
Abstract
Chautauqua is an exploratory workflow management
system designed and implemented within the Collabo-
ration Technology Research group (CTRG) at the Uni-
versity of Colorado. This system represents a tightly
knit merger of workflow technology and groupware
technology. Chautauqua has been in test usage at the
University of Colorado since 1995. This document dis-
cusses Chautauqua - its motivation, its design, and its
implementation. Our emphasis here is on its novel fea-
tures, and the techniques for implementing these fea-
tures.

* This work was partially supported by NSF grant
IRI-9307619

1. Introduction

Workflow management systems have been defined
as “technology based systems that define, manage, and
execute workflow processes through the execution of
software whose order of execution is driven by a com-
puter representation of the workflow process logic”
[23]. They have been called collaboration aware
groupware. Whereas most groupware has been criti-
cized because it is not organizationally aware, work-
flow has been criticized because of its typically
inflexible and dictatorial nature compared to the way
that office workers really accomplish tasks [14]. Thus,
this document introduces Chautauqua, an experimental
research system which merges features of groupware
and workflow to produce a flexible collaboration man-
agement system which is organizationally aware.

2. Related Work

There has been other work attempting to bring
together workflow and groupware technologies. Indus-
trial research labs and product teams have made signif-
icant steps forward. The interesting work and products
of Winograd and Flores based upon speech act theory
suggests that any interaction can be viewed as a “con-
versation” with a protocol structure that can be mod-
eled as a workflow[13]. The coordinator was a product

emerging from this work that had this protocol notion
built in. Likewise, the action technologies workflow
product [24] is based upon speech act theory, and
describes every workflow as beginning with a request,
and successfully completing with an agreement of sat-
isfaction. The GMD research center has a long history
of interest in workflow and collaboration technology.
Several research workflow systems were implemented
and experimented with valuable learning results[17].
Recently, GMD has introduced a very flexible shared
workspace system on the world wide web internet [3].
Work at a number of universities has explored some
instances of merging of workflow and groupware,
including work at the Universities of Milano, Illinois,
Erlangen, Toronto, and MIT.

At Xerox PARC in the 1970s, one of the authors,
Ellis, was involved in the development of the Office-
talk system [8], the first of the workflow systems
developed using personal workstations, local area net-
work, and graphical user interfaces. This led him to
address various other aspects of office work and orga-
nizational design. The original Information Control
Net (ICN) model was also developed by this author in
the 1970s[7], which led to a family of related modeling
studies.

3. The Chautauqua Model

The Chautauqua model is based upon the extended
Information Control Network (ICN) process model.
This section describes the standard features of ICNs
without exception handling. The next section describes
conflict management, dynamic change and exception
handling, and how the standard features are extended
to accommodate these novel features.

3.1 The Abstract Structure of Work: Models

In general, a model is a simplified abstraction of
reality. It sometimes allows one to see the patterns of
behavior of important parameters of the real system by
ignoring exogenous variables of lesser concern. Mod-
els can be useful for developing an understanding of a

The Chautauqua Workflow System

Clarence (Skip) Ellis* and Carlos Maltzahn*
Department of Computer Science, University of Colorado

Boulder, Colorado, USA 80309-0430

complex system, for performing mathematical analy-
ses, for human communication about the system, and to
allow simulation studies of the system. A workflow
model is an abstraction capturing pertinent aspects of a
work environment, and work processes within an orga-
nization or workgroup. It typically is concerned with
aspects of the organization modeled by tasks, actors,
roles, activities, and information objects. A workflow
model is most convenient if it is supported by a com-
puterized graphical implementation. A computerized
workflow system typically allows the creation, alter-
ation, and simulation of workflow. This editor should
present the model in a form which is understandable to
the non-specialist, and easy to manipulate. Besides
being simple to understand, a good model should be
mathematically tractable. Thus it should be precisely
defined, and there should be meaningful analyses that
leverage this mathematical notation. These analyses
should be invoked and controlled via the model editor.
Our Chautauqua thesis is that if the workflow modeling
system fulfills the above criteria, then it is not only use-
ful as an organizational pre-design tool, but is useful
for exception handling, dynamic change, and general
information sharing during all phases of workflow
modeling and enactment.

3.2 The Information Control Net Model

The Information Control Net is an organizational
activity model with characteristics similar to timed,
colored Petri nets [11]. It generalizes Petri nets by add-
ing a complementary data flow model, generalizing
control flow primitives, and simplifying semantics so
that the model is intuitive and useful to office procedure
designers. A summary of office models, in general, is
presented by Sheth [21]. In this section we describe the
basic ICN. Basic ICNs have been used in many con-
texts to describe structured work, but exhibit the usual
shortcoming when they attempt to fully prescribe an
office procedure that is executed in many different
ways under many different circumstances. Office mod-
els must be sufficiently flexible to capture the intent of
a procedure, but not so prescriptive that they are a bar-
rier to the office worker.

Experience with the basic ICN model suggests that
workflow must be cognizant of organizational goals
and structures, individual skills and preferences, as
well as the sustaining social environment. These are the
primary modeling research issues that must, in the
longer term, be addressed. Motivation for much of this
research can be seen by considering exception han-
dling, which is a prevalent activity within offices. For
example, when an exception arises such that the next
activity cannot be executed, people who know the goals

of their information processing, can derive alternative
activities to attain the same goals. They can use their
knowledge of the organizational structures to obtain
proper approval of these alternative activities. They can
use their social network to expedite information
exchange if necessary. If the workflow system is aware
of the goals and preferences, then it can assist in this
process of exception handling. Thus, longer term
research includes the imbedding of social and organiza-
tional sub-models within the ICN model. Coherent def-
initions of subgoals, of conflicting goals, of group
goals, and of subgroup goals are now being incorpo-
rated into ICNs [22]. We observe that people do a lot of
problem solving, and that a lot of interaction with col-
leagues is necessary for this. Thus, we are also in the
process of implementing synchronous and asynchro-
nous distributed meeting facilities within Chautauqua.

The basic ICN is a simple, but mathematically, rig-
orous formalism intended to model organizational pro-
cedures [11]. It is intended to represent control flow
and data flow; which activities precede which other
activities; other relations indicate which data reposito-
ries are input or output for which activities. ICNs have
been studied in universities [5], and used in industry
[4]. They have been shown to be valuable for capturing
organizational procedures, for mathematical analyses,
and for simulation. Some of the documented analyses
of ICNs include throughput, maximal parallelism, and
reorganization, and streamlining [5].

An ICN graph is composed of one start activity, one
end activity, a set of intermediate activities, disjunc-
tions, conjunctions, actors, roles, and directional arcs
to interconnect instances of these nodes.

Among activities, disjunctions, and conjunctions, an
arc represents precedence; if activity A leads to activity
B (i.e., (A,B) is an edge in the graph), then activity A
must always occur before activity B. Suppose we have
activities A, B, and C. Let X be a disjunction with arcs
(A,X), (B,X), and (X,C) in the graph (X is a disjunctive
join); then activity C can occur after either activity A or
B have occurred. Similarly, if X is a disjunction and we
have (A,X), (X,B), and (X,C) (X is a disjunctive split),
then after A has occurred, either B or C can occur. Con-
junctions use conjunctive flow logic as opposed to the
disjunctive logic of disjunctions; if Y is a conjunction
and the graph contains (A,Y), (B,Y), and (Y,C) (Y is a
conjunctive join), then C can occur only after both A
and B have occurred (cf. the traditional join concur-
rency control flow construct). If Y is a conjunction and
the graph contains (A,Y), (Y,B), and (Y,C) (Y is a con-
junctive split), then both B and C can occur after A has
occurred (cf. the fork construct). The ICN formalism

allows one to collapse joins and splits of the same flow
logic into a single node.

An arc going from an actor to a role defines the role
of that actor. An actor can have multiple roles and roles
can be shared by multiple actors. An arc going from a
role to an activity defines the responsibility of a role.

An ICN is well-nested iff all out-going paths of a
split are joined by a join of the same logic as the split,
where a path is a well-nested ICN. The well-nested
property makes mathematical analyses of consistency
and correctness much more tractable [16]. For the rest
of the paper we assume ICNs to be well-nested.

ICNs have a graphical representation as well as a
mathematical tuple-set representation. As an illustra-
tion, Fugure 1 shows how an ICN might represent order
processing within a typical organization. The triangle-
shaped nodes are start and end activities; the large,
open circles are activities; the small, open circles repre-
sent disjunctions; small, filled circles stand for con-
junctions. Note that multiple out-going arcs of a
disjunction are labeled. These labels represent choices
that are made during the previous activity. For example
in figure 1, the outcome of an order evaluation can be
either to reject or accept an order. Squares represent
roles of employees and the stars represent actors. In fig-
ure 1, Oscar plays the role of a credit clerk who is
responsible for checking references of customers and
evaluate their orders.

3.3 Enacting ICNs

In an organization, work is typically generated by a
request for something. We call this request a workcase.
A workcase can be viewed as a process that enacts an
ICN. Each workcase is time stamped at its creation and
contains information about the requestor, a deadline
and an indication of urgency. Each workcase creates
one initial token. A token represents an activity thread
within the workcase. Each token has a location which
can be any activity, disjunction or conjunction of the
enacted ICN. The location represents the state of an
activity thread. The initial token of a workcase is
located at the start activity. Without loss of generality,
we insist that the start (and end) activity be unique.

When a token is created it is associated with a new
instance of the sample form defined by the enacted
ICN. A form represents a domain specific document
with a list of fields. We assume activities as being suffi-
ciently reflected by a user manipulating field entries.
We distinguish between local and global fields. Entry
to local fields are local to the associated token, while
the content of global fields are local to the associated
workcase, i.e., global to all tokens of that workcase.

A token carries a decision list which contains rout-
ing information for a disjunctive split tree. A disjunc-
tive split tree is a fraction of an ICN that is tree shaped
and contains no nodes other than disjunctive split
nodes. The decision list is always created by the last
activity prior to a disjunctive split tree and contains
routing information for each disjunctive split node.

A token has a status which represents the state of a
token within locations. There are five possible values
for the token status: the initial status of a newly con-
structed token at an ICN start node is “new”. A token
returns to the status “new” whenever its location
changes to an activity. When a user looks at the form
associated with a token, its status changes to “active”.
A user can suspend work on a form in which case the
token status changes to “suspended”. After a user
declares work on a form as finished, the token status
becomes “completed”. If the location of a token
changes to a conjunctive join and the token does not
match with a certain number of other tokens, the token
status is set to “blocked”. If the token becomes “com-
pleted” at an ICN end node, it is destructed.

In the example of figure 1, two tokens are located at
the activities “Reference Check” and “Inventory
Check”. Both tokens belong to workcase #27 which
was created for requester “David” (in this case a cus-
tomer). One token has the status “new” and the other
has the status “active”.

Whenever a token’s status changes from the status
“active” to the status “completed”, its history list is
updated. Each entry of the history list contains the time
when the token was activated, the time when it was
completed, the activity that was completed, and the
actor who performed the activity.

The central notion of ICN enactment is a set of oper-
ators that are applied to one token or a set of tokens. An
operator is either initiated by a user, called by another
operator, or triggered by a certain condition. The result
of an operator is a change to a token’s location or a
token’s status (see figure 2). The “activate” operator is
initiated by the user by looking at a token’s form. It sig-
nifies that work on this form has started. The “activate”
operator is only applicable to tokens with status “new”,
and it changes the token status to “active”. The opera-
tors “suspend”, “resume”, and “complete” with their
obvious meanings are also user initiated and have anal-
ogous restrictions and effects

The “schedule” operator is triggered whenever a
token’s status is set to “completed”. It repeatedly
changes a token’s location to the location’s successor
until the location is either an activity or a conjunctive
join with not enough matching tokens. If this final loca-

tion is an activity the token status is set to “new”, other-
wise it is set to “blocked”. Until a token arrives at a
final location it might pass through various kinds of
ICN nodes which sometime require the “schedule”
operator to take specific actions: at a disjunctive split
the operator decides among the outgoing branches
based on the token’s decision list. At a conjunctive split
the operator creates copies of the current token and
applies the “schedule” operator on each of them. At a
conjunctive join the operator tries to match the token
with other token of the same workcase. If a number of
input tokens match and that number is equal to the
number of input arcs, the “schedule” operator applies
the “merge” operator on all matching tokens. Assum-
ing that the number input arcs and the number of
matching tokens is n. The “merge” operator merges the
forms and history lists of all n tokens, assigns the
merged form and history list to the nth token, destructs
all n-1 tokens, and sets the status of the nth token to
“completed”. After the token arrives at a final location
the “schedule” operator calls the “dispatch” operator
which assigns the token to an actor based on the ICN.

4. The Novel Features of Chautauqua

So far we have introduced basic concepts of the ICN
formalism and its enactment. The Chautauqua extends
these concepts in various ways which are discussed
below. This leads to an extended token status transition
diagram which is shown in figure 3.

4.1 Conflict Detection and Management

Chautauqua provides a value conflict detection and
management mechanism which is an extension of
forms and the “merge” operator. We extended the form
of each token such that it associates a conflict list for
each form entry. When two or more tokens are merged
and the corresponding form entries have conflicting
values, the form of the resulting token lists all conflict-
ing values in the corresponding conflict lists. The
Chautauqua system provides interactive means of con-
flict resolution.

4.2 Dynamic Change

Our approach to dynamic change is to make struc-
tural changes to an ICN part of the ICN enactment. We
introduce two operators that integrate structural
changes with enactment: the “edit” operator performs
structural changes that result in syntactically correct
ICNs. The “fall out” operator which collects tokens
that have lost their location due to structural changes,
deletes their location references, and sets their token
status to “blocked”. We call a token that lost its location
a “fall out” token.

The design of the Chautauqua model carefully dis-
tinguishes between structural concepts and enactment
concepts. This allows us to use long conventional trans-
actions with write locking for structural changes with-
out blocking enactment: A token can change its
location even when both locations are part of a locked
ICN. In the current Chautauqua system, every struc-
tural change locks the entire ICN. Thus, only one struc-
tural change per ICN is possible. Future versions of
Chautauqua will allow parallel structural changes on
the same ICN. [16]

4.3 Exception Handling

Exception handling is based on extending the ICN
model by a “send to” operator and an extension to the
“dispatch” and “schedule” operator. The “send to”
operator allows a user to send a token to an address and
to optionally provide a return address. An address is a
3-tuple consisting of an actor, a role, and an activity.
Any of these three components can be left unspecified;
a component need to not be within the same ICN. The
“dispatch” operator is extended by an address resolu-
tion mechanism that guarantees that either nothing is
specified or at least an actor is specified. If nothing is
specified the “send to” operator has no effect. If no
actor is specified but either a role or an activity or both,
the “dispatch” operator first tries to determine the actor
through the role and then through the activity. For
example, if a token is sent to (Actor: “Not Specified”,
Role: Manager, Activity: Order Entry), the operator
finds an actor with a manager role and not an actor with
a role of entering orders. If an address does not specify
an activity but either an actor or a role or both, the
token will assume an actor as location. These are
“exception” states which represent another extension of
the basic ICN model.

Each token maintains a stack of addresses. A “send
to” operator pushes a new address on this stack. If the
operator also specifies a return address, the return
address is pushed on the stack prior to the new address.
In any case, the “send to” operator sets the token state
to “completed”. This activates the “schedule” operator
which is extended such that it checks whether the
address stack is empty or not. If the address stack is not
empty it pops the stack and applies the extended “dis-
patch” operation on the popped address. If the stack is
empty the “schedule” operator resumes normal opera-
tion. Thus, it is possible that A sends a token to B with
return address to A and B sends the token to C without
return address. By the time the token is completed at C
the return address to A is on top of the stack so that the
“schedule” operator sends the token back to A.

We found that the mechanisms to support dynamic
change and the mechanisms to support exception han-
dling are complementary: the exception handling fea-
tures of Chautauqua allow users to “pick up” “fall out”
tokens which result from a dynamic change; the
dynamic change support of Chautauqua allows the
adaptation of a workflow model to actual work patterns
in order to reduce the overhead of exception handling.

5. The Chautauqua Implementation

Chautauqua provides tools for concurrent enactment
of a model (including its change) including a graph edi-
tor for model editing and an extended World-wide Web
server for document processing and other information
presentation

We implemented Chautauqua as a client/server
application. The server is a very general active object
server. An active object server allows clients to register
notification requests. The object server then notifies a
client each time a commit meets the condition of a noti-
fication request. The notification requests are processed
in the order of registration.

5.1 The Active Object Server

All state in the Chautauqua system is maintained in
an active object server. The object server accepts
requests from clients and returns a list of objects upon
each request. However, the object server is active, i.e.,
it can also send objects to clients upon certain condi-
tions within the server. Each client can register notifica-
tion requests which define these conditions and
associate them with that client. Whenever a client com-
mits objects to the server the server checks all notifica-
tion requests against the set of committed objects in the
order of registration. A notification request matches if a
subset of committed objects match the request’s condi-
tion. That subset is then sent to the notification
requestor along with information about who committed
these objects. A special case is objects that are commit-
ted in order to delete them. Notifications do not exclude
deleted objects so that a client can find out about object
deletions.

The active object server is implemented in Python
which is an object oriented, interpreted language. The
server manages Python objects which are associative
arrays with fast access methods and meta-information
about their internal structure. This allows for very pow-
erful and flexible operations on objects and their class
definitions. For instance it is possible to add new
attributes to objects on the fly without affecting other
objects. Object class definitions are themselves Python
objects and can be manipulated on the fly.

Clients of the active object server use a network
interface in order to connect and interact with the
server. The network interface allows clients to query
the server, to register notification requests, to register
new objects, to lock objects, and to receive notifica-
tions. The implementation of the network interface sup-
ports object caching and consistent referencing of
persistent objects1.

The client can choose between two ways of receiv-
ing notifications: the notification by interrupt installs an
interrupt handler and spawns a child process that listens
to the server for notifications. When the child process
receives a notification it forwards the notification to the
parent via a pipe and sends a signal to the parent pro-
cess. The parent process picks up and processes the
notification within its interrupt handler. The notifica-
tion by pipe spawns a child process which connects to
the parent process by a pipe that is provided by the cli-
ent. Notification by interrupt is useful for clients that
are otherwise not event driven. Notification by pipe is
advantageous for clients that already have an event han-
dler such as an application with a graphical user inter-
face and where the read side of the pipe can be easily
integrated into the event handler.

The query language provided by the server allows
selection of objects based on object class names and on
attribute/value comparisons. Values can be either prim-
itive values and their sets or persistent objects and their
sets. Comparisons include equality and inequality of
values and comparisons of sets with values or with sets.
The selection of objects is executed on the server side.
Common database operations such as projection and
join need to be implemented by the client and are cur-
rently not supported by the network interface.

5.2 The Token Mover

The token mover schedules tokens to new locations,
merges them, and dispatches them to actors. It thus
implements the “schedule”, “merge”, and “dispatch”
operators. The server notifies the token mover when-
ever a client commits a set of tokens that are in the
“completed” state. The token mover first applies the
“schedule” operator and then the “dispatch” operator. It
also maintains a queue of blocked tokens at each con-
junctive join. The “merge” operator is applied when a
correct number of matching tokens are located at a con-
junctive join. The token mover also implements the
“fall out” operator: the server notifies the token mover

1. This consistency management does not cover
pointer variables which are local to the client applica-
tion and not part of the network interface.

whenever a structural change occurs upon which the
token mover queries the server for all tokens that are
located at deleted locations. The token mover applies
the “fall out” operator to the result of this query.

5.3 The Graph Editor

The graph editor implements the “edit” operator and
is designed to manipulate the structure of an ICN while
it is enacted by multiple workcases. After starting the
editor, a user connects to the active object server and
enters a name of a procedure to be edited. The editor
displays the graph of this procedure and all relevant
workcases in the viewer window. Each workcase is rep-
resented by a set of labeled tokens which are positioned
at various locations of the procedure structure. Each
token label displays the name of the workcase
requestor, the workcase identification number, and the
current token status. As work progresses these tokens
move on to different locations. The viewer window is
continually updated by the active object server making
work progress and any structural changes immediately
visible.

A user starts an editing session with an editor win-
dow which copies the current structure of the procedure
displayed in the viewer. The editor allows one user at a
time to change the procedure structure. During the edit-
ing session the user can still watch the progress of work
in the viewer window. The user ends an editor session
with committing the structural changes to the server
which also closes the editor window. At this point the
structural changes immediately take effect in the enact-
ment of the procedure and are displayed on the viewer
window. The viewer window helps the user to select an
appropriate time to commit structural changes. If a
structural change caused “fall out” tokens the viewer
displays these in the bottom left corner.

5.4 The Web Server Extensions

We decided to use Word-Wide Web (WWW) tech-
nology for implementing forms and various tables in
Chautauqua. The HyperText Markup Language
(HTML) lends itself nicely for defining tables and
forms, and modern World-Wide Web browsers imple-
ment sophisticated table layout algorithms and naviga-
tion functions. We generate all HTML code on the fly
using a standard WWW server and Python scripts
which conform to the Common Gateway Interface
(CGI) standard (from now on called CGI programs).
The CGI standard enables a WWW server to execute
and uniformly communicate with programs which con-
form to the same standard. The HTML code allows
easy specification of forms, tables, and hyperlinks to
other HTML documents or CGI programs. A hyperlink

is a Unified Resource Locator (URL) associated with a
certain area in the display of the browser. An URL con-
tains a communication protocol name, the server
address of a WWW server, a document or CGI program
name and other parameters. A user can follow hyper-
links by mouse-clicking on the associated display area
which effectively either retrieves the document or exe-
cutes the CGI program specified by the corresponding
URL.

The WWW user interface of Chautauqua allows
users to use any WWW browser that supports forms
and tables. In order to connect to the Chautauqua sys-
tem the user opens a certain URL which specifies the
server address of the WWW server, the CGI program to
be executed, and arguments to be passed along to the
CGI program. These arguments in turn include at least
the Chautauqua server address and the user ID of the
user. The browser connects to the specified WWW
server and sends the URL as a request using the Hyper-
Text Transfer Protocol (HTTP). The server parses the
request and executes the specified CGI program with
the specified arguments. If the browser issued the
request in the context of a form, the server makes the
form entries available to the CGI program as standard
input. The CGI program connects to the Chautauqua
server, performs read and write operations, and outputs
HTML code. The server forwards this output back to
the client as response to the client’s request and termi-
nates the connection to the browser.

It is important to note that this architecture is very
inefficient. We chose this design because of its fast and
easy implementation. A much better architecture would
be to integrate the WWW server and its extensions into
the Chautauqua server. This would result in huge per-
formance gains because it would obliterate the expen-
sive serialization and deserialization of Python objects
(about 80% of the retrieval overhead) and the expensive
start-up times of interpreted CGI programs (sometimes
more than one second in the case of Python scripts).

We will now turn to the various components of the
Chautauqua WWW user interface:

5.4.1. To-do lists. The basic notion of the Chautauqua
WWW user interface are to-do lists which are tables
that show tokens sorted by actor, role, and activity. In
the table, actors are called employees and tokens are
called tasks. Tasks are labelled with their status,
requestor, time of request, and urgency. A global to-do
list lists the tasks of all actors while a local to-do list is
specific to an employee. Each task contains a hyperlink
to a form which is another dynamically generated
HTML page (see below). Each to-do list corresponds to

one ICN. The table entry that corresponds to the start
activity of the ICN contains a hyperlink to a special
form with which the user can create a new workcase.
At the end of a to-do list is a list of blocked tokens.
Hyperlinks lead to the corresponding forms.

5.4.2. Forms. Forms are rendering token and workcase
attributes and are dynamically generated whenever a
user clicks on a task in a to-do list. They are divided
into six sections:

1. The workcase section displays information about
the workcase of the token.

2. The comment section shows notes of the actor
who completed the previous activity on this token, and
allows the current actor to add notes.

3. The form section is a list of labeled entry fields. If
an entry field has conflicting values, the corresponding
entry field is empty and a menu with the conflicting
values is displayed next to the entry field. The default
value of the menu is “defer” which means that conflict
resolution is deferred by default. The user can resolve a
conflict by either choosing one of the conflicting values
from the menu or by entering a new value into the entry
field.

4. The routing section allows the user to create a
decision list or specify a “send to” address. The address
can be composed by selecting from three menus, the
actor, role, and activity menu. Each menu contains a
“not specified” item additionally to the corresponding
items of the ICN. The user can also hit a “return” but-
ton which adds the return address to the address stack
of the token.

5. The control section lets the user suspend, com-
plete, or perform a “send to” operation by hitting a cor-
responding button. If the token’s address stack is not
empty the user cannot complete but return the token to
the stack’s top address.

6. The history section contains a table representing
the history list of the token. The table contains also a
history of comments.

A special form is the workcase creation form which
differs from the normal form by providing entry fields
in the workcase section and by skipping the history sec-
tion. It also provides a hyperlink to a form editor.

5.4.3. The form editor. The simple form editor allows
the user to textually specify and modify the sample
form of the current ICN. Chautauqua uses this sample
form to generate the workcase creation form and to
instantiate the new workcase and its initial token. The
syntax of the form specification is a list of entries of the

form [global:] <field name>, where each entry has to be
on a separate line, and where <field name> can be any
single line string. The optional “global:” denotes global
fields. At the bottom of the form editor is a button that
submits the form specification.

5.5 The Task Monitor

The task monitor is a textual alternative to the Chau-
tauqua graph editor. It is called with the Chautauqua
server address and the ID of an employee. It then dis-
plays a continually updated list of all tasks that are
assigned to that employee and which have the token
status “new”.

6. Summary and Conclusions

This paper has presented the motivation, features,
and design/implementation of Chautauqua, an explor-
atory collaboration management system designed and
implemented within the Collaboration Technology
Research group (CTRG) at the University of Colorado.
This system represents a tightly knit merger of work-
flow technology and groupware technology. This col-
laboration management system is organizationally
aware; it maintains a representation of goals and groups
and roles and processes. It allows, but does not insist
upon a rigorous representation of procedures, control
flow, and data flow. Novel features include flexible
exception handling mechanisms, representation of
inconsistent concurrently updated information, assis-
tance for simultaneous group editing, and a powerful,
verifiable dynamic change capability. All of these fea-
tures are accessible to any and all users with appropri-
ate access rights.

Chautauqua is an ongoing research project; thus, we
continually strive to further understand the nature of
collaboration, to continually add functionality, and to
test and evaluate this functionality. This document,
therefore, only captures a snapshot of Chautauqua at
one instant in time. Chautauqua executes over the inter-
net; it is also a public domain system which is freely
available over the internet. Our current primary objec-
tive is to gain further usage experience with Chautau-
qua.

7. References

[1] Bair, J. (Co-editor), "Office Automation Systems:
Why Some Work and Others Fail," Stanford University
Conference Proceedings, Stanford University , Center
for Information Technology, 1981.

[2] Bair, J. "Methods for Success with New Workflow
Systems," GroupWare'92, edited by D. Coleman, Mor-
gan Kaufmann Publishers, San Mateo, Ca.

[3] Bentley, R., et.al., “Supporting Collaborative Infor-
mation Sharing with the World Wide Web” in Proceed-
ings of the 4th WWW Conference, December, 1995.

[4] Bull Corporation, FlowPath Functional Specifica-
tion, Bull S. A., Paris, France, September, 1992.

[5] Cook, C., “Office Streamlining Using the ICN
Model and Methodology,” Proceedings of the 1980
National Computer Conference. June, 1980.

[6] Collaboration Technology Research Group home
page, Available on the World Wide Web at
http://www.cs.colorado.edu/~skip/ctrg.html

[7] Ellis, C. A. and G. J. Nutt, “Office Information Sys-
tems and Computer Science,” ACM Computer Surveys,
Vol. 12, No. 1 (March, 1980).

[8] Ellis, C. "OfficeTalk-D, An Experimental Office
Information System" Proceedings of the First ACM
Conference on Office Information System, June 1982.

[9] Ellis, C. A., S. J. Gibbs, and G. L. Rein, “Group-
ware: Some Issues and Experiences,” Communications
of the ACM, Vol. 34, No. 1, January, 1991

[10] Ellis, C., and G. L. Rein, "rIBIS: A Real Time
Group Hypertext System" in the International Journal
of Man Machine Systems, 34, 1991

[11] Ellis, C. A. and G. J. Nutt, “Modelling and Enact-
ment of Workflow Systems,” Proceedings of the 14tn
International Conference on Applications and Theory
of Petri Nets (June, 1993).

[12] Ellis, C. A. and G. J. Nutt, “Multi-Dimensional
Workflow,” Proceedings of the 2nd IDPT Conference.
December 1996.

[13] Flores, F., et.al. “Design of Systems for Organiza-
tional Communication” ACM Transactions on Office
Information Systems 6,2, April 1988.

[14] Grudin, J. “Why CSCW Applications Fail,” Pro-
ceedings of the ACM CSCW88 Conference. August
1988.

[15] Johansen, R., and Swigart, R. Upsizing the Indi-
vidual in the Downsized Organization. Addison-Wes-
ley, 1994.

[16] Keddara, K., Ellis, C., Rozenberg, G. “Dynamic
Change within Workflow Systems”, Proceedings of the
ACM SIGOIS Conference on Organizational Comput-
ing Systems, Milpitas, CA, August 1995

[17] Kreifelts, T. "Coordination of Distributed Work:
From Office Procedures to Customizable Activities,"
Verteilte Kunstliche Intelligenz und Kooperatives
Arbeiten, 4. Internationaler GI-Kongress Wisensbasi-
erte Systeme, Munchen, Germany, Oct., 1991, pp. 148

[[18] Mohan, C. “State of the Art in Workflow Manage-
ment”, presented at the 5th International Conference on
Extending Database Technology, March 1996.

[19] Nutt, G. J. and C. A. Ellis, “Backtalk: An Office
Environment Simulator,” ICC ‘79 Conference Record,
June, 1979, pp. 22.3.1-22.3.5.

[20] Saastamoinen, H.T., On the Handling of Excep-
tions in Information Systems, University of Jyvaskyla
PhD Thesis Dissertation, November 1995

[21] Sheth, A., et. al. “An Overview of Workflow Man-
agement” in Distributed and Parallel Databases, 3,2.
April 1995.

[22] Wainer, J. and C. Ellis, “Goal Based Groupware”
in Collaborative Computing Journal, Vol.1, No. 1.

[23] “Workflow Management Specification Glossary”
by the Workflow Management Coalition 1995.

[24] White, T. and Fisher, L. The Workflow Paradigm -
The Impact of Information Technology on Business
Process Reengineering. Future Strategies, Inc.,
Alameda, CA, 1994.

[25] Zisman, M. D. Representation, Specification, and
Automation of Office Procedures, Ph.D. dissertation,
Wharton School, University of Penn., 1977.

.

Figure 1. An Example ICN representing Order Processing.

. .

new active

completedblocked

suspended

resumesuspend

complete

activate

schedule

schedule

Figure 2. The token status transition diagram. The events in italics
are constructors and destructors of tokens. All other events are
enactment operators.

construct

destruct destructmerge

new active

completedblocked

suspended

resumesuspend

complete

activate

schedule
schedule

Figure 3. The extended token status transition diagram.

fall out

fall out

fall out
send to

fall out

send to

construct

destruct destructmerge

