMETRICS International Con-
ference on Measurement and Modeling of Computer Systems,
June 15-18, 1997, Seattle, WA

and all the uncertainty and error propagation associated with the
Internet. Thus, the basic performance requirements of enterprise
web proxies are fast crash recovery, scalability under high load,
availability, reliability, robustness, and quality of service. Some
enterprises may have additional constraints or specific feature re-
quirements, but all require high quality service.

While the performance of web proxies has been analyzed based
on synthetic workloads, little is known about their performance on
real workloads. The goal of this research is to understand how
the state of the art in web proxy design performs under heavy real
workload, how their resource requirements might scale to larger
workloads, and to identify promising directions of improvement.
In this paper we present the performance of two widely used pub-
lic domain web proxies under real workload conditions for both
caching and cacheless configurations. These web proxies are the
web server “httpd” developed at CERN [12], which can also be run
as a proxy, and the public domain successor of the Harvest Object
Cache [6, 7] called “Squid” [22]. Two versions of Squid are eval-
uated: Squid 1.0.beta17 and Squid 1.1.5. For the rest of the paper
we will refer to the CERN proxy server as CERN and to the two
Squid proxy versions as Squid 1.0 and Squid 1.1. The proxies are
evaluated on their resource requirements (CPU, memory, and disk
I/O) and how well there requirements scale with load. The request
service time and hit rate are used to evaluate the quality of service
each provides.

We chose these proxies because initial tests seemed to indicate
that CERN with its simple architecture performs better at high
workloads than Squid which was designed for high performance.
We suspect that manyof Squid’s sophisticated architectural features
were designed prior to the work on operating system behavior and
implementation effects on high Internet server performance [15,
16, 17, 10]. Common web server and web proxy benchmarks do
not include realistic network latency profiles [18, 19]. As we will
show in this paper, network latency can have a significant impact
on a proxy’s resource utilization and therefore its performance.
Resource utilization is also influenced by the hit rate of a caching
proxy, and other environmental factors which increase the network
latency.

The most related work is the paper about the design of the

Harvest Object Cache [6]. The authors present a performance
analysis basedon a simulated loadof 10 local clients each requesting
in parallel 200 uniqueobjects in random order. Their measurements
indicate that Harvest is orders of magnitude faster than CERN. We
will complement that paper with measurements on a much higher
and non-simulated load.

There have been anumber of web traffic characterization [2, 3, 9,
16, 15]. However, all of them focus on web server traces and often
at a much lower load level than the workloads we studied. The
uncertainty and variance of Internet services impact web servers
and proxies in different ways. While web servers only accept
connections from clients, proxies additionally generate connections
to a multitude of web servers with varying service times and often
over slow or poor connections.

In [1] the authors perform application and system level mea-
surements of web server performance. Their measurements are
based on sampling and event-driven techniques that resulted in less
than 3% overhead. They use a synthetic workload generated ac-
cording to the WebStone benchmark. Results show that a server
saturated by requests spends over 90% of the time in system calls.
We complement these results with our results from real workloads.

Recently, SPEC published a standard for web server perfor-
mance [18]. This benchmark acknowledges the fact that it does not
simulate network latency. We will show in this paper that network
latency is a crucial factor in server and proxy performance.

In section 2 we present an overview of CERN and Squid ar-
chitectures. We proceed in section 3 with a description of the
methodology of our performance measurements, including a work-
load characterization. Next, the results section (section 4) presents
resource requirements for CERN and Squid under different con-
figurations and compares their quality of service. In section 6 we
identify general performance issues based on our results, and con-
clude the paper with future research.

2 Proxy Architectures

The function of a web proxy is to relay a request in the form of
a Uniform Resource Locator (URL)[8] from a client to a server,
receive the response of a server and send it back to the client. If
the proxy is configured to have a disk or memory cache, the proxy
tries to serve a client’s request out of its cache and only contacts
the server in the case of a cache miss. A cache miss occurs when
the object is not in the cache or it has expired. When the request is
relayed to a server, the proxy translates the server name contained
in the URL into an IP address in order to establish a connection.
This usually requires a query to the Domain Name Service (DNS)
[13, 14], which is typically implemented on a separate host on the
same network as the proxy to service all external host name to IP
address mappings for the enterprise.

CERN The CERN proxy forks a new process to handle each
request. In caching configurations CERN uses the file system to
cache both data (web pages) and proxy meta-data (expiration times,
content type). It translates the request into an object file name which
it derives from the structure of the URL: each URL component is
translated into a directory name. The resulting file name is a path
through one or more directories. Thus, the length of the path
depends on the number of URL components. We call this path
without the last component the URL directory. The meta-data is
stored in a separate file for each URL directory. To find out whether

a request can be served from the cache, CERN tries to open the
meta-data file in the URL directory. Every component of the URL
directory name needs to be resolved. If the meta-data file exists and
it lists the object file name as not expired, CERN serves the request
from the cache. In any other case, CERN relays the request to the
appropriate server and passes the server’s response to the client and
stores it in its cache. In a cachelessconfiguration,CERN only relays
requests to server and passes responses to clients. Processes are
created to serve a single request after which they terminate. Objects
are removed from the cache by a separate “garbage collection”
process that checks for expired objects and deletes them.

Squid The Squid proxy is the public domain network object
cacheportion [6] of the Harvest system[5]: “tools to gather, extract,
organize, search, cache, and replicate relevant information across
the Internets”. The architecture was designed to be portable and to
overcome performance weaknesses of CERN: It uses its own non-
blocking network I/O abstractions built on top of widely available
system calls and it avoids forking new processesexcept for relaying
FTP requests. “For efficiency and portability across UNIX-like
platforms, the cache implements its own non-blocking disk and
network I/O abstractions directly atop a BSD select loop” (section
2.8 in [6]). In managing its own resources, Squid attempts to
isolate itself from the operating system. Squid keeps meta-data
about the cache contents in main memory. This enables Squid
to determine whether it can serve a given request from its cache
without accessing the disk. Squid maps URLs to cache object names
using “fingerprinting” [20]. The cache has a LRU expiration policy
which is activated once the cache size reaches a configurable high
mark, and deactivatedonce the cachesize falls below a configurable
low mark. Squid also uses main memory to cache objects that are
currently in transit, to cache the most recently used objects in a
hot cache, and to cache error responses which resulted from bad
requests. In-transit objects have priority over error responses and
hot cache objects. Squid implements its own DNS cache and uses
a configurable number of “dns server” processes to which it can
dispatch non-blocking DNS requests.

The choice of this architecture has some interesting conse-
quences:

� A large number of file descriptors must be managed by a
single process,

� Many operating system facilities must be replicated within
the proxy,

� Storing the meta-data for each cached object in memory
means that main memory utilization grows with the num-
ber of objects cached or the proxy cache size. Increasing the
cache size requires increasing both disk and main memory.

Squid versions At the time we started our experiments Squid
1.0 was the most recent version available. Half a year later Squid
seemed to have matured significantly and we repeated the exper-
iments with Squid 1.1. The most significant differences between
Squid 1.0 and 1.1 are the following:

� Squid 1.1 introduces an extra level of directories to keep the
individual directory size small. Squid 1.0 had only a single
level of directories with a large number of objects which
caused the directory objects to grow beyond a file system

2

block. According to Squid developers this slowed down
directory searching and caused significantly more disk traffic
due to directory operations;

� Squid 1.1 switches from a Time-To-Live based expiration
model to a Refresh-Rate model. Expiration dates are no
longer assigned to objects when they enter the cache. In-
stead, the “freshness” of an object is tested at hit time based
on the object’s age in the cache, it’s last modified date and
its expiration date (if it exists). The last modified date and
expiration date are shipped from the server with the original
object. If an object is not fresh, or “stale”, the proxy asks the
server whether the object has been modified. Thus, objects
are not purged from the cache when they expire. In prac-
tice the only difference between the two schemes is that the
Refresh-Ratemodel keepsobjects after they haveexpiredand
is able to use the object if the server reports that the object
has not been modified.

3 Methodology

3.1 Workload

Our workload is taken from the web traffic at Digital Equipment
Corporation’s (Digital) Palo Alto Gateway which has a web proxy
located at and managed by the Network Systems Lab at Palo Alto,
CA. The gateway relays web communicationbetweenmuch of Dig-
ital’s intranet and the Internet. A large fraction of the North Ameri-
can and Asian sites use this gateway. A measurement infrastructure
allows us to collect system and application performance data on a
daily basis in a fully automated fashion. We have collected almost a
year’s worth of data during the deployment of various commercial
and non-commercial web proxies1.

Real world workloads are by definition not repeatable, and
contain a multitude of errors. The chosen workload samples strive
to represent best case workload patterns because it is easier to find
comparable best workloads than comparable failure modes. For
the analysis presented in this paper we decided to select workloads
based on the following criteria:

� The load occurred during a business day. We are interested
in high load testing - businessdays exhibit a two to three time
higher load than weekends.

� The proxy under test delivers 24 hours of uninterrupted ser-
vice. This was a surprisingly limiting criterion: especially in
a caching configurations the proxies were unreliable.

� Little detectable anomalous network behavior. We used the
the length of the system network tcp queue for pending con-
nections to the Internet (SYN SENT queue) and the access
level for indicators of network problems. Unusually large
SYN SENT queues or unusually low access levels are gen-
erally caused by Internet service failures.

� The Domain Name Service (DNS) average service time is
reasonably short for the entire 24 hour period. Occasionally,
the DNS degenerates,which increasesproxy service time and
skews our measurements.

1Colleagues have collected proxy request traces that are now available for public
use [11]. The current traces contain data taken between 29 August 1996 and 22
September 1996. This is a total of 24,477,674 references.

Selecting workloads based on the above criteria results in a se-
lection which represents best cases instead of average cases. The
curves of the selectedworkloads are shown in Figure 1. Each work-
load is taken from a 24 hour time period. The selected workloads
are from dayswhich spanalmost six months over which the number
of daily requests almost doubled.

3.2 Measurement Framework

The proxy experiments used two dedicated Digital Alpha Station
250 4/266 machines with 512 MB of main memory and 8 GB of
proxy cachedisk space. DNS round-robin split the load between the
two to insure that eachhad more than sufficient hardware resources.
An additional process logged system statistics every 15 minutes;
once a dayall logswere shipped toother machines for log processing
and archiving.

A set of standard Unix tools ran every 15 minutes to measure
proxy resource consumption. Among other things, these tools pro-
vided information about the CPU idle time (iostat), the memory
allocated by processes (ps) and by the network (netstat), and the
total number of disk accesses per second (iostat). Each of these
measurements are snapshots and do not summarize the activity of
the whole 15 minutes.

This sampling approach allows us to continuously monitor the
overall system behavior, collecting data for months on end. From
this we know the baseline performance of the system, the expected
load for a given day and time, and have the ability to detect network
problems that are unrelated to proxy yet affect its performance or
the service seen by the clients. By monitoring the length of the tcp
(SYN SENT queue) we can detect quality of service failures to por-
tions of the Internet. Monitoring the length of the tcp (SYN RCVD
queue) we can detect failures on the corporate Intranet.

Snapshot measures provide an accurate measure of system be-
havior at a single point in time; this preserves details that might be
lost when aggregating the performance over large periods of time.
Collecting sufficient samples over long periods of time produces a
full range of expected behavior and errors. The drawback of this
technique is that it is not possible to tightly correlate events. This
would be difficult even with precisely correlated measurements be-
cause proxy service is a pipeline within which arbitrary delay and
queueing occur. Thus, the request rate is decoupled from the ser-
viced request rate.

The regular logs of CERN and Squid did not give us precise
information about the duration of the proxy service times. To
obtain more accurate data we instrumented CERN and Squid 1.0.
The service time duration is the time from receiving a request from
a client to terminating the connection to a client, effectively the time
that the end user waits for a request to be completed. We summarize
the service time durations and the number of requests serviced per
second (rps) every 15 minutes taking the the mean or distribution
of all measurement points.

4 Results

Two different configurations were evaluated for each of the three
proxies: a proxy without cache and a proxy with 8 GB disk space
for caching. For the caching configurations we set the time-to-live
or refresh-rate to 50% of the time since last modification.

For cache configurations the performance is also dependent on
cache hit rate. CERN’s hit rate was 35%, Squid 1.0 was 24%, and

3

0.0 2.0 4.0 6.0 8.0
Day

0.0

5.0

10.0

15.0

20.0

R
eq

ue
st

s
pe

r
se

co
nd

CERN no cache
7/25/96 16:30 -
7/26/96 16:30

CERN cache
7/23/96

Squid1.0 cache
7/23/96 4:30 -
7/24/96 4:30 Squid1.0 no cache

9/9/96 4:30 -
9/10/96 4:30

Squid1.1 cache Squid1.1
no cache
1/24/97

1/20/97

487,999 reqs

533,822 reqs

422,511 reqs

677,598 reqs

819,156 reqs
851,081 reqs

Figure 1: The load profiles of days selected for our experiments - for each proxy we measured one day with and one day without caching.
The selected days span almost 6 months over which the number of requests serviced per day doubled, from a low of 422,511 requests to a
high of 851,081 requests/day. The CERN cache hit rate was 35% Squid 1.0 was 24%, and the Squid 1.1 hit rate was 28%. The highest load
during a day occurs between 10 and 11 a.m. and the low load period is between 4:30 p.m. and 4:30 a.m.

Squid 1.1 had a hit rate of 28%. Different hit rates have an impact
on average service times and resource utilization. We will discuss
these hit rate differences in Section 4.3.

4.1 Basic Enterprise Proxy Criteria

Recall that to be considered an enterprise proxy, a proxy must
be capable of operating twenty-four hours a day under high load,
while being resilient to intranet and internet failures. It must have
fast failure recovery, scalability to handle load peaks, availability,
reliability, robustness, and provide a high quality of service. None
of the three proxies meet these requirements.

All the proxy cache-configurations require constant attention.
With a cache Squid tends to lock up and quit serving requests for no
apparent reason. CERN’s cache garbage collection is much slower
than its fill rate, so that cachecan reach capacity, at which point both
the proxy and the system lock up. Early versions of Squid had long
restart times during which they were unavailable. For the caching
configurations the mean-time between failures starting with a clean
cache was on the order of 3 days; restarting the cache after a failure
resulted in mean-time between failures of under a day.

The proxies have no mechanisms to protection themselves from
Internet failures, like limiting the number of outstanding connec-
tions to sub-nets that have poor response times.

We know of no publicly available proxy (commercial or public
domain) that meets these criteria. There are enterprises, such as
large Internet Service Providers, that successfully run caching web
proxies based on these CERN and Squid proxies. As the body of
knowledge and code base matures, enterprise proxies will emerge.
For this reason we continue to evaluate the potential and relative
performance of available proxies.

0.0 5.0 10.0 15.0 20.0
Requests per second

0.0

0.2

0.4

0.6

0.8

1.0

C
P

U
 U

til
iz

at
io

n

CERN
Squid1.0
Squid1.1

Squid1.0 Squid1.1

CERN

Figure 2: CPU utilization for cacheless configurations. Each data
point represents one sample. The lines are a linear approximation
for the data, and are meant to visually help group the points around
an axis - not to model the data.

4.2 Resource Requirements

CPU utilization Proxy CPU requirements determine the basic
load that a workstation or server can handle. If the CPU require-
ments scale linearly with load, then CPU load characterization can
establish server requirements for expected workloads. Understand-
ing the components of the CPU requirements allow one to predict
the CPU requirements on other systems or other configurations.

The CPU utilization of CERN and Squid are shown in Fig-
ures 2 and 3. In these figures the CPU usage is not as tightly
correlated with the workload request per second service rate as one
would hope. For the cacheless configurations, Figure 3, the CPU
utilization is erratic and it is impossible to draw any conclusions.
One explanation, is that a multitude of environmental factors ef-

4

0.0 5.0 10.0 15.0 20.0
Requests per second

0.0

0.2

0.4

0.6

0.8

1.0

C
P

U
 U

til
iz

at
io

n

CERN
Squid 1.0
Squid 1.1

Squid1.1

Figure 3: CPU utilization for proxy cache configurations. The
Squid 1.0 and CERN results are too scattered to for an approxima-
tion.

fect average Internet request service time which in turn effects the
amount of simultaneous state that must be maintained and managed
by the proxy and the operating system. The cache adds additional
variation to the request processing and state requirements. The
amount of simultaneous state combined with the request process
rate determines the total CPU requirements.

For the cacheless case, Figure 2, CERN requires significantly
fewer CPU cycles than either Squid version, except in the lowest
load regimes. The CERN proxy scales well with a load to CPU
scaling factor of about 2.5%/rps (requests per second). Squid 1.0 has
the worst scaling factor somewhere between 8.75%/rps (requests
per second) and 5.9%/rps. One reason that Squid uses excessive
CPU in the cacheless case is that it performs much of the same in
memory cache maintenance, regardless of the cache size (zero in
this case).

Squid 1.1 uses considerably fewer CPU cycles than Squid 1.0.
In the cacheless case, Squid 1.1 still takes more cycles than the
CERN proxy, but with cache it outperforms CERN with caching.
Surprisingly, the Squid 1.1 caching configuration outperforms the
Squid 1.1 cacheless configuration.

The differences in CPU performance can be explained by ex-
amining the two proxy architectures and the system cost of various
operations which all proxies rely on heavily. CERN forks a new
process for each request, and keeps no meta-data or state inter-
nally in the process (the cache is implemented entirely on disk).
Each process has very little state to scan or to pass into the ker-
nel for network related system calls. Forking a process for each
request incurs a large overhead which is eliminated in the Squid
architecture. The Squid architecture eliminates process forking; it
implements asynchronous I/O within a single thread and stores all
the cache meta-data in main memory in order to improve cache
response time. This results in additional CPU cycles to manage
all the network connections in a single process, to process much
more state for network system calls, and to manage the in-memory
meta-data.

With the Digital Continuous Profiling Infrastructure
(DCPI2) [4] we compared the CPU usage profile of CERNandSquid

2DCPI: The Digital ContinuousProfiling Infrastructurefor Digital Alpha platforms
permits continuouslow-overheadprofilingof entire systems, including the kernel, user
programs, drivers, and shared libraries. The system is efficient enoughthat it can be left
running all the time, allowing it to be used to drive on-line profile-basedoptimizations
for production systems. The Continuous Profiling Infrastructuremaintains a database
of profile information that is incrementally updated for every executable image that
runs. A suite of profile analysis tools analyzes the profile information at various levels.

CERN Squid 1.1
Cacheless Cache Cacheless Cache

Proxy 16.0 19.8 22.6 9.4
Kernel 87.9 128.6 89.7 55.4
Shlib 1.5 2.9 13.4 10.2
Total 105.4 151.3 125.6 75.0

Table 1: DCPI results - measured in 100,000 cpr (number of cycles
required to process a request). The configurationsvary between 7.5
Million cpr to 15.1 Million cpr.

1.1. For the DCPI results, we collected two sets of samples, of 20
minutes for each configuration. The two cacheless configurations
were run in parallel, and the two cached configurations were run in
parallel. This eliminates differences in external network behavior
between the samples. Prior to the final DCPI run, many other
samples were taken; the cycles/request varied somewhat but the
conclusions were consistent reguardless of load or time of day.
Furthermore, these results are consistent with the measurements
shown in Figures 2 and 3 and with the related work in [1]. The
latter demonstrates that a vast majority of the CPU time is spent
in kernel routines and implies that a proxy’s major function is to
manage network connections and pass data.

Table 1 shows the profiling results normalized to the number
of cycles required to process a request (cpr) (kernel idle cycles
were filtered out). The most obvious result is that the native proxy
executesonly 12% – 18%of the cycles required to processa request.
CERN relies directly on the kernel to manage resourceswhile Squid
manages many of its own resources via the shared libraries.

For CERN, the differences between the cacheless and cache
configuration are predictable. The cache configuration requires
additional CPU to manage and lookupboth data and meta-data in the
cache. The proxy translates URLs into file system calls; the kernel
processes the additional file systemcalls and the associatedmemory
managements; shared libraries support miscellaneous proxy cache
lookup and time-stamp evaluations.

At first glance the Squid results make little sense. Cacheless
Squid 1.1 requires almost twice as many processor cycles as it does
with a cache. The reason for this is many fold. First, the cache is
highly integrated into the Squid architecture, so a cacheless config-
uration performs all the same work that a cacheconfigurationwould
except for writing data to disk. Since the cache configuration has
to fetch fewer objects from servers (28% fewer for the measured
workload) it averages less work per client request. Secondly, Squid
manages its own memory space, allocating and freeing memory as
needed (much of the shared library contribution deals with mem-
ory management). Without a cache it seems to repeatedly free and
reallocate buffer space to process requests. Lastly, the per connec-
tion computational cost of the Squid network polling scheme is a
function of the number of open connections.

Table 2 breaks out the process, memory, and network compo-
nents from the kernel cycles. This shows the relative importance
of the architectural choices in each proxy configuration. CERN has
high process management costs but inexpensive network manage-
ment costs becauseeach processhas a single connectionon which it
can block. Squidhas high network costs that increase super-linearly
with the network load, additional memory management costs, and
inexpensive process management costs. This is probably exagger-

The tools used for this analysis show the fraction of cpu cycles spent executing the
kernel and each user program procedure.

5

CERN Squid 1.1
Cacheless Cache Cacheless Cache

Process Mgnt 24.3 30.0 5.3 6.7
Memory Mgnt 10.0 14.8 22.0 11.9
Network Mgnt 2.6 3.5 28.1 13.1
Other Kernel 51.0 80.3 34.3 23.7
Total Kernel 87.9 128.6 89.7 55.4

Table 2: Process, Memory and Network Management contributions
to the kernel cycles per request-processed (100,000 cpr). Memory
management functions primarily associated with process spawning
were included in the Process Management category. (All relevant
kernel procedures accounting for at least 0.33% of the cycles were
summed into the results.)

ated by higher network polling rate in the cacheless configuration.
Over the measured range of operation, CERN clearly requires

less CPU in the cacheless configuration; it is a very inexpensive
firewall proxy. Squid 1.1 requires the least CPU in the cache
scenario. The network management scheme used in the Squid
architecture passes state for a large number of connections back
and forth on kernel system calls. This makes it hard to predict how
it will scale beyond the measured workload range.

Because most of the processing time is spent in the kernel, a
proxy implementation is not operating system independent. The
CPU requirements are dependent on the relative use of each oper-
ating system facility and the relative cost of each operating system
function used by the proxy. The cost of eachoperating system func-
tion will vary across vendors and across releases. Proxies should
not be considered to be operating system independent.

Memory utilization Figures 4 and 5 show the overall memory
usage for the proxy configurations. The total memory usage is
calculated by summing the residence memory size for each process
running on the system. Of this the kernel process typically uses 23M
Bytes of physical memory, and the daemons, monitoring utilities,
and proxy related utilities, typically use another 5M Bytes.

Squid’s memory utilization is largely load independent. This
is due to Squid’s main memory cache management. Squid main-
tains its own memory pool which it pre-allocates and extends when
needed.

This memory pool includes the Squid process state, disk cache
meta-data, and a memory cache. The core Squid process uses about
35M Bytes; this grows with the number of simultaneous connec-
tions. At peak loads, the memory pool is extended to accommodate
additional process state. The disk cache meta-data uses roughly
10M Bytes for each Gigabyte of proxy disk cache in use. (The
cache high water mark was set to 80%, so the cache was typi-
cally just over 6G Bytes.) The memory cache is used for in-transit
objects, meta-data, and hot cache objects; its maximum size was
configured to 128M Bytes for the experiments. Under peak loads
Squid is supposed to remove hot cache objects from the memory
cache to make additional room for the in-transit objects. Squid also
requires 3 to 5M Bytes for DNS server and Ftp server processes.
Once memory is allocated it is permanently added to the memory
pool, unless there are insufficient system resources. If the mem-
ory pool pages begin to swap, Squid will reduce the memory pool
size if possible to avoid page faults. (We did not evaluate this; all
experiments had 512M Bytes of physical memory to avoid limited
memory effects).

The memory usage for Squid 1.1. with a cache, shown in
Figure 5, matches the predicted usage: 23+5M Bytes for the kernel
and daemon processes, 35M Bytes for core proxy, 5M Bytes for
DNS and Ftp servers, 128M Bytes for the memory cache, and 60M
Bytes for the proxy cache meta-data, totaling 256M Bytes. Without
a cache, Squid should use about 196M Bytes. Figure 4 shows
both Squid versions use only 125-150M Bytes of memory. Since
there are no cacheable objects Squid probably does not allocate the
entire 128M Bytes for the memory cache; it only requires space for
in-transit objects.

The two distinct memory usagebands seen in Figure 4 for Squid
1.1 are due to a memory pool extension during load peak time: The
lower level points (125 M Bytes) represent measurements taken
before the load peak, and the higher level points (150 M Bytes) are
taken after the load peak. With a cache, Squid 1.0 uses only slightly
more memory than the cacheless configuration. This is probably
due to a bug in its memory management [21].

The CERN proxy memory usage is entirely load dependent.
Other system components, such as the operating system still re-
quire independent memory. Each CERN process uses 280K Bytes.
Higher loads result in a larger number of simultaneous processes,
which require more memory. Slower Internet response increases
the average life time of a process which increases the number of si-
multaneousprocessesand the correspondingmemory requirements.
For the cacheless CERN configuration, there were about 145 pro-
cesses for a load of 10 requests per second, and for the cache
configuration about 125 processes. Faster service times for cache
hits translate into shorter process lifetimes and fewer simultaneous
memory consuming processes for the same load. For this reason,
a caching CERN uses less memory than a cacheless CERN for the
same load (comparing Figures 4 and 5).

Although we report load as the number of requests per second,
memory usage is actually related to thenumber of simultaneous con-
nections the proxy must support. By carefully selecting workloads
from days with few Internet service problems, the requests/second
metric is relatively proportional to the amount of state required for
our site. A site with less connectivity will see higher request service
times, which requires more simultaneous processes/threads/state to
support the same load. For Squid the process state requirements
are minimal in comparison with the meta-data and memory cache
usage. For CERN the process state directly determines its memory
usage.

At measuredload levelsCERN requires lessmemory thanSquid
but its memory utilization is linearly load dependent. At 20 re-
quests/second all three cacheless proxies should require about the
same amount of memory. For the cache case CERN and Squid
1.1 probably will not converge until about 30 requests/second. Al-
though they will use identical amounts of memory, Squid has a
single process space which reduces replication, and will allow it
to use a larger portion of its memory for meta-data and in-memory
caching to speedup request processing. CERN is also more suscep-
tible to external network/Internet problems. Its memory usage is
directly related to Internet performance; poor Internet performance
could increase the memory requirements and cause paging.

Disk I/O utilization Figure 6 shows the disk utilization for the
three caching proxy configurations. For the cacheless configura-
tions, disk use is negligible. Disk utilization for the three caching
proxies is remarkably similar. The fact that CERN’s simple archi-
tecture of directly accessing the file system on every request works

6

0.0 5.0 10.0 15.0 20.0
Requests per second

0.0

100.0

200.0

300.0
M

B
yt

es

CERN

Squid1.0

Squid1.1

Figure 4: Overall memory utilization - Cacheless configurations.
Squid’s memory managementpools memory while CERN allocates
and releasesmemory with each request processing. Squidoccasion-
ally extends its memory pool at peak load without releasing it again.

0.0 5.0 10.0 15.0 20.0
Requests per second

0.0

100.0

200.0

300.0

M
B

yt
es

Squid1.1

Squid1.0

CERN

Figure 5: Overall memory utilization - Cache configurations. The
memory utilization of a caching CERN is slightly lower than of a
cacheless CERN because it translates hit rate into fewer memory
consuming processes. Squid’s memory utilization is much higher
because of its meta-data approach and therefore depends on the
cache size and less on the load.

almost as well as the Squid meta-data approach could indicate that
the file system’s caching of directory path name translations works
well even on large working sets: as described in Section 2 CERN
accesses the file system to see whether a requested object is in the
proxy cache. In the case of a proxy cache miss, the correspond-
ing path name translation is in the file system cache when CERN
subsequently writes the requested object to the proxy cache. Squid
does not access the file system to find out whether a requested ob-
ject is in the proxy cache. But it does access the file system to
retrieve a proxy-cached object in case of a proxy cache hit or to
write a new object into the proxy cache in case of a proxy cache
miss. In either case the corresponding path name translation is not
reused. Furthermore, CERN stores adjacent objects, i.e., objects
with URLs that only differ in their last path component, in the same
leaf directory. One access to such a leaf directory would bring all
adjacent objects into the file system’s data cache. Assuming that
objects with adjacent URLs are likely to be co-referenced, CERN
makes better use of the file system data cache. Squid on the other
hand uses fingerprinting which does not preserve object adjacency
in the proxy cache structure. We are currently investigating file
system performance under various proxy cache structures.

0.0 5.0 10.0 15.0 20.0
Requests per second

0.0

50.0

100.0

150.0

D
is

k
T

ra
ns

ac
tio

ns
 p

er
 s

ec

CERN
Squid1.0
Squid1.1

Squid1.1

Squid1.0
CERN

Figure 6: Disk I/O utilization for caching proxy configurations.

4.3 Quality of Service

We measure the quality of serviceof a proxyby its service time. The
service time of a proxy is the time it takes a proxy to successfully
complete a request from a client. Shorter service times indicate a
higher quality of service. Figure 9 shows the 25th-, median, and
75th-percentile service times for all the configurations. Percentiles
provide a meaningful way to evaluate the aggregate service time
and the responseprovided to the client. Percentiles show the typical
responseandfilter out anomalous cases, timeout errors, and long file
transfers. All CERN and Squid 1.1 configurations deliver similar
service. Half of all requests are served to the client in under 0.5
seconds. The CERN cacheless configuration lags the other three
a bit for the 75th-percentile service, but still provides adequate
service. The newer version of Squid clearly performs better than
its predecessor, Squid 1.0. The remainder of this section will only
evaluate Squid 1.1 and CERN.

It is also important the service time not vary with load. If the
service time increases with load, the proxy is incapable of handling
the load, or scaling to a higher load. We already saw that there were
adequate system resources for an increased load. Figure 10 shows
the 75th-percentile service time correlated with the requests/second
load. There is no degradation in serve time as the load increases.
This is true for all the percentile measures.

For a caching proxy configuration, the service times include
both hits and misses. The distribution for hit service times is con-
siderably shorter than that of the miss service times. To evaluate
the impact of of hit rate on service, we plotted the hit rate with the
requests/second load. The hit rate was constant across load. The
CERN cache hit rate was 35% Squid 1.0 was 24%, and the Squid
1.1 hit rate was 28%. By comparing the service time distributions
of caching and cacheless configurations we can quantify the con-
tribution of caching to the quality of service. In a cacheless proxy
configuration, service times consist only of miss times.

Figure 7 shows that in almost 90% of all cases the service time
difference between a caching and a cacheless configuration is less
than a second. Thus, service times are not much improved by
caching. This is especially true for Squid 1.1. CERN’s service time
is more sensitive to caching than other proxies. We conclude from
this that caching is not as important to service times as other aspects
of proxy architectures. Figure 9 illustrates this more clearly: the
various percentile service times for CERN and Squid 1.1 in a cache-
less configuration do not differ significantly from the corresponding
cachingconfigurations. However, acrossdifferent architectures, the
service times are in some cases very different.

7

10
1

10
2

10
3

10
4

10
5

msec

0.00

0.25

0.50

0.75

1.00

cu
m

ul
at

iv
e

se
rv

ic
e

tim
e

di
st

rib
ut

io
n Squid 1.1 no cache

Squid 1.1 cache
CERN no cache
CERN cache

Figure 7: The cumulative service time distribution - the distribu-
tions for caching and cacheless configurations are similar: caching
proxies do not much improve service times over cacheless prox-
ies. In spite of their very different architectures, CERN and Squid
deliver comparable service times in both caching and cacheless
configurations.

5 Discussion

In the light of Squid’s sophisticated architecture we found the above
results surprising. Squid and its predecessor, the Harvest Object
Cache are perceived as at least an order of magnitude faster than
CERN [6, 23]. We found that the service times of CERN and Squid
are about the same. The load used in the performance analysis of
the Harvest Object Cache [6] is very small compared to our load.
The Harvest Object Cache’s architecture addresses performance
issues that are visible at low load, such as the elimination of context
switches and the introduction of the DNS cache. These features
should also significantly improve performance under high load.
However, our results do not confirm this. Squid implements a
number of features that are supposed to enhanceperformance. Some
of these features might not increaseperformance as expectedor they
might even cancel performance gains of other features. The result
is a combined performance that is not much different from CERN’s
performance.

With heavy real workload external network factors such as net-
work latency become more important. It is therefore important to
isolate a proxy from the network as much as possible. DNS caching
is a good start: on a day with good DNS performance, DNS caching
saves 250 ms on the amount of time each request is open. While
a user will probably not notice savings of 250 ms per request, it
reduces the number of processes or threads needed for a workload.
However, the DNS server occasionally has sever performance fail-
ures if its cache table exceeds the physical memory size. In this
case, a DNS lookup might take several seconds;Squid’s DNS cache
services many of the translations, reducing the impact on overall
performance.

Although hit rate is typically seen as an important factor for
network latency and bandwidth savings our results show it has a
much more profound effect on reducing the resource utilization.

The following anecdote during our measurements also illus-
trates the importance of real workload as opposed to artificial load:
as we mentioned earlier we observed an extreme two hour peak of

bi
n

=
 [0

,1
)

[1
,2

)

[2
,4

)

[4
,8

)

[8
,1

6)

[1
6,

32
)

[3
2,

64
)

[6
4,

12
8)

[1
28

,2
56

)

[2
56

.5
12

)

[5
12

,1
02

4)

[1
02

4,
20

48
)

[2
04

8,
40

96
)

[4
09

6,
81

92
)

[8
19

2,
16

38
4)

[1
63

84
,3

27
68

)

[3
27

68
,6

55
36

)

[6
55

36
,1

31
07

2)

[1
31

07
2,

26
21

44
)

[2
62

14
4,

52
42

88
)

[5
24

28
8,

10
48

57
6)

-0.1

0.0

0.1

0.2

F
ra

ct
io

n
of

 R
eq

ue
st

s

Squid 1.1 no cache
Squid 1.1 cache
cache - no cache

Squid1.1

Service time bins in msec

Figure 8: The service time distributions of caching and cacheless
Squid 1.1 - The caching configuration “flattens” the service time
distribution but does not significantly improve it. The greater num-
ber of 1 to 2 seconds service times could represent improvements
over cache misses that take 0.5 to 1 minute. But they could also
represent slow-downs of services which take only 100 - 500 ms
with the cacheless Squid.

30K requests per 15 minutes during a day at which we happened to
monitor Squid. During these two hours the average net fetch time
and the average error time dropped considerably and Squid used
less resources than we expected. After studying the logs we found
that the load had been generated by a local web robot repeatedly
accessing a local web server through the proxy. All of these con-
nections were fast and therefore did not consume many resources.
This short period made Squid 1.0 appear as though it could easily
scale up to 30K per 15 minutes, whereas our results indicate that
this is not the case. A benchmark such as the SPECweb96 would
test a proxy under conditions that are similar to this incident.

6 Conclusions

Implementation is at least as an important factor in performance as
architecture. Squid’s sophisticated architecture should significantly
improve performance under high load. However, our results do not
confirm this and some of Squid’s features are often costly to imple-
ment. For instance, Squid uses the CPU cycles it saved by not fork-
ing processes to implement memory managementand non-blocking
network communication. CERN’s architecture is inherently ineffi-
cient, but manages to efficiently use underlying operating systems
constructs. As a result CERN has comparable performance.

With cache hit rates of around 30% we were unable to see a
significant difference in the service time profiles between caching
and cacheless proxy configurations. Caching might have a larger
impact on service times at sites with less available bandwidth than
our test site, Although hit rate is typically seenas an important factor
for network latency and bandwidth savings our results show it has
a much more profound effect on reducing the resource utilization.

CERN uses memory for process state such that its memory
utilization grows linearly with the number of processes that are
required to support a given request load. Squid keeps global cache
and process state in main memory. This state is largely independent
of load. The indifference point of memory utilization of CERN and

8

20.0 30.0 40.0 50.0 60.0 70.0 80.0
Percentile

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

S
er

vi
ce

 T
im

e
(m

se
c)

Squid 1.1 No Cache
Squid 1.1 Cache
CERN no cache
CERN cache
Squid 1.0 No Cache
Squid 1.0 Cache

Figure 9: 25th-, median, and 75th-percentile service times in ms for
caching and cacheless proxies - Squid 1.1 has the shortest service
times among the cacheless proxies, while caching CERN’s service
times win over the other caching proxies.

0.0 5.0 10.0 15.0 20.0
Requests per second

0.0

1000.0

2000.0

3000.0

4000.0

75
-p

er
ce

nt
ile

 s
er

vi
ce

 ti
m

e
[m

se
c]

Squid 1.1 cache
Squid 1.1 no cache
CERN cache
CERN no cache

Figure 10: Load against the 75-percentile service time (each point
represents a 15 minute time period) - All proxy configurations have
a stable service time over the measured load spectrum. Squid 1.1’s
75-percentile service times are slightly better than CERN’s.

Squid is around 20 to 25 requests per second. CERN requires less
memory than Squid at a load below 20 requests per second while
Squid is likely to require less memory than CERN at a load above
25 requests per second. Poor network connectivity is likely to lower
the indifference point.

Although Squid has many features designed to reduce disk traf-
fic, our measurements did not show any discernable difference be-
tween the two architectures. It is likely that the CERN access
patterns map very well to the file system caching strategy, and the
operating system effectively eliminates many of the potential CERN
disk accesses.

We were quite disappointed by the overall robustness of the
proxies we tested, especially in the caching configuration. We were
unable to run any cache configuration for more than three days
without a catastrophic failure that interupted service and required a
full manual proxy restart.

We are in the process of investigating various ways to insu-
late a proxy from network performance. We are also researching
the interactions of various proxies with the underlying operating

system.

7 Acknowledgments

We would like to thank Jennifer Anderson, Zulah Eckert, and Kirk
Johnson for giving a lot of very useful advice and for reviewing
early drafts of this paper. Many thanks also to the anonymous
reviewers who provided very constructive critique. A special thank
you goes out to all the Digital Employees forced to endure yet
another unstable proxy configuration experiment.

References

[1] Jussara Almeida, Virgilio Almeida, and David Yates. Mea-
suring the Behavior of a World-Wide Web Server. Technical
Report CS 96-025, Boston University, October 29 1996.

[2] Virgilio Almeida, Azer Bestavros, Mark Crovella, , and Adri-
ana de Oliveira. Characterizing Reference Locality in the
WWW. In IEEE PDIS’96: The International Conference in
Parallel and Distributed Information Systems, Miami Beach,
Florida, December 1996. IEEE.

[3] Martin F. Arlitt and Carey L. Williamson. Web Server Work-
load Characterization: The Search for Invariants. In ACM
Sigmetrics ’96, pages 126–137, Philadelphia, PA, May 23-26
1996. ACM Sigmetrics, ACM.

[4] Lance Berc, Sanjay Ghemawat, Monika Henzinger, Shun-Tak
Leung, Mitch Lichtenberg, Dick Sites, Mark Vandevoorde,
Carl Waldspurger, and Bill Weihl. DIGITAL Continuous
Profiling Infrastructure. Available on the World Wide Web
at http://www.research.digital.com/SRC/dcpi/papers/osdi96-
wip.html, October 1996.

[5] C. Mic Bowman, Peter B. Danzig, Darren R. Hardy, Udi Man
ber, Michael F. Schwartz, and Duane P. Wessels. Harvest: A
scalable, customizable discovery and access system. Techni-
cal Report CU-CS-732-94, Department of Computer Science,
University of Colorado, Boulder , CO, August 1994 (revised
March 1995) 1994.

[6] Anawat Chankhunthod, Peter B. Danzig, Chuck Neerdaels,
Michael F. Schwartz, and Kurt J. Worrell. A Hierarchical In-
ternet Object Cache. In 1996 USENIX Technical Conference,
San Diego, CA, January 1996. USENIX.

[7] Anawat Chankhunthod, Peter B. Danzig, Chuck Neerdaels,
Duane Wessels, Mike F. Schwartz, and Erhyuan Tsai. The
Harvest Cache and Httpd-Accelerator. Available on the World
Wide Web at http://excalibur.usc.edu/, July 1995.

[8] Dan Connolly and Tim Berners-Lee. Names and Addresses,
URIs, URLs, URNs, URCs. Available on the World Wide
Web at http://www.w3.org/pub/WWW/Addressing/, December
1990.

[9] M. Crovella and A. Bestavros. Self-similarity in World-Wide
Web Traffic: Evidence and Possible Causes. In Proc. of the
1996 SIGMETRICS Conference on Measurement and Model-
ing of Computer Systems, 1996, May 1996. ACM.

9

[10] Peter Druschel and Gaurav Banga. Lazy Reiceiver Processing
(LRP): A Network Subsystem Architecture for Server Sys-
tems. In Second Symposium on Operating System Design and
Implementation (OSDI 96), Seattle, WA, October 1996.

[11] Thomas Kroeger and Jeffrey Mogul. Digital’s Web
Proxy Traces. Available on the World Wide Web at
ftp://ftp.digital.com/pub/DEC/traces/proxy/webtraces.html,
October 1996.

[12] Ari Luotonen, Henrik Frystyk Nielsen, and Tim Berners-Lee.
CERN httpd 3.0A. Available on the World Wide Web at
http://www.w3.org/pub/WWW/Daemon/, July 15 1996.

[13] P. Mockapetris. Domain Names - Concepts and Fa-
cilities. Available on the World Wide Web at
ftp://ftp.internic.net/rfc/rfc1034.txt, November 1987.

[14] P. Mockapetris. Domain Names - Implementation and
Specification. Available on the World Wide Web at
ftp://ftp.internic.net/rfc/rfc1035.txt, November 1987.

[15] Jeffrey C. Mogul. Network behavior of a busy web server
and its clients. Technical Report 95/5, DEC Western Research
Laboratory, Palo Alto, CA, October 1995.

[16] Jeffrey C. Mogul. Operating Systems Support for Busy Inter-
net Servers. In Fifth Workshop on Hot Topics in Operating
Systems (HotOS-V), page addendum, Orcas Island, Washing-
ton, May 1995.

[17] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating re-
ceive livelock in an interrupt-driven kernel. In 1996 Usenix
TechnicalConference, pages99–111, San Diego, CA, January
1996.

[18] StandardPerformanceEvaluationCorp. (SPEC). SPECweb96
Benchmark. Available on the World Wide Web at
http://www.specbench.org/osg/web96/, July 1996.

[19] Gene Trent and Mark Sake.WebSTONE: The First Generation
in HTTP Server Benchmarking. Available on the World Wide
Web at http://www.sgi.com/Products/WebFORCE/WebStone/,
February 1995.

[20] Neal R. Wagner. Fingerprinting. In Symposium on Security
and Privacy, pages 18–22, Oakland, CA, 1983. IEEE.

[21] Duane Wessels. Personal communication. during which be-
came clear that Squid 1.0.beta17 has a memory management
bug, August 1996.

[22] DuaneWessels. Squid Internet Object Cache. Available on the
World Wide Web at http://squid.nlanr.net/Squid/, May 1996.

[23] Duane Wessels. SQUID Frequently Asked Ques-
tions. Available on the World Wide Web at
http://squid.nlanr.net/Squid/FAQ.html, January 1997.

10

