
Software Confi guration Management

E. James Whitehead, Jr. Annita Persson Dahlqvist (Eds.)

Software Confi guration
Management

Proceedings of the 12th International Workshop on Software
Confi guration Management (SCM 2005)
Lisbon, Portugal, September 5-6, 2005
Held in conjunction with ESEC/FSE 2005

Editors

E. James Whitehead, Jr.
Dept. of Computer Science
University of California, Santa Cruz
1156 High Street, SOE3
Santa Cruz, CA 95064
ejw@cs.ucsc.edu

Annita Persson Dahlqvist
Ericsson AB
Mölndal, Sweden
annita.persson.dahlqvist@ericsson.com

© 2005 Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profi t or commer-
cial advantage and that copies bear this notice and the full citation on the fi rst page. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specifi c permission and/or a fee. Request permissions from Publications Dept.,
ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

CR Subject Classifi cation (1998): K.6.3, K.6, D.2

ISSN: 0302-9743

12th International Workshop on Software Confi guration Management
http://purl.oclc.org/NET/SoftwareConfi gurationManagement/SCM2005/

Preface
In our complex technological civilization, the multidisciplinary teams who develop
large engineering projects produce vast quantities of documents representing multiple
views and perspectives of the developing system. These documents—such as
requirements, blueprints, designs, email, source code, test plans, and standards—are
highly interrelated, and taken together form a complex information artifact that
describes the system. Systems are constantly modifi ed in response to changes in
the environment or marketplace, a process that involves changing the associated
information artifact. So that system modifi cations proceed from full knowledge of the
system’s current state, all engineering activities share a common need to record the
confi guration of the documents that describe the system. Confi guration management
facilities that track the evolution of complex information artifacts over time are
necessary for tracking system confi gurations.

Today, software is a component of nearly all systems we construct. Due to software’s
malleability, and the large impact that even a small modifi cation can make, Software
Confi guration Management (SCM) has long been important in Software Engineering.
Indeed, it was in 1975, as the typical programmer experience was shifting from batch
work using punched cards and tape reels—capable of confi guration control using
paper-based techniques—to timeshared development of code stored on hard disks,
that the fi rst developer-oriented SCM system, SCCS, was developed. The intervening
three decades of research and commercial development have witnessed the creation
of scores of commercial and open source SCM systems. A testament to the continuing
relevance of SCM is that commercial sales of SCM tools comprise a billion dollar
a year marketplace, highlighting that SCM tools solve coordination and control
problems so severe that organizations are willing to make signifi cant investment to
solve them. SCM systems are part of the everyday experience of today’s software
engineers, and hence research that leads to improved understanding and capabilities of
SCM systems can have broad impact on software engineering practice.

This volume contains the research papers presented at the Twelfth International
Workshop on Software Confi guration Management (SCM 2005), held September 5-6,
2005, in Lisbon, Portugal. The workshop was held as part of the 2005 European Software
Engineering/Foundations of Software Engineering (ESEC/FSE 2005) conference, and
was attended by 22 people. The workshop received 16 paper submissions, 10 of which
were accepted. We would like to thank the workshop’s Program Committee for their
diligence in providing high quality reviews of all submissions.

August, 2005 Jim Whitehead
 Annita Persson Dahlqvist

SCM Workshops

 1. International Workshop on Software Version and Confi guration Control (SVCC),
Grassau, Germany, January, 1988
 2. Second International Workshop on Software Confi guration Management (SCM-
2), Princeton, New Jersey, October 24, 1989 (ACM Press, Software Engineering
Notes, Vol. 17, No. 7, Nov. 1989)
 3. Third International Workshop on Software Confi guration Management (SCM-3),
Trondheim, Norway, June 12-14, 1991 (ACM Press)
 4. Fourth International Workshop on Software Confi guration Management (SCM-4),
Baltimore, Maryland, 1993 (Springer, Lecture Notes in Computer Science (LNCS)
1005)
 5. Fifth International Workshop on Software Confi guration Management (SCM-5),
Seattle, Washington, May, 1995 (Springer, LNCS 1005)
 6. Sixth International Workshop on Software Confi guration Management (SCM-6),
Berlin, Germany, March, 1996 (Springer, LNCS 1167)
 7. Seventh International Workshop on Software Confi guration Management (SCM-
7), Boston, Massachusetts, May, 1997, (Springer, LNCS 1235)
 8. Eighth International Symposium on System Confi guration Management (SCM-8),
Brussels, Belgium, July, 1998 (Springer, LNCS 1439)
 9. Ninth International Symposium on System Confi guration Management (SCM-9),
Toulouse, France, September, 1999 (Springer, LNCS 1675)
 10. Tenth International Workshop on Software Confi guration Mangement (SCM-10/
SCM 2001), Toronto, Canada, May, 2001 (Springer, LNCS 2649)
 11. Eleventh International Workshop on Software Confi guration Management
(SCM-11/SCM 2003), Portland, Oregon, May, 2003 (Springer, LNCS 2649)
12. Twelfth International Workshop on Software Confi guration Management (SCM
2005), Lisbon, Portugal, September, 2005 (ACM Digital Library)

Proceedings for past SCM workshops can be found either in the ACM Digital Li-
brary (1989, 1991, 2005), or in Springer Link, the Springer digital library (all others
except 1988). The proceedings of the fi rst SCM workshop (SVCC) are not available
online, and are generally diffi cult to fi nd even in print form.

Program Committee of SCM 2005

Program Chairs

 • Jim Whitehead, University of California, Santa Cruz, USA
 • Annita Persson Dahlqvist, Ericsson AB, Mölndal, Sweden

Committee Members

 • Geoff Clemm, IBM Rational, USA
 • Reidar Conradi, NTNU Trondheim, Norway
 • Ivica Crnkovic, Malardalen University, Sweden
 • Wolfgang Emmerich, University College London, United Kingdom
 • Jacky Estublier, Centre National de la Recherche Scientifi que, France
 • André van der Hoek, University of California, Irvine, USA
 • René L. Krikhaar, Philips Medical Systems, Netherlands
 • Bernhard Westfechtel, University of Bayreuth, Germany
 • Andreas Zeller, University of Saarbrücken, Germany

Table of Contents

Confi guration Manaagement of Models

Odyssey-VCS: A Flexible Version Control System for UML Model Elements 1
 Hamilton Oliviera, Leonardo Murta, Cláudia Werner

Model Data Management–Towards a Common Solution for PDM/SCM Systems .. 17
 Jad El-khoury

Confi guration Management of Component Based Software

Observations on Versioning of Off-the-Shelf Components in Industrial Projects ... 33
 Reidar Conradi, Jingyue Li

Continuous Release and Upgrade of Component-Based Software 43
 Tijs van der Storm

Process Awareness and Assessment

Process Model and Awareness in SCM ... 59
 Jacky Estublier, Sergio Garcia

Towards a Suite of Software Confi guration Metrics .. 75
 Lars Bendix, Lorenzo Borracci

Confi guration Management of Architectures and Services

Service Confi guration Management .. 83
 Eelco Dolstra, Martin Bravenboer, Eelco Visser

ArchEvol: Versioning Architectural-Implementation Relationships 99
 Eugen Nistor, Justin Erenkrantz, Scott Hendrickson, André van der Hoek

Managing and Exploiting Structure

On Product Versioning for Hypertexts ... 113
 Tien Nhut Nguyen, Cheng Thao, Ethan Munson

Revision Control System Using Delta Script of Syntax Tree 133
 Yasuhiro Hayase, Makoto Matsushita, Katsuro Inoue

����������	
���
������������������������	������
�����������������������

��������	
�����
��	�����
��	��
���	�������	��
��
	

�
��������	�	�� ��� 	��!����
��!	���	���"���
	�#���#�	�
�!
��	
����
��	�����
 ���	�$	���	��	�����
�	�	�%
%	&�'	()*++	

,+-.*/-01	���	��	�����
��	&
�2��	
34��������	��
���	5�
��
67#� %�$
8%9
	

���������	����	#�

���	��
 ���	#���
��	 � ��� 	� �	�	 ��"��	����	�����	�4��	� 	
9�
���	 �$$�#����	��	����"�����	 ��
#�/#���%	:4� 	 ��"��	����	�����	� 	���	 �$/
$�#����	 ��	"
�����	��
 �����!	#�"�9������ 	 $�
	 �$�5�
�	�������!	����
������ �	
54�#4	�
�	 �
��!��	$�#� ��	��	����� � 	���	�
#4���#��
��	�� �!�	�
��$�#� %	;�	�4� 	
5�
<�	5�	���
���#�	�	$��'�9��	��
 ���	#���
��	 � ���	$�
	���	�����	������� %	
:4� 	��
 ���	#���
��	 � ����	�����	
�� ��/=���	���� 	5��4	�4�	#��"��'	����	
�����	� ��	9�	���/9� ��	�>��	���� %	��
����
�	��	����5 	�4�	#��$�!�
�����	
�$	9��4	�4�	����	�$	��
 �����!	���	����	�$	#��"�
� ��	$�
	��#4	 "�#�$�#	"
�8�#��	

� "�#���!	�4�	��$$�
���	���� 	�$	�4�	����
 �	������"����	 #���
�� %	

�� �����!������

���"���
	>����	��$�5�
�	��!����
��!	?�>��@	���� 	#��	9�	#�� �$���	����	�5�	����	
!
��" 	A,.BC	��5�
	�>��	���� 	���	�""�
	�>��	���� %	��5�
	�>��	���� 	�
�	�� ���	
#��#�
���	 �9���	 ��"�����������	 ���	 �� ���!	 � �� D	54�
�� 	�""�
	�>��	 ���� 	����	
5��4	 4�!4�
	 �9 �
�#����	 ����� �	 ��������!	
�E��
����� �	 ����� � �	 ���	 �� �!�	 �
��$�#� %	
&� ��� 	 �4�	 ��#� ���	 �$	 ��$�5�
�	 ���$�!�
�����	 ����!�����	 ?���@	 �""�
�	 $�
	
���
�	<���	�$	�>��	����	A,+B�	�4� 	 �""�
�	4� 	9���	��"�#����	$�#� ��	��	��5�
	�>��	
���� �	 "
������!	 �	 4�!�	 ��$
� �
�#��
�	 ���
	 �4�	 �� �	 ��#��� 	 ��	 ����
�!�	 ���������	�$	
 ��
#�/#���	�
��$�#� %		

��5���
�	���	��	�4�	��#
�� ��!	 �$�5�
�	������"����	#��"��'����	���	 �""�
�	� 	
�� �	������	9�	�""�
	�>��	���� %	�����/�
����	������"����	� 	���
!��!	� 	�	"
��/
� ��!	��#4��E��	$�
	#��"��'���	#���
��%	�����/�
����	�""
��#4� 	$�#� 	��	�4�	��$���/
����	�$	4�!4	�����	����� 	���	�""��	 �9 �E����	�
�� $�
������ 	��	�9����	��"�������/
����	�
��$�#� %	F���
�4��� �	�4�	#�

���	���	��$
� �
�#��
�	��� 	���	"
�"�
��	 �""�
�	
�4�	���������	�$	�����/9� ��	�
��$�#� %		

>	$�
 �	�4��!4�	5����	9�	��	���"�	�4�	�'� ���!	���	��#4��E�� �	$�
��
��	�""����	��	
 ��
#�/#����	��	�4� 	��5	#����'�%	��5���
�	#�

���	���	��$
� �
�#��
� 	�
�	���	 �����	
��	�4�	#��
 �	!
�����	�
��$�#� 	� ��	9�	�""�
	�>��	���� %	��
	�'��"���	�� �	#�

���	
���	 � ��� 	�
�	9� ��	��	$���	 � ���	 �
�#��
� �	54���	�""�
	�>��	���� 	�
�	9� ��	
��	 4�!4�
	 �����	 �
�#��
� %	 :4�	��""��!	 �$	 �4� �	 #��"��'	 �
�#��
� 	 � ��	 9�	 �""�
	
�>��	���� 	��	$���	 �
�#��
� 	� 	���!�
�� 	���	��	#��#�"�	�� ���#4%	

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profi t or commercial advantage and that copies bear this notice and the full citation on the fi rst page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee.
SCM 2005, September 5-6, 2005, Lisbon, Portugal. Copyright © 2005 ACM

��
����
�	�� �	���	 �����
� 	A+1�	++B	
�#������	�4�	 ���#����	������$�#�����	�$	
���$�!�
�����	 ;��� 	 ?�;@	 �4��	 ��"���	 ��	 ����������	 #4�
�#��
� ��# 	 �$	 �4�	 �$�5�
�	
������"����	"
�8�#� %	F��
��	���	 ����/�$/�4�/"
�#��#�	���	 � ��� 	4���	�	$�'��	����/
��$�#�����	�$	�;C	�4�	$���%	G��	��	�4� 	$�#��	���
�	�
��$�#�	�4��	���� 	��
 �����!	��$�
��/
����	 4����	 9�	 ��
��	 ����	 ��	 ����������	 $���%	 ��5���
�	 ��	 ���	 #�
#�� ���#� 	 ��	 � 	
����4�
	�� �
�9��	��
	"� �9��	��	��"	���
�	4�!4	�����	����� � 	���	�� �!�	�
��$�#�	����	
��	����������	$���%	

>����!	��	������ 4	�4�	�$$�#� 	�$	�4� �	"
�9��� �	5�	"
�"� �	�	�����	�""
��#4	��	
 �""�
�	 ���/9� ��	 �""�
	 �>��	 ���� 	 ��	 �������!	 �4��
	 �
��$�#� %	 :4� 	 �""
��#4�	
�����	
�� ��/=���	 #�� � � 	 �$	 �	=�
 ���	����
��	�� ���	 ?=��@	 $�
	���	�����	
������� 	�4��	#��	9�	�����
��	��	�4�	 "�#�$�#	���� 	�$	��#4	 �$�5�
�	������"����	"
�/
8�#��	 � 	
�#��������	 9�	���	 �����
� %	 :4�	����	 !���	 �$	
�� ��/=��	 � 	 ��	 ���	
�
#4���#� 	��	�4�	#��#�

���	�������!	�$	 �$�5�
�	 � ��� 	� ��!	4���
�!����� 	���/
9� ��	�""�
	�>��	���� %				

�� ��/=��	�������� 	 �	 "�
/"
�8�#�	 9�4����
	 �� #
�"��
	 �4��	 ��$�
� 	 4�5	 ��#4	
���	�����	�������	��"�	 4����	9�	�����%	:4� 	9�4����
	�� #
�"��
	����
���� 	54��	
���������	 ��$�
������	 � 	������	$�
	�	���	�����	��������	#�� ���
��!	�4� 	�������	
� 	 �	 �;%	 :4� 	 ���������	 ��$�
������	 #��"
� � 	 �	 ���E��	 ��
 ���	 ������$�#�����	 ���	
��'����
�	 #����'����	 ��$�
�������	 �#4	 � 	 54�	 #4��!��	 �4�	 ��������	 54��	 ��	 5� 	
#4��!���	���	54�	��	4� 	9���	#4��!��%	��
����
�	 �4� 	9�4����
	�� #
�"��
	�� �	����/
#��� 	54�#4	������� 	�
�	#�� ���
��	�����#	$�
	#��$��#�	����#����	"�
"� �%	
�� ��/
=��	
�� � 	�	#��$��#�	$��!	54��	�5�	�
	��
�	������"�
 	#��#�

�����	#4��!�	��	���/
����	�4��	� 	#�� ���
��	�����#%		

G�
��!	 �4�	 �� �!�	 �$	 ��
	 �""
��#4�	5�	 "
������	 ��
	 �5�	 ������� 	 ��	 ���
#���	
 ���	#4�����!� 	�� #
�9��	��	�4�	���	����
���
�	A*B�	 �#4	� C	?+@	����	�����	�4��	���� 	
5��4	#��"��'	�; D	?,@	4���!����� 	��
 �����!	$�
	��$$�
���	��"� 	�$	�; D	?H@	�� �
�9/
����	 ���	 4���
�!����� 	5�
< "�#� D	 ���	 ?.@	 #��#�

���	 ��!����
��!	5��4	4�!4	 �����	
����� %	��
����
�	 �	 !�����!	"4��� �"4�	�$	 ��
	5�
<	 � 	 ��	 ���"�	 �����
��2��	 ���/
���� 	���	 �##� $��	��#4����!�� 	� ��	��	��4�
	=�� %	

:4�	
� �	 �$	 �4� 	 "�"�
	 � 	 �
!���2��	 � 	 $����5 %	 ��#����	 ,	 ������ 	 �4�	 "
�9���	 ��	
!
����	 �4�	 �� ���!	 �� #� ���%	 ��#����	 H	 "
� ��� 	 ��	 ���
���5	 �$	
�� ��/=���	
54�#4	 � 	 $����5��	9�	�	�� #� ���	�$	�� 	 ����
���	��#4��� � 	��	��#����	.%	��#����	*	
 4�5 	�	 �
��!4�$�
5�
�	�'��"��	 �4��	����� �
��� 	4�5	�4�	#4�����!� 	$�
��
��	�� /
#� ��	�
�	���
� ��%	��#����	(�� #� � 	
������	5�
<�	���	5�	#��#����	�4�	"�"�
	��	
��#����	0	5��4	��	������<	��	��
	$���
�	5�
<%	

"� #�������	���������

=�� 	�4��	� �	�	����	�����	9� ��	��	$���	 � ���	 �
�#��
� 	� �����	#�� ���
	$��� 	���	
��
�#��
�� 	� 	�4��
	�; %	:4� 	�""
��#4	���� 	��	�4
��	��"� 	�$	�; C	#��"� ����	��'����	
���	9���
�%	:4�	$�
 �	��"��	#��"� ���	�;�	� 	
�"
� �����	9�	��
�#��
�� 	���	#��	�!!
�/
!���	��'�����	9���
�	�
	��4�
	#��"� ���	�; %	:4�	 �#���	��"�	�$	�;�	
�"
� �����	9�	��'�	
$��� �	� 	�4�	�� �	��"�
����	��"�	9�#�� �	��	#��	9�	����
�����	����"������	9�	�4�	=��	
��	 �
��
	 ��	 �'�#���	 9� �#	 ��
 ���	 #���
��	 �"�
����� �	 �#4	 � 	 ��$$�	 "��#4	 ���	��
!�%	

2 Oliviera et al.

:4�	 �4�
�	 ��"��	9���
�	$��� �	 � 	����	#���
������	9��	���	 ����
�����	����"������	9�	 �4�	
=��	 ��#�	�4��
	����
���	 �
�#��
� 	�
�	� �����	�"�E��	��	�4� 	����%	

��
	�4� 	
�� ���	��'�	$��� 	�
�	 ���	9�	�4� �	=�� 	� 	54���	9�'	�
��$�#� �	���	9���
�	
$��� 	�
�	 ���	� 	9��#<	9�'	�
��$�#� %	;�	$�#��	�4�	� �	�$	��������#	��
!�	$�#������ �	����	
$�
	��'�	$��� �	� 	<��5�	��	9�	��	�

�
	"
���	�#������	A+,B%	:4��	� �����	"
�����	!���
�#	
��
!��!	��!�
��4� 	�4��	��	���	��<�	����	�##����	�4�	 "�#�$�#	 ����#��#	 �
�#��
�	�$	�4�	
��'�	$���%	;�	 "���	�$	�4� 	�����������	���� �	���	=�� 	� �	��'�	$���	��
!�
 	5��4���	��$/
$�
��������!	��'�	$���	#������ %	��
	�'��"���	�4�	 ���	��
!�	��!�
��4�	� ��	5��4	�	$���	
��'�	$���	� 	�� �	� ��	5��4	�	�
���!	$����	�	����	$����	�	��:�I	$���	�
	����	��	I��	$���%			

��
����
�	�	#�����	��!�
��4�	� ��	9�	����	���� 	��	�� #���
	�4�	��"�	�$	�	$���	� 	
9� ��	��	#���
��	#4�
�#��
 %	:4� 	��!�
��4�	 ��
#4� 	$�
	�	2�
�	>��;;	9���	�� ���	�4�	
$���%	;$	�4� 	9���	� 	$�����	�4�	$���	� 	��
<��	� 	�	9���
�D	��4�
5� ��	�4�	$���	� 	��
<��	� 	
�	 ��'�%	:4� 	��!�
��4�	 � 	� ���	 $�
	�'��"���	9�	��	=� ���	���
#���$�	 A,HB%	&�����	
��4�
	"
�9��� 	
������	��	�4�	���	�'� ���#�	�$	2�
�	>��;;	9���	#���
��	#���	��	 ���	
9���
�	$��� �	���	��$$�
���	<��� 	�$	��'�	$��� 	5���	9�	��
<��	� 	�	$���	��'�	$���%	F���
�4�/
�� �	$�5	=�� 	 �#4	� 	��������	����
�� �		"
�����	 "�#���	 �""�
�	$�
	��$$�
���	$���	
��"� 	?�!%	����	��#�	'���	��#%@	���	����5	�4�	� �!�	�$	�'��
���	��
!�
 	A,(B%	

�4��	 �	 $���	 � 	��
<��	 � 	 �	 $���	 ��'�	 $����	 �4�	=��	#�� ���
 	 �	 ����	 � 	 �4�	����	 �$	
#��"�
� ��+	?��@%	> 	 4�5�	��	��!%	+%��	�4�	��	� ��	��	�	$���	��'�	$���	� 	��""��	����	
�	"�
�!
�"4%	:4� 	� 	�	5���	$�����	��""��!	9�#�� �	�	"�
�!
�"4	4� 	����!4	#�4� ���	
���	
�������	��5	#��"���!	5��4	��4�
	"�
�!
�"4 �	���	�	��$����	 �
�#��
�	#��"� ��	9�	
�	��"�#	 �����#�	���	 ���	 �""�
���!	 �����#� %	��5���
�	�4� 	� 	���	�4�	#� �	��	��4�
	
 �������� 	� 	$����5 C	

	
�� >	�
���!	 $���	� �����	4� 	#��"��'	 $�#� 	���	
��� 	5
�����	� ��!	��
�	 �4��	���	

����%	;�	�4� 	#� ��	��	 4����	9�	�
���!	"
���#��� %	
�� >	����	$����	� 	���	��4�
	�98�#�/�
������	���!��!��	4� 	#��"��'	 �
�#��
� 	 �#4	

� 	 "�#<�!� �	 #�� � �	 ���4�� �	 ���	 ���
�9��� �	 5��4	 ���4�� 	 ���	 ���
�9��� 	 � 	
"� �9��	#�������� 	��	9�	��%	

�� >	��:�I	$���	��� 	���	� �	#�

��!�	
���
�	���	����$���	� 	��������
 	��	�	"�
�/
!
�"4	 �
�#��
�%	 >	 9���<	 ����	 � 	 ������	 ��	 ������$�	 �	 "�
�!
�"4%	 > 	 �	 #�� �/
E���#��	��	 4����	9�	�4�	54���	 �
�#��
�	9��5���	9���<	���� %	

�� ��������	��	I��	$���	� 	�	��#�����	#��"� ��	�$	������� 	�4��	���	4���	��4�
	
������� 	���	���
�9��� 	9�	�4�� ���� %	;�	�4� 	#����'��	�	
�� ���9��	��	5����	9�	
������� 	 �
	 ���
�9��� %	 >�	 �������	 �
	 ��	 ���
�9���	���	 9�	 #��"� ��	 �$	����	
���� 	���	#4��!� 	��	���	�$	�4� �	��$$�
���	���� 	 4����	9�	#�� ���
��	� 	#4��!� 	
��	�4�	 ���	��%	

	
:4�	� �	�$	����	� 	��	� 	� "�#�����	�""��#�9��	��	 �������� 	54��	�	 ��!��	����	4� 	

4�!4	#�4� ���	���	 ��5	#��"���!	5��4	��4�
	���� %	���� 	 4����	���	9�	� ��	� 	��	��	
$��� 	�4��	��"���	����	����� 	5��4	��$$�
���	�9 �
�#����	 �
�#��
� %	;�	�4�	#� �	�$	����	
$��� �	 �$	�	 ����	����"4�
	� 	� ���	��	� 	��""��	��	�	���	�'� ���!	����	 �
�#��
�	?��!%	

																																								 																			
+	��	��$���	����	�$	#��"�
� ��	� 	��	�����#	�������	� ��	$�
	#��$��#�	#��"�������%	���$��#� 	

�##�
	54��	�5�	�
	��
�	������"�
 	#��#�

�����	5�
<	��	���	"�
�	�$	�4�	 ���	����	�$	#��/
"�
� ��%	

3Odyssey-VCS: a Flexible Version Control System for UML Model Elements

+%9@%	>	����	���4��	���	9�	��"��������	9�	��
�	�4��	���	����D	54�
�� 	�	����	���	
#��"
� �	��
�	 �4��	 ���	 ����	 #������	 �����	 9�	 �	 ���#����%	 ;�	 ���������	 �	 #��/
����	 � 	� �����	 ���	�'#� �����	#��"���	 ��	��4�
	#������ 	 ��	9�	#�� ���
��	�	��%	
���#��	�4�	����#����	 �
�#��
�	 4����	9�	8���	���
�9��� 	���	���4�� %	
	

	

�$����	��

���	��	�""����	��	$���	��'�	$��� �	����	$��� 	���	���	I�;	$��� %	

> 	�� #� ��	9�$�
��	 ���	=�� �	 �#4	� 	��������	����
�� ��	"
�����	 �""�
�	$�
	
��$$�
���	�9 �
�#����	 �
�#��
� 	�4
��!4	�	"��!!�9��	��
!�	$�#�����%	:4� 	 �
���!��	4�5/
���
�	� 	���	����!4	��	"
�����	�4� 	<���	�$	 �""�
�	9�#�� �	�4�	��	#��#�"�	����	4��" 	
��	 ��	�	9�����
�	9��5���	$���	"�
� %	;�	�4� �	 � ��� �	�4�	54���	$���	� 	#�� ���
��	��	
9�	�	����	�$	��
 �����!,	?�=@%	��
	�'��"���	��	�	$���	��'�	$����	��	� 	�	"�
�!
�"4	���	
�4�	�=	� 	�4�	54���	��#������	� 	 4�5�	��	��!%	+%�%		

:4� 	 "
�9���	 � 	 ��
�	 �!��$�#���	 54��	 �4�	 $���	 ��"�	 ��� 	 ���	 $��	 �4�	 �9 �
�#����	
 �
�#��
�	 �$	 �4�	 $���	 � ���	 ����	 �����%	 ��
	 �'��"���	 ����	 ���	 4���	 ���	 �
	 ��
�	
#�� � 	"�
	$���	���	�4� �	#�� � 	�� �	9�	"�
�	�$	�4�	 ���	"�#<�!��	#�� �E�������	�4�	
�=	��"	��	�	���	�'� ���!	8���	��������	� 	 4�5�	��	��!%	+%9%	;�	�4� 	 #���
���	�	"�#</
�!�	���	4���	��
�	 �4��	���	�=	�� �
�9����	 �4
��!4	��$$�
���	$��� �	���	�	#�� 	���	
 4�
�	�4�	 ���	�=	5��4	��4�
	#�� � 	��	�4�	 ���	$���%	

����	$��� 	�
�	���	 �4�	5�
 �	#� �%	>	#���������	���	9�	� ��9�� 4��	��	
�#������	
�4�	#�� �
�#����	�$	����	���	#�� 	"�
	 $���%	 ;�	 �4� 	5���	�=	5����	9�	��""��	��	�4�	
#�� 	�9 �
�#����%	:4�
�$�
��	��#4	#�� 	��	�4�	 � ���	5����	4���	�4��
	���������	#��/
�
�����	������������%	
�	�4�	��4�
	4����	�98�#�	�
������	����	�����	#��	�� �	9�	����	
"�
 � ����	 �4
��!4	 $��� %	
��	 �$	 �4�	 �� �	 #�����	 �""
��#4� 	 ��	 ��"	 ��	 �98�#�/
�
������	����	�����	��	�	$���	� 	��	� �		��
<�"	���!��!� %	;�	�4� 	#� ��	�4�	54���	�98�#�	
���5�
<	 � 	 ��""��	 ����	 �	 ��!���
	 $���C	 ��	 I��	 $���%	 ��
	 �� ���#��	 54��	 ��������	
����
�� �	��
< 	�	$���	� 	I���	��	� 	#4��!��	���	�4�	��
!�	���	��$$	���� 	�#�	��	�	

																																								 																			
,	��	��$���	����	 �$	 ��
 �����!	 � 	 ��	 �����#	 �������	 � �#�����	 ��	��
 �����!	 ��$�
������%	>	

��5	��
 ���	�$	�4�	�������	� 	#
�����	54��	���	"�
�	�$	��	� 	����$���%	

%�&�
�������������� %�&�����'� ������%�&�(�)�������

��#<�!�	

��� 	

���4��	

�������	

��	

G�#�����	

��
�!
�"4	

�4
� �	

��
�	

��	

�=	

$���	
!
�����

#��
 �	
!
����� �����	

��#<�!�	

��� 	

"�
�����	

��	

�=	

�=	

4 Oliviera et al.

 "�#���	5��	��	"
�����	��
�	#���
��	���
	"�
�����	������"����%	��5���
�	�=	
����� 	
9���!	�4�	54���	I��	$���%	

;�	 ��
	 "�#�$�#	 #� ��	 ���/9� ��	 �""�
	 �>��	 ���� 	 � �	 ��	 �98�#�/�
������	 ����	
�����	�����	����	
98�#�	��#�����	 ?�
�@	A+)B	���	"�
 � �	 �4��
	����� 	� ��!	I��	
��������	;���
#4��!�	?I�;@	$�
���	A,1B%	;�	�4� 	 #���
���	�4�	54���	�98�#�	���5�
<�	
#��"� ��	�$	�4�� ��� 	�$	����� � 	���	�� �!�	�
��$�#� �	� 	"�
 � ���	����	�	 ��!��	I�;	
$���%	��!%	+%#	 4�5 	�	$
�!����	�$	��	���	#�� 	���!
��	��""��	��	��	I�;	$���%	��	
� 	 �����
	 �4��	 ��	 �"�
�����	 ����	 �$	 ��������	 ����
�� �	 I��	��
!�	 � 	 � ��%	 :4� 	
�##�
 	9�#�� �	�	���	�"�
�����	� 	�� #
�9��	���	����	I��	������� �	54�#4	
�"
�/
 ���	�� �9������	
���
�	��"��	�
!����� �	��#%�	���	�4�	"�
�����	������"����	���
	��$$�
���	
I��	 �9/������� 	�$	�4�	 ���	���	�"�
�����	5����	���	#��$��#�%	

>���4�
	9��	� "�#�	
������	��	��	��	�4� 	 #���
��	� 	
�!�
���!	�4�	"
�'�����	"
��#�/
"��%	���	 � � 	 ��	F/����� ���	 �
�#��
�	 #��"� ��	 9�	 ��$$�
���	 ���!
�� 	 ��	�����	
 �$�5�
��	 ���	 �4� 	F/����� ���	 �
�#��
�	 � 	��""��	 ��	�	 ��!��	I�;	$����	54�#4	 � 	�	
���/����� ���	 �
�#��
�%	 :4� 	 "
�9���	 ����
�!� 	 �4�	 ��$$�#����	 �$	 ��"��������!	 !�/
��
�#	 #��$��#�	 ����#����	 ��!�
��4� %	 ��
	 �'��"���	 �5�	 #�� � 	 #����#���	 ���	 ��4�
�/
���#�	� �#������	�
�	#�� ���
��	J���
K	��	�	���	�����%	��5���
�	�$	��
�	�4��	���	
������"�
	 #4��!� 	 �4� �	 #�� � 	 #��#�

������	 =��	 5����	 "
�9�9��	 ���	 9�	 �9��	 ��	
����#�	�	#��$��#�	9�#�� �	�4�	#�� � 	�
�	�"�
�	$
��	��#4	��4�
	��	�4�	I�;	$���%	

:4�	"
�9��� 	�
�	����	5�
 �	54��	�����2��!	�4�	�=%	�=	��	�4� 	#� �	� 	�4�	54���	
���	�����	���	��	� 	���	"� �9��	��	�� ���!�� 4	��
 ��� 	�$	�� 	"�
� �	 �#4	� 	#�� � 	�
	
� �	 #� � %	 :4�	 �""�
	�>��	 ���� 	5���	 ����	 9�	 �9��	 ��	 ���#�	 ��
 ��� 	 �$	 �4�	54���	
�����	 ��	5�
<	��%	:4�
�$�
��	 �4�	������"�
 	#����	���	� <	 �4�	=��	54�	#4��!��	�	
 "�#�$�#	� �	#� �	�5�	��� 	�!�	�
	54��	�4�	�'� ���!	��
 ��� 	�$	�	!����	#�� 	�
�%	

*� ����������	��)��)��+�

>����!	 ��	������ 4	 �4�	�$$�#� 	�$	 �4�	"
�9��� 	"
� �����	 ��	��#����	,�	5�	���
���#�	

�� ��/=���	�	$��'�9��	=��	$�
	���	�����	������� %	;�	�4� 	 �#����	5�	�� #� 	�4�	
4�!4/�����	 $����
� 	 �$	
�� ��/=��	 ���	 4�5	4�5	 �4� �	 $����
� 	 4��"	 ��	���
#���	
�4�	#4�����!� 	"
� �����	��	��#����	+%	

*��� ���,����-����������

���
�	 �""�
	�>��	 ����	 "��� 	�������!	 ������� 	 ����	 �5�	 #���!�
�� C	 ������#	 ���	
 ����#��#	������� %	�������#	������� 	 ��9���2�	#��#�"����	������� 	���	#������	���	
��$�
������	
������	��	�4� �	������� �	54���	 ����#��#	������� 	�
�	
�"
� �������� 	�$	
 ������#	������� 	�� ���	�	���!
��	���	�4��
	����	�
�	���!
��	��"�������	��<�	#���
�	
"� ������	���	 �2�%	;�	�4�	#����'�	�$	�4�	"
�"� ��	�""
��#4�	�; 	�
�	 ������#	������� 	
�$	���/9� ��	�""�
	�>��	���� %	:�	9�	��
�	"
�#� ��	���	 �9��"�	�$	�����������		
��	�4�	���	����/�����	� 	�	#��������	��	9�	�;	��	��
	�""
��#4%	��
	�4� 	
�� ���	
�/
� ��/=��	 � 	 �9��	 ��	 ��
 ���	 ����	 �4�	
������� 4�" 	 ����!	 ���	�����	 ������� �	
 ��#�	
������� 4�" 	 �
�	 �� �	�����	 ������� %	�'��"�� 	�$	 �4� �	�����	 ������� 	 �
�C	
� �	#� � �	�#��
 �	#�� � �	#�� 	� �#������ �	�"�
����� �	���
�9��� �	#��"����� �	��#%		

5Odyssey-VCS: a Flexible Version Control System for UML Model Elements

G��	��	 �4�	#��"��'���	�$	 �4� 	����	������	 ��	 � 	���	�� �
�9��	 ��	4���	�	 ��!��	��
/
 �����!	9�4����
	 $�
	���
�	�;	 ��"�%	��
����
�	�� �	���	 �����
� 	
�#������	 �4�	
��$�������	�$	�	"�
/"
�8�#�	���	"���	A+1B	���	��	��"�
����	 �#����	�$	�4�	���	"���	� 	
�4�	�;	������$�#�����%	:4�	�;	������$�#�����	 �#����	�$	�4�	���	"���	�� #
�9� 	���	�; 	
�4��	 4����	9�	"��#��	����
	���%	��5���
�	�4�	#�

���	=�� 	��	���	5�
<	5��4	$���/
!
�����	 �; %	 > 	 �	 #�� �E���#�	 �$	 �4� 	 "
�9����	 ���	 �
��$�#� 	 �
�	 "��	 ����
	 ��
 ���	
#���
���	
� �����!	��	��	�'�
�	���
4���	��	�4�	���
���	"
�#� �	 ��#�	 ���	�
��$�#� 	�
�	
���	 �""� ��	��	9�	#���
�����%	

�
	�""
��#4	����5 	�	$���/!
�����	��$�������	�$	�; %	��
	�'��"���	�	#�� 	���	9�	
��$����	� 	��	�����#	�;	$�
	�	!����	"
�8�#�D	54�
�� 	�"�
����� 	���	���
�9��� 	���	9�	
#���
�����	��	����4�
	"
�8�#�%	:4� 	$��'�9�����	"
������	9�	
�� ��/=��	����5 	��
�	
"
�#� �	��$�������	�$	�; �	��4�
��!	��	�4�	
�#����������� 	�$	�'� ���!	���	 �����
� %	

*�"� .���$����!�����������$�

> 	�� #� ��	9�$�
��	 �4�	 �$�5�
�	������"����	"
�#� 	���� 	5��4	��$$�
���	<��� 	�$	
�
��$�#� �	 �#4	� C	� �	#� �	�� #
�"���� �	� �	#� �	���!
�� �	#�� 	���!
�� �	 �E���#�	
���!
�� �	 #����	 �� �	 "��� �	 �� �	 �����	 ��#%	>��	 �4� �	 �
��$�#� 	�� �	 9�	 #���
�����	 ��	 �	
#�� � ����	5��	 ��	"
�����	 ��" 4�� 	 �$	 �4�	 � ���	 ��	��$$�
���	������ 	�$	������"/
����	���	���������#�%	:4� �	 ��" 4�� 	54��	�""����	��	�	$�
���	
��� ���	�
�	#�����	
9� ����� 	�
	 � ���	#��$�!�
����� %	

>	9� �����	#��	9�	 ���	� 	�	��
 ���	�$	�4�	54���	 � ���%	��#4	�����	�������	4� 	
�� 	�5�	��
 ����	9��	�4�	�!!
�!�����	�$	�4� �	�����	������� 	4� 	����4�
	��
 ���C	�4�	
9� �����	��
 ���%	>	"
�9���	
������	��	�� �	=�� 	� 	�4�	5��	�4��	����!�	9� ����� %	
&� ����� 	�
�	���	 ���	� 	#��"� ���	��
 ��� �	9��	�	 �
�#��
�	5��4	�	#��"������	��$$�
/
���	 ������#%	 ;�	 � 	 �	 �
��9��	 ��	 �������� 	54�
�	����	���	9� �����	 �����	 � 	 ���	 �$$�/
#����%	:4�
�$�
��	�� �	#�

���	=�� 	��	���	� �	��
 ���	���	9� �����	��	�	4���!���/
�� 	5��	���	��	�	��#<	�$	#��"� ���	�; %H	>	9� �����	� 	�	 "�#���	<���	�$	�;�	�	#��"� /
���	���%	;�	�!!
�!��� 	��4�
	�; 	���	�� 	��
 ���	� 	
������	��	�4�	��
 ��� 	�$	�� 	"�
� %	;$	�	
��5	��
 ���	� 	#
�����	$�
	 ���	"�
�	�$	�	#��"� ���	�;�	�	��5	��
 ���	 4����	�� �	9�	
#
�����	$�
	�4�	54���	�;%		

;�	��
	�""
��#4	9��4	9� ����� 	���	��
 ��� 	�
�	�����	��	�4�	 ���	5��%	;$	�	�;	� 	���	
#��"� ��	 �$	 ��4�
	 �; �	 �4�	 ������	 �$	 ��
 ���	 � 	 �4�	 #�����������	 ���%	 ��5���
�	 �$	
�4�
�	� 	�	#��"� �����	
������� 4�"	9��5���	�; �	�4�	��
 ���	�$	���	�;	��"��� 	��	�4�	
��
 ���	�$	�4�	��4�
%	:4� 	 ��������	� 	#��"�
�9��	��	�4�	� �!�	�$	9� ����� %	:4�	����	
��$$�
��#�	9��5���	�4�	#�����������	�""
��#4	���	��
	�""
��#4	� 	�4��	��	��
	#� �	�4�	
9� �����	� 	���	����4�
	��"�	�$	��������	9��	�	�;�	���%	��
	�'��"���	�	���	�����	4� 	
"�#<�!� 	#��"� ��	�$	#�� � 	���	#�� � 	#��"� ��	�$	���
�9��� 	���	�"�
����� %	 ;�	
�4� 	 #���
���	�	"�#<�!�	#��	9�	 ���	� 	�	9� �����	�$	���	�� 	#�� � �	���	�	#�� 	#��	9�	
 ���	� 	�	9� �����	�$	 �� 	���
�9��� 	���	�"�
����� %	 ;$	���	���
�9���	 � 	#4��!���	�	��5	
��
 ���	�$	 �4�	#�� 	 �4��	 ��#�" ����� 	 �4� 	���
�9���	 � 	 �� �	#
������	9�#�� �	 �4�	#�� 	
4� 	 9���	 ����
�#���	 #4��!��%	 G��	 ��	 �4�	 ��5	 ��
 ���	 �$	 �4�	 #�� �	 �4�	 "�#<�!�	 �4��	
#������ 	�4� 	#�� 	5���	�� �	
�#����	�	��5	��
 ���%		

																																								 																			
H	> 	��	�'#�"����	5�	#��	#���	��9��
 ���	AHB�	54�#4	�
��� 	��
�#��
�� 	� 	#��"� ���	�; %	

6 Oliviera et al.

:4� 	 4���!����� 	 5��	 �$	 �
�����!	 9� ����� 	 ���	 ��
 ��� 	 ����5 	 $���
�	 E��
�� 	
���
	 �	 "�#�$�#	 "�#<�!�	 �
	 #�� 	 ���	 #��"����	
�#�� �
�#����	 �$	 ���	 "
����� 	 �����	
5��4	�4�	#�

�#�	 ��	�$	���
�9��� 	���	�"�
����� %	��
	�� ���#��	��	� 	"� �9��	��	� <	$�
	
�4�	�� �	
�#���	��
 ���	�$	�4�	
���	�;	�$	�	 � ���	?�%�%	���	�����@%	G��	��	�4�	���/
$�
�	����"4�
	 $�
	 ��
 ��� 	 ���	 9� ������	 ��	 � 	 �� �	 ��	 �
�� $�
�	 �4� 	 �������	 ����	 �	
"�
�	�$	�	9�!!�
	 � ���	9�#�� �	�4�	54���	 � ���	� 	 ���	9�	
�� ��/=��	� 	��	�
��/
��
�	�;%	

>	 "� �9��	 �
�59�#<	 �$	 �4� 	 �""
��#4	 � 	 �4�	
� <	 �$	 ��	 �'"�� ���	 �$	 ��
 ��� 	 �$	
#��"� ���	�; %	��5���
�	$���/9� ��	=�� 	�4��	� �	�4� 	�""
��#4	����	5��4	�4� 	"
�9/
���	9�	�""����!	4�
�/���< 	 ��	 �9/�; 	 �4��	4���	���	#4��!��%	��	�� �	� �	�4� 	��#4/
��E��	��	�����	5� ��	�$	 ��
�!�	 "�#�%	

�� -������!��������.�����$����!��/��0�,�����

:4�	� �!�	�$	�	�����
 ��	$�
���	� 	�	<��	$����
�	��	 �""�
�	4���
�!����� 	5�
< "�#� �	
����������	9�	��$$�
���	�""�
	�>��	���� %	I�;	� 	�4�	�� �	���"���	$�
���	$�
	9��4	
#����
#���	 ���	�#�����#	���/9� ��	�""�
	�>��	���� %	��
	 �4� 	
�� ���	
�� ��/
=��	 �""
��#4	 � � 	 I�;	 � 	 �4�	 "
���#��	 �$	 #������#�����	 9��5���	 �""�
	 �>��	
���� 	���	�4�	=��%	:4� �	���� 	#��	#����#�	��	
�� ��/=��	�4
��!4	�4�	;���
���	���	
E��
�	$�
	�	 "�#�$�#	��
 ���	�$	�	�;�	����$�	��	���	 ���	9�#<	��	
�� ��/=��%	

*�1� ����!��������$�������$�

�� ��/=��	� 	9� ��	��	��	�"���� ��#	 �
���!�	$�
	#��#�

��#�	#���
��%	:4�	�"���� /
��#	 �
���!�	��� 	������"�
 	#4��!�	�4�	 ���	�����	��	"�
������	���	��
!�	�4�	#4��!� 	
54��	 �4�	����� 	�
�	#4�#<��/���	� 	 4�5�	��	��!%	,%	:4� 	 �
���!�	����
�!� 	"�
�����	
5�
<�	 9��	 ��#
�� � 	 �4�	 #��"��'���	�$	��
!�	 ��!�
��4� �	� 	��������	 ����
	 ��	��#����	
.%,%	

	

	

�$��"��
"���� ��#	 �
���!�	$�
	#��#�

��#�	#���
��	

:4�	�
�!����
#��$�!�
�����	 4�5�	��	��!%	,%9	� 	�4�	 ��
���!	"����	�$	�	��5	������"/
����	#�#��%	:4�	� �
	#��$�!�
�����	� 	#
�����	54��	�	!����	������"�
	#4�#< /���	�4�	

�!����	#��$�!�
�����	

� �
	#��$�!�
�����	

��

���	���$�!�
�����	

�����	#��$�!�
�����	

���
����	

���
����

��
!�	

��������	
���� �
����
�	������

�4�
	
#4�#</�� 	

7Odyssey-VCS: a Flexible Version Control System for UML Model Elements

�
�!����	#��$�!�
�����	���	"�
$�
� 	 ���	#4��!� %	G�
��!	 �4� 	"�
���	�$	 �����	��4�
	
������"�
 	�� �	5�
<	��	 �4�	�
�!����	#��$�!�
������	��
!��!	 �4��
	5�
<	 ����	 �4�	#�
/

���	#��$�!�
�����%	��������	�4�	� �
	#��$�!�
�����	� 	�� �	��
!��	����	�4�	#�

���	#��/
$�!�
������	#
�����!	�4�	$����	#��$�!�
�����%	

�4��	 �	 #��$��#�	 � 	 ����#���	 ��
��!	 �4�	 ��
!�	 "
�#���
��	 �4�	 54���	 #4�#</��	 � 	

�����/9�#<	 ���	 �4�	 ������"�
	
�#���� 	 �	�� �!�	 #��������!	 �	 ��������	 #��$��#�	 ��/
 #
�"����	���	�4�	�
�!�����	� �
	���	#�

���	#��$�!�
����� %	>$��
	"�
$�
���!	�	������	
��
!��	54�#4	 #��	9�	 �""�
���	9�	�'��
���	 ���� �	 �4�	������"�
	
� �9��� 	 �4�	���	
�����	��	�4�	
�"� ���
�%	

1� ����������	�����������

:4�	
�� ��/=��	�
#4���#��
��	54�#4	5� 	 ��"��������	 ��	 ����	 $
��	 �4�	 #
��#4	 ��	
�����	��"�����#�� 	 ��	 �'� ���!	 $���/9� ��	=�� �	 � 	 #��"� ��	�$	 �4
��	��8�
	 ����
 C	
#������	�
�� "�
��	���	 �
��
%	:4�	�� �	��"�
����	�������	�$	�4�	
����	
������	"
� �����	
��	��!%	H%��	� 	�4�	�""�
	�>��	����%	��	�
�	� ����!	�4��	�4� 	����	� � 	���	� 	���/
����!	 ��������	 ���	 � 	 �9��	 ��	 �'��
����2�	 ���	����� 	 � ��!	 I�;%	 :4�	 ����!
�����	
9��5���	 �4�	 �""�
	�>��	 ����	 ���	 �4�	
�� ��/=��	 ��$
� �
�#��
�	 #��	9�	����	���	
�5�	 ����
������	 ��#4��� � C	
�� ��/=��	 "��!/��	 ���	
�� ��/=��	 #�����	 ����%	
����	�""�
	�>��	���� 	�$$�
	��	�'��� ���	 ��$
� �
�#��
�	 �4��	����5 	 �4�	��������	�$	
�'��
���	 ���� %	 ;�	 �4� 	#� ��	
�� ��/=��	"��!/��	#��	9�	� ���	"
������!	�	 ����� 	
����!
�����%	��
	�� ���#��	5�	���"���	�4� 	��#4��� �	��	����!
���	
�� ��/=��	5��4	

�� ��	 ����
������	 A,*B%	��5���
�	 ���	 �""�
	�>��	 ���� 	 4���	 �	 "��
��	 ��#�/
������	�'��� ���	��$
� �
�#��
��	�
	��	���	����	4���	��%	;�	�4� �	 �������� �	��	� 	"� �/
9��	��	� �	�4�	
�� ��/=��	#�����	����%	:4� 	����	�"�� 	��	I�;	$���	"
����� ��	 ����	
9�	 �4�	�""�
	�>��	����	���	����5 	 �4�	�'�#�����	�$	
�� ��/=��	#������ %	:4� 	
��#4��� �	5� 	� ��	��	����!
���	
�� ��/=��	5��4	�� �����	A+B%	

	

	

�$��*�	
�� ��/=��	
��
���	>
#4���#��
�	

:4�		�������	
������	"
� �����	��	��!%	H%9�	� 	
� "�� �9��	��	����5	�� �
�9����	�����/
�"����	 �$	���	����� 	 ���
	 �4�	 ;���
���%	:4�	 #�

���	 ��"�����������	�$	 �4� 	 ����
	
� � 	 ��#��	 #��� 	 �
	��9	��
��#� 	 A,B	 � 	 �	 �
�� "�
�	 "
���#��%	��5���
�	 ��	 #��	9�	
�/
"��#��	 9�	 ��4�
	 "
���#�� �	 �#4	 � 	��9G>=�	 ��;�	 �#<�� �	 ��#%	��
����
�	 9�$�
�	
9���!	 ���	���
	�4�	;���
����	�4�	I�;	$��� 	"� 	�4
��!4	�	#��"
� ���	����
	?2��9@	��	
��#
�� �	�4�	���
���	�4
��!4"��	�$	�4�	�
�� "�
�	����
%	:4� 	<���	�$	�""
��#4�	��	"��#�	
�$	� ��!	����� �	� 	�� �	9���!	���"���	9�	��4�
	���	���� 	A(B%	

�""�
	
�>��	
����	

��	����	

I�;	

�� ��/=��	

9�4����
	
�� #
�"��
		
?I��@	�
�	��"� ���
�	

��9	
��
��#� 	

�� ��/=��	
"��!��	

�� ��/=��	
#�����	����	

�
	L	

����������������� ������������������
������	
����������

8 Oliviera et al.

��������	�4�	������
�����	"
�#� � 	�4�	I�;	$��� �	�""����!	��$$�
���	��
 �����!	9�/
4����
 	��"�����!	��	�4�	"
�8�#�	���� %	:4�	#4�#<��/��	I�;	$���	� 	�
�� $�
���	����	
��	�98�#�	���5�
<�	54�#4	� 	��
!��	5��4	�'� ���!	�98�#� 	���	 ��
��	����	�	�
�	��/
"� ���
�	�����	�G�	A+HB	$�
	$�
�4�
	E��
���!	���	
��
�����%	&��4	9�4����
	#��$�!�
�/
����	���	��
!�	��!�
��4�	�
�	"
� �����	��	�4�	��'�	 �#���� %	

1��� 2�3�)���������$!�������

�4��	 �	���	�����	 �������	 � 	 #4�#<��/���	 �	 "�#�$�#	 �#����	 4����	 9�	 "�
$�
���%	
��5���
�	� 	�	$��'�9��	�""
��#4�	
�� ��/=��	
��� 	�	9�4����
	�� #
�"��
	��	��#���	
54��	 ��	 ��%	 :4� 	 9�4����
	 �� #
�"��
	 ��$�
� 	54�#4	 ������� 	 �
�	��	 ���	�=%	 ��
	
�'��"���	�4�	 #
�"	�$	�	9�4����
	�� #
�"��
	 4�5�	��	��!%	.	� 	����#����!	�4��	��	��
/
 �����!	��$�
������	 4����	9�	 ��
��	$�
	���
�9��� 	���	�"�
����� %	
�	�4�	��4�
	4����	
#�� � 	�
�	#�� ���
��	� 	�; 	?�=M�
��@�	������!	�4��	���
�	��
 ���	 4����	9�	
�!� /
��
��%	��
����
�	#�� � 	�
�	�� �	#�� ���
��	�����#	������� 	?��M�
��@%	G��	��	�4���	

�� ��/=��	5���	����$�	�	#��$��#�	54��	�5�	�
	��
�	"��"��	����	�4�	 ���	#�� �	����	
�$	�4��	�
�	5�
<��!	��	��$$�
���	"�
� 	�$	�4�	#�� %	

	

	

�$��1�	�#
�"	�$	�	9�4����
	�� #
�"��
	I��	$���	

;�	� 	��"�
����	��	����#�	�4��	���
�	 �$�5�
�	������"����	"
�8�#�	4� 	�� 	�5�	9�4��/
��
	�� #
�"��
%	:4� 	����5 	�4�	#� ����2�����	�$	
�� ��/=��	��	�4�	 "�#�$�#	���� 	�$	
"
�8�#� %	��
	�� ���#��	�$	�	"
�8�#�	��� 	���	��$���	#�� 	� 	���	��	#��$��#�	� 	����#���	
54��	�5�	"��"��	5�
<	��	��$$�
���	"�
� 	�$	��%	
�	�4�	��4�
	4����	�$	�"�
�����	� 	 ��	� 	
�=�	���
�	#4��!�	��	�"�
����� 	� 	
�!� ��
��	��!��4�
	5��4	��
 �����!	��$�
������%	

>���4�
	��"�
����	� "�#�	� 	 �4�	����
"���	9��5���	�=	���	���/�=	������� %	
�/
� ��/=��	 ��
� 	���	"4� �#��	��
 ��� 	�$	���
�	��������	9��	����	 ��
� 	��!�#��	��
/
 �����!	��$�
������	�$	�=	������� %	��
	�4� 	
�� ���	��	� 	"� �9��	��	#�

�#���	
��
����	
�4�	#����'�	
������� 4�" 	�$	�	�=	��������	����	�$	��	� 	
������	��	���/�=	������� %	

1�"� ���$����$����3��

>	9����/��	��
!�	��!�
��4�	� 	�� �	"
������	��!��4�
	5��4	�4�	$��'�9��	��
 �����!	��/
$
� �
�#��
�%	:4� 	��
!�	��!�
��4�	��<� 	����	�##����	�4�	#��$�!�
����� 	 4�5�	��	��!%	

��������	�
��
���	���	���������������
���	���������
�����
��������
�����
��������

��������
��������	�
��
���	���	���������������
�����
��������

�����
��������
���������������

��������
��������	�
��
���	���	���������������
�����
��������

�����
��������
���������������

��������
�

9Odyssey-VCS: a Flexible Version Control System for UML Model Elements

,%	>$��
	�����2��!	 �4�	"
� ��#���9 ��#�	�$	������� 	 ��	 �4� �	#��$�!�
����� �	 ���	 �4�	
����
���	����� 	�$	�4� �	������� 	�$��
	�	#4�#</���	5�	
��#4��	�	#��"��'	 #���
��	�4��	
� 	 ����
�2��	��	:�9��	+%	:4�	#��$�!�
����� 	���	
������� 	����!	�4���	� ��	��	:�9��	
+�	�
�	��$����	� 	$����5 C	

	
��
C	

�!����	#��$�!�
�����D	
�� �C	� �
	#��$�!�
�����D	
�� �C	��

���	#��$�!�
�����D	
�� �C	�����	#��$�!�
�����D	
�� �IC	�������	J�K	��	#��$�!�
�����	JIKD	���	
�� �I	�	�NC	:
��	�$	�������	J�K	� 	������#��	��	9��4	#��$�!�
����� 	JIK	���	JNK%	

4�������	
�� ��/=��	��
!�	��!�
��4�	

����� ��������� ��������� ��������� ����������� ����������� �������
+	 :	 :	 :	 :	 :	 >��	��	?�
	��@	����	�	
,	 :	 :	 :	 :	 �	 >��	��	����	�	
H	 :	 :	 :	 �	 :	 >��	��	����	�	

.	 :	 :	 :	 �	 �	 F���$�	�	#��$��#�C		
J#��#�

���	#4��!� 	���
	�4�	 ���	�������K	

*	 :	 :	 �	 :	 F�>	 F���	?��	���	���	J�K	����	�@	

(:	 :	 �	 �	 F�>	 F���$�	�	#��$��#�C		
J#��#�

���	
������	���	#4��!�	���
	�4�	 ���	�������K	

0	 :	 �	 :	 F�>	 :	 F���	?��	���	���	J�K	����	�@	

)	 :	 �	 :	 F�>	 �	 F���$�	�	#��$��#�C		
J#��#�

���	
������	���	#4��!�	���
	�4�	 ���	�������K	

-	 :	 �	 �	 F�>	 F�>	 F���	?��	���	���	J�K	����	�@	
+1	 �	 :	 :	 F�>	 F�>	 F�>	
++	 �	 :	 �	 F�>	 F�>	 >��	��	����	�	
+,	 �	 �	 :	 F�>	 F�>	 >��	��	����	�	
+H	 �	 �	 �	 F�>	 F�>	 F�>	
	
:�9��	+	 4�5 �	$�
	���
�	"� �9��	 #���
���	54�#4	�#����	 4����	9�	��<��	9�	
�� /

 ��/=��%	��
	�'��"���	#� �	H	 4�5 	�	 #���
��	54�
�	�	!����	�������	?� �	#� ��	$�
	
�'��"��@	�'� � 	 ��	���	#��$�!�
����� 	?�	����	
�	�	����	��	���	�	����	�@�	5� 	#4��!��	��	�4�	
#�

���	 #��$�!�
�����	 ?�
	�	 ��@�	9��	5� 	���	 ���#4��	 ��	 �4�	� �
	#��$�!�
�����	 ?��������
��@%	;�	�4� 	#� ��	
�� ��/=��	"
����� 	�4�	�������	$
��	�4�	#�

���	#��$�!�
�����	��	
�4�	 $����	 #��$�!�
�����%	
�	 �4�	 ��4�
	 4����	 #� �	 (4�5 	 �	 #���
��	 54�
�	 �	 !����	
�������	?��	�"�
������	$�
	�'��"��@	5� 	
������	$
��	�4�	� �
	#��$�!�
�����	?�	�	�@	
9��	 �'� � 	 ��	 ���	 ��4�
	 #��$�!�
����� 	 ?�	 ����	
�	 �	 ����	 �@%	 ��5���
�	 �4�	 �������	 5� 	
#4��!��	9�	��4�
	� �
 	?�
	�	��@%	> 	�	
� ���	��	�4� 	 #���
���	
�� ��/=��	����$�� 	�	
#��$��#��	�
!���!	�4��	�4�	 ���	�������	5� 	
������	���	#4��!��	9�	��$$�
���	�����/
�"�
 %	

:4�	
� ��� 	�$	�4�	��
!�	��!�
��4�	�
�	#�� � ����	��	�4�	���	 �
�#��
�	?!��
������	
9�	�G�	
�"� ���
�@�	9��	���	9�	 ��#�� � ����	5��4	���	5���/$�
����� 	
��� %	:4�	
#�

���	
���� �	 �$	
�� ��/=��	 ��� 	 ���	 �""��	 5���/$�
����� 	
��� 	 #�� � ���#�	
#4�#<%	��5���
�	�4� 	����������	#��	9�	�9������	9�	�'��
���	���� %		

10 Oliviera et al.

5� ����,���

;�	�4� 	 �#����	5�	"
� ���	��	�������������	 ��"��	� �!�	�'��"��	�4��	��� 	��	���� �
���	
4�5	��
	�""
��#4	"
����� 	 $��'�9�����	���	#��#�

���	�##� 	��
��!	 �4�	���������	�$	
���	����� %	:4�	��
!��	 � ���	�$	�4� 	� �!�	�'��"��	� 	�	4����	���5�
<	#���
��	 � /
���	"
� �����	��	�4�	����
���
�%	

;���������	 �""� �	�4��	
�� ��/=��	� 	#��$�!�
��	� 	�� #
�9��	��	:�9��	,%	;�	� 	��/
"�
����	��	����#�	�4��	������	�	#��"� ���	�������	�4��	��#�� � 	�		����	��
���	������
	�����	� 	#��$�!�
��	� 	��%	;�	��4�
	5�
� �	�4� 	���� 	�4��	 4����	�5�	�
	��
�	�����/
�"�
 	����
�#�	#��#���������	���
	�4�	 ���	#�� �	�	#��$��#�	5���	4�""��%	:4� 	#��$��#�	
�##�
 	����	�$	�4��	�
�	5�
<��!	��	��$$�
���	"�
� 	�$	�4�	#�� %	��
����
�	�
	��	� 	���	
#��$�!�
��	� 	�=%	:4� 	���� 	�4��	��	��
 �����!	��$�
������	5���	9�	 ��
��	
�!�
���!	
�4� 	�������%	

4�����"�	
�� ��/=��	#��$�!�
�����	

�������� �����������������$�%��&� �����������,�������%��&�
�����	 :
��	 ��� �	

��#<�!�	 :
��	 ��� �	
������ :
��	 4�!��

>��
�9���	 :
��	 :
��	

"�
�����	 :
��	 :
��	

� �	�� �	 :
��	 :
��	
������
����� :
��	

	
>$��
	 #��$�!�
��!	 �4�	
�� ��/=��	 � ����	 ��	 �������	 ��
 ���	 �$	 �4�	 �����	 4� 	

9���	#��������	��	�4�	
�"� ���
�%	:4� 	�������	��
 ����	 4�5�	��	��!%	*�	#��"
� � 	 �'	
#�� � �	���	��	�4�	 ���	"�#<�!��	$��
	� �	#� � �	���	���	�#��
%	:4� 	�����	� 	� ��	� 	
�4�	9� � 	$�
	$�
�4�
	������"����%	

	

	

�$��5�	�����	���5�
<	#���
��	 � ���	� �	#� �	���	#�� 	����� 	

;�	�4�	$����5��!�	�5�	������"�
 �	������	��4�	���	��
��	�
�	� ��!	��$$�
���	�""�
	
�>��	 ���� �	
� "�#������	 �� �����	 ���	
�� ���	 ��	 #��#�

�����	 #4��!�	 �4�	 �������	
��
 ���	�$	 �4�	4����	 ���5�
<	 #���
��	 � ���	�����%	 ��4�	5��� 	 ��	
�����	 �4�	�����	
���
�9���	�$	�4�	����		#�� 	��		���������	���	�4�	������	���
�9���	����	�4�	�����		#�� 	
���	���	�	��5	� �	#� �	�����	������
�������	���%	
�	�4�	��4�
	4����	��
�	5��� 	��	
#4��!�	�4�	��"�	�$	�4�	���
�	���
�9���	�$	�4�	���� ���	#�� 	$
��	!���		��	������
�	
���	 ��#����	 �5�	 ��5	 �"�
����� 	 ��	 �4�	 ����		 #�� C	 ��	�����"#$%	����
 ���
 ��	��
����"�����$%	����#$����%	

11Odyssey-VCS: a Flexible Version Control System for UML Model Elements

:4�	#4��!� 	"�
$�
���	9�	��4��	 4�5�	��	��!%	(%��	5�
�	#��������	$�
 �	 ����	 �4�	

�"� ���
�%	F�	#��$��#� 	5�
�	����#���	���	 �4�	#�����	5� 	 �##� $����	��
!��	 ����	
�4�	 #�

���	 ��
 ���	 �$	 �4�	
�"� ���
�%	 >$��
	 ��4�O 	 #������	 �4�	 #�

���	 ��
 ���	 �$	
����		#�� 	��	�4�	
�"� ���
�	4� 	��	��
�	�4�	�����	���
�9���%	��5���
�	�4�	��
 ���	�$	
�4�	����		#�� 	��	�4�	��
�	5�
< "�#�	� 	���/�$/�����	 ����	#��������!	�4�	�����	���
�9/
����	� 	 4�5�	��	��!%	(%9%	

	

	

�$��6�	�� �����	?�@	���	
�� ��	?9@	5�
<��!	���
	�4�	 ���	���	�����%	

�4��	��
�	�
�� 	��	#�����	4�
	��
 ����	���	���	�����	������� �	9��	����		#�� �	
�
�	 #�

�#���	 ��
!��%	 ����	 �4�	 �9/������� 	 �$	 �4�	 ����		 #�� 	 5�
�	 ������������	
��
!��	 �##� $����%	��5���
�	9� ��� 	�4��
	 ����#��#��	#�

�#��� �	�4��	�
�	 ������/
#����	 ��#��"���9���	 9�#�� �	 �4�	 �"�
����� 	 ��	�����"#$%	����
 ���
 ��	��
����"�����$%	����#$����	 5�
�	 #
�����	 ��	 ����"�����	 �4�	 �����	 ���
�9����	 54�#4	 5� 	

������	 ��	 	��������	 9�	 ��4�%	 ��
���������	�����	 ��"�	5� 	 ��$����	 � 	��%	G��	 ��	
�4���	�	#��$��#�	� 	
�� ���	� 	 4�5�	��	��!%	0%	

�� ��/=��	"
����� 	���	��#� �
�	��$�
������	��	����5	��
�	$�'��!	�4�	#��$��#�%	
:4� 	 ��$�
������	 #��"
� � �	 ��	 ��������	 ��	 ��
�O 	 ��#��	 ��
 ���	 �$	 �4�	 ������	 �4�	
�
�!����	���	�4�	#�

���	��
 ��� 	�$	�4�	
�"� ���
�%	>$��
	��������	$�'��!	�4�	#��$��#��	
��
�	� 	$������	�9��	��	#�����	4�
	#4��!� 	����	�4�	
�"� ���
�%	��!%)%9	 4�5 	�4�	$����	
 ����	�$	�4�	
�"� ���
��	54�#4	4� 	�4�	�
�!����	��
 ���	�$	�4�	�����	?��
 ���	+@�	��4�O 	
#�����	?��
 ���	,@	���	��
�O 	#�����	?��
 ���	H@%	

��!%)%�	 4�5 	 �4�	 �4�
�	 ��
 ���	 �$	 �4�	�����	 ��	��
�O 	5�
< "�#��	 �$��
	 �	 ��5	
#4�#</���%	 :4� 	 �4�
�	 ��
 ���	 #�����"���� 	 �4�	 �
�!����	 ���������	 �$	 9��4	 ��4�	 ���	
��
�%	;�	� 	5�
�4	��	����#�	�4��	���
�	��
 ���	�4��	� 	
�������	��	�	��"�	��$����	� 	�=	��	
:�9��	 ,	 4� 	 #����'����	 ��$�
������	 54��	 ��
��	 ��	 �4�	
�"� ���
�%	 :4� 	 #����'����	
��$�
�������	54�#4	��#�� � 	�����	
� "�� �9���	 ���	����������	#������ �	 #��	9�	 $�
/
�4�
	� ��	9�	��4�
	������"�
 %	��5���
�	�
	��	5� 	���	��$����	� 	�=%	��
	�4� 	
��/
 ���	�� 	��
 ��� 	�
�	����4�
	 4�5�	��	��!%)	��
	#��"����	9�	
�� ��/=��%	

	

%�&�
%�&�

12 Oliviera et al.

	

�$��7�	��
!�	���	#��$��#�	����#����	 #���
��	

	

�$��8�	
�� ��	?�@	"�
$�
���!	#4�#</���	�4
��!4	
�� ��/=��	"��!��	?9@	

6� 9�������/��0�

�� �	#����
#���	���	�"��/ ��
#�	=��	�
�	9� ��	��	$���	 � ���	����	�����	AH�	0�	,H�	
,(B%	> 	"
����� ��	�� #� ���	 �4� �	=��	4���	 ���
��	 ���������� 	 ��	����"�����	�
��/
$�#� 	 5��4	 #��"��'	 ����
���	 ����	 �����%	 ��5���
�	 �4� �	 ������� 	 �
�	 !���
�#	 ���	
����
��	9���!	 ����9��	$�
	��
 �����!	�$	��'�/9� ��	�
��$�#� %	��	��	���	 ��	�4� �	�"/
"
��#4� 	� 	��
�#�	#��"�����
 	�$	��
	�""
��#4%	
�
	�""
��#4	#��	9�	� ��	��	��
 ���	

%�&�
%�&�

�����

������ �	
���

�
�
����� ���	
���

���
����� ������ �	
���
������

�����

�
���������	
���

�����

������ �	
���

(�3�:��
+��0�,����

����:��
+��0�,����

9�,��������
�����

�
���������	
���

�����

������ �	
���

�
���������	
���

�
�
����� ���	
���

���
����� ������ �	
���
������

�����

������ �	
���

�
���������	
���

�
�
����� ���	
���

���
����� ������ �	
���
������

�����

�
���������	
���

�
�
����� ���	
���

���
����� ������ �	
���
������

���$��#�P	

13Odyssey-VCS: a Flexible Version Control System for UML Model Elements

���	�����	������� 	54���	 �4� �	�""
��#4� 	#��	9�	� ��	 ��	��
 ���	 ��
#�/#���	 ��	
�4�	 ���	 �$�5�
�	������"����	"
�8�#�%	

:4�
�	 �
�	 �� �	 ��4�
	 �""
��#4� 	 �4��	 ��"���	 ��4�
	 ����	 ����� �	 �#4	 � 	 ������/

������� 4�"	�
	����	�98�#�	�
������%	��5���
�	�4� �	�""
��#4� 	5�
<	��	 ��
#�	#���	
�����	���	�
�	$�#� ��	��	�	 "�#�$�#	"
�!
�����!	���!��!�%	��
	�� ���#��	Q��� ����	��	
��%	A)B�	��9�
����	��	��%	A-B�	���	�����
	��	��%	A,,B	 �""�
�	��
 �����!	�$	��������<�	�	
���	�� #��	 ��
#�	#����	
� "�#������%	
�
	�""
��#4	#��	�� �	9�	 ���	� 	#��"�����/
��
�	 ��	 �4� �	 �""
��#4� 	 ��#�	 5�	 �
�	 $�#� ��	 ��	 ���	�����	 ������� 	 ���	 �4� �	
�""
��#4� 	�
�	$�#� ��	��	 ��
#�/#���%	

����	$�5	�""
��#4� 	� �	���	$���	 � ���	����	�����	��	��
 ���	����� � 	���	�� �!�	
�
��$�#� %	 ��
	 �� ���#��	
4 �	 ��	 ��%	 A+0B	 "
�"� �	 ��	 �""
��#4	 $�
	 ��
 �����!	 ����� � 	
���	 �� �!�	 �
��$�#� 	 ���	 ����'	 �
�� 	 ��
��	 ��	 I��	 $��� %	��
<��!	 ��	 $���	 !
�����	
���	�
��$�#� 	 �4��	#��	#�

�#���	����!�	 �
�#��
��	#4��!� 	��	 �4� �	�
��$�#� %	��5/
���
�	�4�	� �!�	�$	I��	��� 	���	����	��4�
��#�	��	�������!	 �����
� %	:4��
	I��	
$�
���	��� 	���	$����5	I�;	 "�#�$�#�����	$�
	����	������!	��	��#��"���9������ 	5��4	
�'� ���!	���/9� ��	 �""�
	�>��	 ���� %	��
����
�	F!����	 ��	 ��%	 A+(B	 � �	 �	 4�"�
/
��
 �����!	 � ���	 ��	 �""��	 ��
 ���	 #���
��	 ���
	 #��"��'	 �
��$�#� �	 ��#�����!	 ���	
����� � 	���	�� �!�	�
��$�#� %	:4� 	5�
<	4� 	�	 �
��!	$�#� 	��	��
 �����!	
������� 4�" 	
����!	 �4�	 ������� %	 ��5���
�	 ��	 � 	 �� �	 9� ��	 ��	 �	 "
�"
����
�	 ���	 ����	������	

���#��!	#��"���9�����	5��4	�'� ���!	�""�
	�>��	���� %	

��������	
�Q	� 	5�
<��!	��	�	 "�#�$�#�����	$�
	�
�	��
 �����!	A+-B%	&� ��� 	�4�	
����'� ���#�	 �$	 �	 $����	 "�#�$�#�����	 ��
 ���	 �"	 ��	 ��5�	 ��	 � 	 "� �9��	 ��	 ����#�	 �4��	

�� ��/=��	� 	"
����	��4�
���	��	�4�	 "�#�$�#�����	"4��� �"4�%	������
	��	�4�	 "�#�$�/
#������	
�� ��/=��	 4� 	 �� 	 �5�	 ��
 �����!	 ����/�����%	 ��
����
�	 ��	 ��
� 	 �4�	
��
 �����	 ������� 	 ����	 �"�
���	 "�
/��
 ���	 �'���� 	 5��4	 � �#�����	 4� ��
�	 �$	
#4��!� %	�
�9�9���	��	5���	9�	 �
��!4�$�
5�
�	��	��4�
�	��	�4�	$����	��
 ���	�$	�4�	 "�#�/
$�#�����	��	�4�	$���
�%			

7� �����!�����

;�	�4� 	"�"�
	5�	"
� �����	��	�""
��#4	$�
	��
 ���	#���
��	�$	���	�����	������� %	

�
	�""
��#4	��$$�
 	$
��	�4�	�'� ���!	�""
��#4� 	��	�4�	$����5��!	� "�#� %	��
 ��	5�	
"
�����	 �""�
�	 $�
	 $��'�9�����	��
��!	�;	 ������$�#������	����5��!	 �4�	#��$�!�
�����	�$	
��	���	�=	$�
	���	�����	������� %	��#����	��
	�""
��#4	� 	9� ��	��	5���	���"���	
 �����
� �	
�� ��!	�4�	#��"���9�����	5��4	�'� ���!	�""�
	�>��	���� %	�������	5�	4���	
$�#� ��	 ��	 #�

���	 #4�����!� 	 �$	 ���	 ��	 �����	
���������!	 �4�	54���	
�!�
���!	 ��/

����	 �����	 "
�9��� %	 &� ��� 	 �4� �	 ����	 � "�#� �	 ��
	 �""
��#4	 �� �	 "
����� 	 �	
9����/��	��
!�	��!�
��4��	 �""�
���!	#��#�

���	������"����%	

:4�	�'� ���#�	�$	�	$���/!
�����	=��	$�
	���	�����	������� 	#��	9�	 ���	� 	�4�	
9� � 	 $�
	�"#����!	5�
<%	��
	 �� ���#��	G���� 	��	��%	 A.B	4���	"
�"� ��	��	�""
��#4	
$�
	�
�#��9�����	���<	����#����	���	����	�����!	���
	���	�����	������� 	 ��
��	��	�4�	

�� ��/=��	
�"� ���
�%	��
����
�	 ����4�
	 5�
<	 � 	 9���!	 "�
$�
���	 ��	 �
�� $�
�	

�� ��/=��	����	�	#4��!�/�
������	=��	A+*B%	>��	 �4� �	���� 	�
�	"�
�	�$	�	9
����
	

14 Oliviera et al.

��$
� �
�#��
�	�����	
�� ��/���	A+.B�	54�#4	��� 	��	"
�����	���	$��#���������� 	
$�
	#��"�����/9� ��	������"����	����
������ %		

�
	�""
��#4�	4�5���
�	 � 	 #�

�����	 ��!4���	#��"���	 ��	 �4�	���	����/�����%	>�	
��"�
����	 $���
�	5�
<	 � 	 �4�	 !���
���2�����	 ��	 �4�	�
�	����/�����	 ����
�	 ����5��!	
��
 �����!	 �$	 ���	�
�	 #��"�����	����/�����%	>������������	 �4�	 #�

���	 ��
 ���	 �$	

�� ��/=��	 ��� 	 ���	 � �	 ����� 	 ��	 #��"� �	 ��
 ��� %	
�	 ���	 4����	 �4�	 ��!�����	
��"�#�	�$	�4� 	��#� ���	� 	4�!4�
	���5�
<	�
�$$�#%	
�	�4�	��4�
	4����	5�	��	���	����	��	
#��"���	�	��
 ���	9� ��	��	"
��
	��
 ��� 	���	����� �	54�#4	 ��� 	 ���	���	#�#�� %	
��	�� �	� �	2��9	��	4��"	
���#��!	�4�	�
�� "�
�	���
4���	���	��	�4�	�9 ��#�	�$	����� %	
�4���	"�
$�
���#�	���	 #���9�����	5�
�	���	�	��8�
	#��#�
�	$�
	 �4� 	 $�
 �	"
�����"��	
5�	������	��	5�
<	��	�4� �	� �� 	$�
	�4�	��'�	
���� � %	��

������	5�	�
�	"�
$�
���!	
 ���	9��#4��
< 	��	��� �
�	�4�	"�
$�
���#�	�$	
�� ��/=��	54��	�4�	 �2�	�$	�4�	

�"� ���
�	 ��#
�� � %	>$��
	 �4���	5�	 ������	 ��	
��	 ���	#� �	 ����� 	 ��	
���	 �$�5�
�	
������"����	 #���
�� %	

��
����
�	����4�
	����������	� 	�4�	� �	�$	�	"
���$����	��
!�	��!�
��4�%	����
�	
�/
��� � 	�$	
�� ��/=��	 4����	����5	�4�	
�"��#�����	�$	�4�	9����/��	��
!�	��!�
��4�	
$�
	 "
�8�#�/ "�#�$�#	 ��
!�	 ��!�
��4� %	 >���4�
	 $���
�	 5�
<	 � 	 �4�	 #�� �
�#����	 �$	 �	
����	 �4��	����5 	�� ���	��
!�	�$	���	����� %	:4�	#�

���	��
 ���	�$	
�� ��/=��	
����	����$�� 	�4�	#��$��#��	"
������!	���	��$�
������	$�
	�4�	��
!�%	��5���
�	�4�	��
!�	
�� ��$	� 	���	 �""�
���	9�	
�� ��/=���	
�E��
��!	�4�	� �
	��	��	��	��
�#���	��	�4�	I�;	
$���	�
	� ��!	�'� ���!	���/9� ��	�""�
	�>��	���� %	

��0��+���$������

�
	�4��< 	��	�4�	���9�
 	�$	�4�	��$�5�
�	��� �	Q
��"	��	�
���������	� "�#�����	
�
� ����	G���� 	���	���2	Q� ����	��"� �	54�	4��"��	 ��	����	�� #� ��� 	
�!�
���!	
�4�	�
#4���#��
�	�$	�4�	�""
��#4%	��
����
�	5�	5����	��<�	��	�4��<	�F�E	���	�>���	
$�
	�4�	$����#���	 �""�
�%	

9����������

+%	 &�!�
�	 �%�	 ���
��	 :%�	 �#4���4���
�	 �%�	 ���	 Q
�4���	 �%C	 �� �����	 $�
	 ���	 � �
	 !����%	
Q�����5�
�	>Q	?,111@	

,%	 &���4�	G%�	��� �	�%�	�#��9��	�%�	F�5#���
�	�%�	�4��"����	�%�	��

� �	�%�	���	

#4�
��	
G%C	��9	��
��#� 	>
#4���#��
�	/	�H�	��
<��!	Q
��"	F���%	��
��	����	��9	��� �
����	
?�H�@%	;�C	4��"C��555%5H%�
!�:��5 /�
#4�	>##� ��	��C	,*�����,11*	

H%	 ������ /�� ����	&%�	���2"��
�#<�	&%	�%�	���	�������	�%	�%C	=�
 ���	����
��	5��4	��9��
/
 ���%	
R������	?,11.@	

.%	 G���� �	�%	�%�	��
���	�%	Q%	�%�	���	��
��
�	�%	�%	�%C	��� � ����	���������	�$	���	���/
�� 	 9�	 >�������#	 G���#����	 �$	 �4��!�	 :
�#� %	 ;���
��������	��
< 4�"	 ��	 �
��#�"�� 	 �$	
��$�5�
�	���������	?;����@�	�� 9���	��
��!���	��"���9�
	?,11*@	

*%	 � ��9���
�	 �%C	 ��$�5�
�	���$�!�
�����	����!�����C	 �	������"%	 ;���
��������	���$�
��#�	
��	 ��$�5�
�	 ��!����
��!�	 :4�	 ����
�	 �$	 ��$�5�
�	 ��!����
��!�	 ����
�#<�	 ;
������	 ����	
?,111@	,0-/,)-	

15Odyssey-VCS: a Flexible Version Control System for UML Model Elements

(%	 � ��9���
�	�%�	��9���!�	G%�	������	Q%�	���
����	�%�	:�#4��	�%�	���	��
	���<�	>%�	���	��/
9�
!/��9�
�	G%C	 ;�"�#�	�$	 �4�	
� ��
#4	#��������	��	 �4�	$����	�$	 �$�5�
�	#��$�!�
�����	
����!�����C	 ����
�	�$	��	��"�#�	"
�8�#�	
�"�
�%	>��	�;Q�
�:	��$�5�
�	��!����
��!	
F��� �	=��%	,0�	��%	*�	��"���9�
	?,11,@	H+/H-	

0%	 ��!���	S%	���	&�
�	�%C	
"��	���
#�	G�����"����	5��4	�=�%	:4�	��
���� 	Q
��"�	�#��� /
�����	>
�2���	?,11+@	

)%	 Q��� �����	;%	�%	���	&�9
�5�	G%	Q%C	>	����
��	>""
��#4	��	��$�5�
�	G� �!�%	;�C	&�
 ��5�	
G%	 �%�	 �4
�9��	 �%	 �%�	 ���	 �����5����	 �%	 ?�� %@C	 ;���
�#����	 �
�!
�����!	 ����
������ %	
�#Q
�5/�����	F�5	N�
<�	FN	?+-).@	H)0/.+H	

-%	 ��9�
�����	>%	F%	���	F��<���	G%C	Q�����$C	��$�5�
�	G�����"����	����
������ %	:
�� /
�#���� 	��	��$�5�
�	��!����
��!�	=��%	+,�	��%	+,�	G�#��9�
	?+-)(@	+++0/++,0	

+1%	;���C	���	+1.,	/	;���	Q����	��	��$�5�
�	���$�!�
�����	����!�����%	;� ������	�$	���#�
�/
#��	���	���#�
���# 	��!����
 	?+-)0@	

++%	;�
C	;�
	+1110�	T������	����!�����	/	Q�������� 	$�
	���$�!�
�����	����!�����%	;���
/
��������	

!���2�����	$�
	������
��2�����	?+--*@	

+,%	�����	 >%C	 >	 Q����	 ��	 ��$�5�
�	 ���$�!�
�����	 ����!�����%	 >
��#4	 ��� �	 ��9�� 4�
 �	
F�
5����	�>	?,111@	

+H%	�������	 �%C	 F��&��� 	 ��������	 ��"� ���
�%	 F��&��� 	 ���������%	 ;�C	
4��"C����
%���9��� %�
!�	>##� ��	��C	,*�����,11*	

+.%	��
���	�%	Q%	�%�	G���� �	�%	�%�	
�����
��	�%	�%	�%�	��"� �	�%	Q%	&%�	���	��
��
�	�%	�%	�%C	

�� ��/���%	;�C	4��"C��
�� �%#� %�$
8%9
���� ��� #��	>##� ��	��C	,*�����,11*	

+*%	��
���	�%	Q%	�%�	
�����
��	�%	�%	�%�	G���� �	�%	�%�	��"� �	�%	Q%	&%�	���	��
��
�	�%	�%	�%C	
:�5�
� 	 ���"�����/9� ��	 ��$�5�
�	 ���������#�	 ���	 ��$�5�
�	 ���$�!�
�����	 ����!�/
����	:�#4��E�� %	��
< 4�"	��	����
�	��$�5�
�	���������#�	?�����@�	&
� U����	&
�/
2���	
#��9�
	?,11.@	

+(%	F!�����	 :%	 F%�	 ��� ���	 �%	 =%�	 ���	 &�������	 �%	 :%C	 :4�	 ���4���	 4�"�
��'�	 ��
 �����!	
 � ���%	���$�
��#�	��	��"�
��'�	���	��"�
������	�����	�
�2�	��>�	>�!� �	?,11.@	+)*/
+-.	

+0%	
4 ��	G%	���	S����
�	�%C	>	����/!
�����	=�
 ���	���	���$�!�
�����	�����	��	>���� � 	���	
G� �!�%	 ;���
��������	 ���$�
��#�	 ��	 ��$�5�
�	 ���������#�	 ?;���@�	 ����
����	 �������	

#��9�
	?,11,@	*,+/*,0	

+)%	
�QC	����	
98�#�	��#�����	?�
�@	�"�#�$�#������	��
 ���	+%.%	
98�#�	����!�����	Q
��"%	
;�C	4��"C��555%��!%�
!���#4����!����#����� �$�
������$%4���	>##� ��	��C	,*�����,11*	

+-%	
�QC	�
�	,%1	=�
 �����!	���	G�����"����	��$�#�#��	���%	;�C	4��"C��555%��!%�
!�#!�/
9�����#V���1,/1(/,H�	>##� ��	��C	,*�����,11*	

,1%	
�QC	I��	��������	;���
#4��!�	?I�;@	�"�#�$�#������	=�
 ���	,%1%	
98�#�	����!�����	
Q
��"%	 ;�C	 4��"C��555%��!%�
!���#4����!����#����� �$�
����'��%4���	 >##� ��	 ��C	
,*�����,11*	

,+%	�
� ����	�%	�%C	��$�5�
�	��!����
��!C	>	�
�#�������
R 	>""
��#4%	�#Q
�5/����	?+--0@	
,,%	�����
�	�%	���	���"9����	�%C	>�	
98�#�/�
������	�����	�$	��$�5�
�	���$�!�
�����	���/

�!�����%	 ;���
��������	 ��
< 4�"	 ��	 ��$�5�
�	 ���$�!�
�����	 ����!������	 :
���4����	
F�
5���	����	?+--+@	+,0/+H-	

,H%	��#4��	:%	���	�4�""���	�%	�%C	� ������	���
#���$�%	����2��5�
<�	��9�� 4��!	?,11+@	
,.%	=���#<�
�	�%C	>��������!	��$�5�
�C	�
�#���	5��4	�������%	;���	�"�#�
���	=��%	,*�	��%	0�	

����	?+-))@	,*/,0	
,*%	��
��
�	�%	�%	�%�	���!���	�%	>%	�%�	��
���	�%	Q%	�%�	���2��	�%	�%�	����� ��	�%�	&
�!��	�%	

�%	�%�	 ���	&�
!� �	�%	�%	 �%C	
�� ���4�
�C	 ��	����
������	 $�
	�����9�
�����	���"�/
����/&� ��	 G�����"����%	 ;���	���$�
��#�	 ��	 ;�$�
������	��� �	 ���	 ;���!
�����	 ?;�;@�	
�� 	=�!� �	��>�	
#��9�
	?,11H@	(+/()	

,(%	�4����	&%	>%C	��$�5�
�	���$�!�
�����	����!�����	��
���!�� 	 ���	��������	����
�� �C	>	
�
�#��#��	;��
���#����%	>��� ��/�� ���	?,111@	

16 Oliviera et al.

Model Data Management – Towards a common
solution for PDM/SCM systems

Jad El-khoury

Royal Institute of Technology (KTH), Mechatronics Division, Machine Design, Sweden
jad@md.kth.se

Abstract. Software Configuration Management and Product Data Management
systems have been developed independently, but recently the need to integrate
them to support multidisciplinary development environments has been recog-
nised. Due to the difference in maturity levels of these disciplines, integration
efforts have had limited success in the past. This paper examines how the move
towards model-based development in software engineering is bringing the dis-
cipline closer to hardware development, permitting a tighter integration of their
data management systems. An architecture for a Model Data Management sys-
tem that supports model-based development is presented. The system aims to
generically handle the models produced by the different tools during the devel-
opment of software-intensive, yet multidisciplinary, products. The proposed ar-
chitecture builds on existing technologies from the mature discipline of me-
chanical engineering, while borrowing new ideas from the software domain.

1 Introduction

Organisations involved in the development of large and complex products need to
deal with a large amount of information, created and modified during the develop-
ment and product life cycle. To support this need, an organisation normally adopts
some kind of product management environment. Many such management solutions
are currently available, and it is generally the case that each tends to focus on a spe-
cific class of products, determined by the major engineering domain involved in the
product development. The development of software-intensive products relies on
Software Configuration Management (SCM) systems, while mechanical system de-
velopment uses Product Data Management (PDM) systems.

In the development of products that involve the collaboration of various engineer-
ing disciplines, a number of these management environments come into simultaneous
use. This is necessary since developers from each discipline require the specific sup-
port provided by its corresponding system. An automotive system is a typical such
product, where traditional engineering disciplines such as control, software, mechani-
cal and electrical engineering, need to interact to meet the demands for dependable
and cost-efficient integrated systems.

Considering the central role these environments take in controlling the develop-
ment process as well as facilitating the communication between developers, integrat-
ing them becomes essential for the successful integration of the efforts of all disci-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profi t or commercial advantage and that copies bear this notice and the full citation on the fi rst page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee.
SCM 2005, September 5-6, 2005, Lisbon, Portugal. Copyright © 2005 ACM

18 Jad El-khoury

plines involved. In multidisciplinary development, allowing the environments to run
unsynchronised creates a source of inconsistencies and conflicts between the disci-
plines. In other words, it is equally important to provide (where possible) a common
set of support mechanisms and principles within, as well as between, the disciplines.

While most of the general facilities provided by these solutions overlap, variations
in the details exist due to the differing needs of the domains. This leads to complica-
tions and difficulties when attempting to integrate them [1]. In this paper, we discuss
how the move towards a model-based development approach in software engineering
is bringing it closer to the hardware engineering discipline, allowing for a tighter inte-
gration of their management systems. We advocate a common model-based manage-
ment system that borrows from the technologies of each of these disciplines. In the
next section, we discuss the differences between conventional SCM and PDM tools
and investigate the effect of adopting model-based development in software engineer-
ing in bringing these solutions closer. Section 3 presents a management system archi-
tecture that takes advantage of this change. This is followed by a discussion of related
work in the area of PDM/SCM integration, before concluding the paper in section 5.

2 Model-based Development – Bringing Software development
towards Hardware Development

Model-based development (MBD) refers to a development approach whose activities
emphasise the use of models, tools and analysis techniques for the documentation,
communication and analysis of decisions taken at each stage of the development life-
cycle. Models can take many forms such as, (but not limited to,) graphical, textual
and prototype models. It is essential however that the models contain sufficient and
consistent information about the system, allowing reproducible and reliable analysis
of specific properties to be performed.

With the maturity of the software discipline, the need to move towards a more
model-based development approach is being recognized. This need is exemplified in
(but certainly not limited to) the OMG efforts [2][3], and the wide range of tools sup-
porting them.

In this section, we will investigate how the adoption of model-based development
in software engineering can help bridge a gap between software and hardware devel-
opment, leading towards a common solution for the data management of multidisci-
plinary products. In [1], three crucial factors for a successful integration of PDM and
SCM are presented: processes, tools and technologies and people. We follow this
categorisation in this investigation. New challenges facing such a common solution
are also discussed.

2.1 Processes

The difference in the development process of software and hardware products has
been most influential in the divergence between their management tools. The more
mature hardware development expects support during the complete product life cycle

19Model Data Management

from the early concept design phases down to manufacturing and post-production
phases [4]. All product data from all these phases is expected to be handled and re-
lated through the PDM system. In comparison, as with any new discipline, early soft-
ware development occurred in a relatively more ad-hoc manner with no, or little, early
design and analysis phases. Consequently, these early phases were beyond the scope
of SCM tools [4][5], and SCM was only expected to manage the large amount of
source files produced during the implementation phase of software development.

In software engineering, the application of the model-based approach throughout
the complete development process implies the need to handle different kinds of docu-
mentation from the early design and analysis stages, as well as implementation. Con-
ventional SCM tools have so far incorporated these additional documents by simply
treating them as files, without differentiating them from source code files. However,
one cannot claim that SCM handles the development process appropriately, since no
distinction is made between the types of documents produced during the different de-
velopment phases. For this to be possible, we argue that the development process it-
self needs to be reflected in the product information model.

In [1], it is argued that the life cycle processes of the software and hardware devel-
opment should be integrated for the successful integration of PDM/SCM. The chal-
lenges for such integration and a simple solution are then suggested. What seems to
be missing in the discussion is how process integration would be beneficial for the in-
tegration of PDM and SCM systems. Studying the functionalities of PDM/SCM, one
can see that such systems simply provide the infrastructure to enforce a given process
(see section 2.2) and play no direct role in integrating the development processes. In-
stead, PDM/SCM functionalities focus on the product data produced. For this reason,
while process integration may be desired within an organisation, for the purpose of in-
tegrating PDM/SCM systems, it is even more important to focus on the integration of
the outcomes/artefacts produced at each phase of the product lifecycle. The ultimate
goal is the tight integration of the hardware and software components of the final
product, and not the process of getting there.

2.2 Tools and Technologies

This category is further divided into six basic functionalities expected of PDM/SCM
systems: data representation, version management, management of distributed data,
product structure management, process support and document management.

Data Representation A major difference between PDM and SCM lies in the kind of
data that the support tools are expected to handle [6]. In hardware development, the
need to provide a seamless workflow from design to manufacturing phases has forced
PDM systems to not only handle the documents produced, but much of their internal
contents (metadata) as well. A detailed information model of the product data is an
integral part of a PDM system [7]. Software development, on the other hand, has so
far adopted a file-based approach, only managing the files produced during
development, and where the only relations handled between the files is that of the file
system itself (a small amount of meta-data is also handled such as file author and
modification date). The internal structure of these files and the semantical

20 Jad El-khoury

relationships between them has so far been outside the scope of SCM tools. PDM can
be interpreted as managing product representations, while SCM manages the final
product itself [8].

With the maturity of the software discipline, and its move towards a more model-
based development approach, many documents (analysis models, uses cases, etc.) will
be produced during development. These documents act as models representing certain
aspects of the product and will not necessarily end up in the final product. Neverthe-
less, the different types of documents need to be identified in the management system
and related to specific development stages.

The information stored in the documents is interrelated. For this reason, SCM sys-
tems supporting model-based development would need to, not only manage the files
storing the models, but also the internal content of these models, allowing fine-
grained relationships between the document contents to be setup. An information
model of the complete information space contained in the models need to be an inte-
gral part of a SCM system.

In a model-based development approach, developers need to be shielded from the
file structures used to store the models built, allowing them to focus on the models
and their structures. This strategy is adopted by many modern modelling tools that
may use database systems to store and hide models, and a modern management sys-
tem should follow in this track.

Version Management In PDM systems, revisions of an object are manually managed
by the user and form a sequential series, with no possibility of performing parallel
changes. In contrast, versions in SCM systems form a graph structure, with the
possibility to perform branching in the development, followed by merging of the
branched tracks. Due to these differences, the later approach facilitates concurrent
engineering, which is limited in the former.

Accepting that SCM systems need to focus on modelling items, and not only the
files storing these items, it becomes essential for version management functionality in
SCM systems to similarly focus on the contents provided in these files. Instead of dif-
ferentiating between the lines of text in different versions of a file, it is differences be-
tween the modelling items in different versions of a model that need to be identified
and managed.

Since conventional SCM systems do not handle the internal semantics of files, it
has also been out of its scope to ensure that parallel changes to the same item (file) are
consistent upon a merge. SCM simply provides the mechanism to branch and merge
changes made to unrelated lines of text. The burden is placed on the user to ensure
that merged changes from different development tracks are consistent semantically. It
was hence relatively easy to provide such semantic-free functionality.

Model-based version management becomes a challenge for SCM systems. Com-
plexity arises due to the different kinds of modelling items that may exist in a model
compared to the single type (lines of text) that are conventionally handled. It is no
longer possible to provide the exact versioning functionalities for all kinds of docu-
ments in the system. In the best case, customisation of a generic mechanism will al-
low the reuse of much of this functionality.

An additional challenge is to ensure consistent parallel changes to the models
stored in the files during version management. While lines of text in a file can be

21Model Data Management

treated individually, modelling items in a model are generally tightly interrelated.
Changes to one item may have implications on other items in the model. This implies
that even though each individual set of changes in two parallel change tracks is se-
mantically valid, merging these changes into a consistent set is not as simple as the
union of the changes since the relations between the modelling items need to be taken
into account. For example, in a class diagram, one track of changes may have deleted
a certain class, while in another track a new association is created between that class
and another. In merging these changes, it is first necessary to establish if the deleted
class needs to be reintroduced before allowing the presence of the new association.

In dealing with this problem, an SCM system can adopt the approach of PDM of
disallowing parallel changes and in this way preventing the problem from occurring
in the first place. Another approach is to develop branch/merge mechanisms that work
on model structures, maintaining support of concurrent development of models for
software developers. A successful implementation of the latter approach can also be
beneficial for hardware development, where the possibility to concurrently develop
models becomes possible, leading the way for new development processes.

The need for concurrent changes to the same source code files partly originates
from the less mature adhoc development of earlier software systems before software
“engineering” became a discipline. It is argued that a structured model-based devel-
opment approach would reduce the need for parallel access to the same product data
and hence the former approach becomes more appropriate. In the case where concur-
rent changes remain a necessity, the latter approach needs to be supported.

Nevertheless, branch/merge mechanisms in SCM remain a necessity for the man-
agement of product variants. However, in model-based development, this implicit
management of variants should be made more explicit, by representing variants in the
product information model.

As discussed in section 4, the model-based approach to versioning and branch-
ing/merging is gaining ground in the SCM community. In this paper, we advocate tak-
ing advantage of this new trend in the integration of PDM and SCM systems.

Management of Distributed Data The need to manage geographically distributed
data seems to be common for both disciplines, with the difference being in the
technical solution provided by the management systems. PDM systems provided a
more limiting functionality by not allowing concurrent access to distributed data. This
difference is closely related to that discussed in the previous subsection, and
synchronising the earlier difference will naturally lead to the synchronisation of this
functionality. Technically, a common solution will choose either the currently
adopted PDM or SCM solution based on whether concurrent access is desired or not.

In a model-based approach to distributed data management, the functionality
would focus on the management of distributed fine-grained model data items and not
the files storing these items.

Product Structure Management In hardware systems, the physical structure of the
final product is the single predominant structure. This structure is used throughout the
development phases as a basis for the information model to which all other
information is related. Conventional SCM systems do not explicitly support the

22 Jad El-khoury

structure of the product, focusing instead on the directory structure of the files it
manages.

In a model-based approach to software development, an SCM system would need
to focus on the internal structures of the models stored in the files instead. Unlike
hardware products, when using models throughout the development phases, the soft-
ware structure will vary widely, and hence the product structure management func-
tionality of a model-based SCM needs to handle many different parallel structures.
Relationships between these structures will also need to be taken into account.

Given the possibility to manage multiple structures, it becomes easier to also man-
age products resulting from the integrated effort of hardware and software develop-
ment. Each discipline would be able to maintain its own structure. The possibility to
set up relationships between the structures results in a tight integration of hardware
and software components.

Process Support As mentioned in section 2.1, it is necessary to integrate the process
support functionalities of PDM and SCM systems. Software and hardware
development would need to follow different development processes, and this
functionality should be able to support each of the chosen processes, yet based on
common fundamental mechanisms: workflow management, user assignment,
approach rule mechanisms, etc. As mentioned in [1], such functionality is already
quite similar in PDM and SCM systems.

Document Management Document management is an integral part of PDM systems,
and such functionality is missing in conventional SCM systems. The need for
document management by software developers is apparent, and hence a common
efficient support ought to be technically feasible.

2.3 People and Cultural Behaviours

In [9], some of the differences in the terminologies used by software and hardware
engineers are highlighted. These differences are attributed to the differences in the
development phases generally focused on by these disciplines. For example, in soft-
ware engineering, “design” is traditionally defined as building a model of the system
up to the point at which coding begins. In hardware development, however, “design”
would also include broader activities such as requirements and testing activities.

In adopting a model-based approach in both disciplines, and as a by-product of in-
tegrating the outcomes of each of the phases of the development processes as advo-
cated earlier, it becomes necessary to integrate the meaning of some of the terminol-
ogy used.

An important function of models is communication. While models are domain-
specific and can only be understood in details by engineers of the specific disciplines,
such models can be still used to communicate certain aspects of the design to other
engineers, if presented at the right level of abstraction. If models from the various dis-
ciplines can be successfully interrelated to form a consistent whole view of the system

23Model Data Management

through a common management system, such interrelations can also act as interaction
points between the disciplines, reducing any risks of inconsistencies and conflicts.

2.4 Conclusion

The fundamental differences between SCM and PDM systems stem from the different
needs of the disciplines they aim to support. As software development becomes in-
creasingly model-based, and requires support throughout its development life cycle,
its needs become closer to those of hardware development. In particular, the process
management and information modelling functionalities expected of SCM systems
come closer to those provided by PDM systems for hardware development.

This leads the way for an easier and more effective integrated management plat-
form satisfying the needs of both disciplines using a common set of mechanisms. The
management functionality ought to take advantage of the commonality between the
disciplines – the use of models – in the development process by focusing on models
and their internal content as central entities. This allows the same model-based func-
tionalities to be used by both disciplines. We term such an approach as Model Data
Management (MDM).

3 Model Data Management

In this section, we present an architecture for a Model Data Management (MDM) sys-
tem that aims to generically support and control different kinds of models produced
from a set of different tools and disciplines.

3.2 Tool Architecture

The envisaged architecture is shown in figure 1. The platform consists of two main
parts: A set of tool-specific adaption layers and a data repository with mechanisms to
handle this data. The data repository stores the data for each of the tools. To perform
this role in a generic way, the data from the different tools is expected to be presented
in a neutral form, and this functionality is provided by the adaption layer. Triggered
either by a tool or the repository, the corresponding adaption layer permits the data
flow between a tool and the repository, in a predefined format. The following subsec-
tions will further discuss these components.

Given its maturity, we aim to base the proposed MDM system on a configurable
PDM system. The major advantage of using a PDM system is the possibility to define
information models, with a high level query language to access and modify the model
data in the repository. These facilities generally do not exist in conventional SCM
systems. In addition, it is envisaged that the development of the remaining MDM
functionalities is made easier given the already developed functionalities of PDM
such as the support for distributed development, change management, workflow con-
trol, etc. The adoption of a PDM system is not indispensable and one can envisage
building an independent MDM that supports both disciplines.

24 Jad El-khoury

Adaption Layer

Adaption Layer

Adaption Layer

Information Model

Common database

Common meta-meta model

Software
Specific

Change
Management

Version Control

Data
repository

Management
functionalities

Tool interface

Model Data Management

Data
mapping

Model
update

ModelA
Id Name prop

Id Name

Id Name att

ModelB
Id Name prop

Id Name

Id Name att

…

Process (Workflow, roles, ..)
Id Name prop

Id Nam e

Id Nam e att

Id Name att

Tool-independent format
ModelA ModelB ModelC

Hardware
Specific

Fig. 1. The major components of the MDM architecture. (Note that the graphical tools are
mock-ups shown here for illustration purposes only.)

Data repository The data repository stores the data from each of the tools integrated
into the platform. Tool data can be separated into graphical and model data [10] and
both types of data need to be managed by the system, giving full control over the
models.

It is important to note that the data repository is not expected to be the primary
storage medium for each integrated tool, and to which each tool implementation needs
to conform. Similar to the a-posteriori approach in [24], an integrated tool is self-
sustained, and is only a-posteriori integrated through an adaption layer (See next sub-
section).

The content of a model is generally defined using a specific meta-model that re-
flects its internal structure and constraints of how modelling elements can be com-

25Model Data Management

bined to form a valid model. In many tools such as in Simulink [11], a meta-model is
implicitly assumed, while others, such as any UML tool [3], are strongly based on a
given meta-modelling framework.

This meta-model acts as a basis for the data schema used by a tool to internally
manage and store the model contents. Similarly, the MDM system managing an inte-
grated model needs to map the corresponding meta-model onto the data schema of the
repository. Since different types of models assume a different meta-model, each
model type would occupy a separate space in the repository with a different data
structure. However, in order to simplify the specification of a schema for each inte-
grated model, a meta-meta-model is adopted as a basis for the repository. This meta-
meta-model is instantiated to reflect a given meta-model, which is then further instan-
tiated when mapping the internal data of its tool to the information model of the re-
pository.

We adopt a simple meta-meta-model which generalises among established meta-
meta-modelling languages such as MoF [12], Dome [13] and GME [14], and based on
a broad survey of modelling languages for embedded computer systems [15]. A
model can be generally viewed as consisting of a hierarchical structuring of modelling
objects that may possess properties; ports defining interfaces of these objects; and re-
lationships (such as associations, inheritance and refinement) between ports. Model-
ling languages differ in the kinds of objects that can be specified, their relationships
and the kind of properties they possess. When integrating a particular model, a meta-
model is instantiated by defining the kind of objects, ports and relations that exist in a
model. (Note that the main aim is not to suggest yet another meta-meta-model that
claims to cover any modelling language. A simple, generalised meta-meta-model was
adopted, allowing focus to be placed on the PDM/SCM integration aspects of the plat-
form.)

Figure 2 shows a UML class diagram of the object types, attributes and relations
defining the generic meta-meta-model. As an example, the lower part of the figure il-
lustrates the meta-model of a Data Flow Diagram (DFD) [21] model as interpreted by
the Simulink tool [11], which is defined by specialising the generic objects.

In this approach, the granularity at which the MDM system operates on the models
is controlled by the definition of the meta-model, implemented in the adaption layer.
MDM mechanisms will understand the model semantics down to the level at which
the elements, ports and properties are defined. Finer semantics within these entities
are not the concern of MDM. For example, if a property of an element is defined as a
blob of text, an MDM functionality cannot be expected to interpret the detailed se-
mantics of this property.

Adopting a common meta-meta-model between the models is not sufficient if there
is a need to integrate the various model contents into a whole. For this to be possible,
a unified information model of the set of models is necessary, specifying more de-
tailed semantics of the models and their interrelations. While such information models
are standardised for hardware products [16], no such standard model is currently
available that also encompasses models from the software discipline. In [17], ongoing
work on how such integration can be achieved is presented.

26 Jad El-khoury

MDM
generic

DFD
specific

PDM
generic

Fig. 2. The PDM information model implementing the meta-meta model, and showing how a
tool-specific meta-model is defined.

Tool interface Access to the tool data and the mapping of this data to the repository
is performed by an adaption layer. An adaption layer is developed for each tool to be
integrated into the MDM system. This layer isolates the tool-specific issues allowing
MDM to operate generically on many tools implementing different technologies. The
adaption layer fulfils three purposes. As discussed in the previous section, it maps the
specific meta-model of its designated tool onto the repository.

Second, the adaption layer maps the tool-specific format used internally to manage
the model data to a generic format of the repository. In this way, the management
functionalities can operate uniformly using a single format.

Different technologies are available for a tool to internally store its model data. A
tool can use either a computer file system to store model data in a file, or a database
management system. Various standards exist that specify how data should be handled
using these technologies, yet one cannot assume that tools will not implement their
own solutions.

In a set of tools in which the tools adopt a combination of technologies (standard or
not), it becomes necessary to translate these technologies onto a common format, in
order to make the interface to the MDM platform generic. This role is fulfilled by the
adaption layer, making the tool-specific data technology transparent to the rest of the
platform. The adaption layer translates the format used by its designated tool to the
chosen format of the repository. In the platform advocated in this paper, we adopt the
data neutral XML format to interface the adaption layer to the repository.

Third, the adaption layer accommodates the different techniques used to gain ac-
cess to the tool’s internal data. Different tools use different technologies to provide
automated access to its internal data. In the simplest case, the adaption layer can ac-

27Model Data Management

cess and interpret the textual file produced by the tool. A tool can also provide ‘ex-
port’ functionality, an Application Programming Interface (API), or a query language.

For a potential tool to be integrated into the MDM system, specific automation
support is expected. In order to allow fine-grained accessibility to parts of models and
the manipulation of models, a modelling tool whose models are to be managed need
to:

� Provide access to the model data either through an API or using parsable text [16].
� Provide fine-grained mechanisms for the construction and modification of models

through an API.

Again, in this a-posteriori approach, an integrated tool needs neither to conform to
the meta-meta-model, nor format, nor data access approach adopted by the MDM
platform. Such demands would create a tight, undesired, dependency between the in-
tegrated tools and the platform. It is the adaption layer’s role to map these technolo-
gies to those of the platform.

Management Functionalities MDM functionalities ought to generically store and
handle models from the various tools and disciplines. The functionalities of the union
of typical SCM and PDM tools would include: Version management, product
structure management, build management, change management, release management,
workflow and process management, document management, concurrent development,
configuration management and workspace management [4].

The model-based approach to data management unifies the disciplines by unifying
the kinds of objects it manages – models. The management functionalities should fo-
cus on the models and their contents, transparent of the file structure used to store
them.

While as much of the functionalities can be shared by the disciplines, discipline-
specific functionalities need still to be supported such as build management for the
software discipline. In certain cases, it may also be desired to provide different solu-
tions of the same functionality for different disciplines. For example, software devel-
opment might require the complex version control mechanisms and concurrent devel-
opment normally provided by SCM systems, while hardware development is satisfied
with sequential revision control. There should be no problem providing different solu-
tions in MDM, depending on the kind of data items the functionality operates on. It
would however be advantageous to base the different solutions on generic mecha-
nisms for reusability purposes. The different solutions ought to be also based on the
same user interface and terminology.

In order to test the proposed architecture, we have investigated in details the ver-
sion management functionality of models. This functionality is termed Model Version
Control (MVC). While version control is needed in both domains, the functionality
differs between SCM and PDM systems (section 2.2). This allows us to investigate
how far such mechanisms can be aligned between the disciplines. Version control is
also critical since it will put to the test the other crucial factors discussed in section 2,
such as the possibility of having a common product structure and data representation.
A short summary of MVC is presented in section 3.4.

28 Jad El-khoury

3.4 Model Version Control Implementation

The MDM platform is currently developed using the Matrix PDM system [19]. As
shown in figure 2, it was necessary to specialise the meta-meta model provided by the
tool in order to perform the desired version control algorithm.

A simple model version control functionality (MVC) has been implemented. This
should be seen as an exploration of the integration possibilities of model-based devel-
opment. The implementation borrows from the general ideas from the fine-grained
version control algorithms such as [5] and [20]. However, instead of using conven-
tional databases, we base our implementation on the MDM architecture.

The algorithm supports the versioning of any model that can be mapped to the
meta-meta-model assumed in the platform. In the current implementation, data flow
diagram (DFD) [21] models from the Matlab/Simulink [11] tool and Hardware Struc-
ture Diagram models [22] in the Dome [13] tool, are handled.

Even though each tool’s models contain a different kind of modelling objects, with
different set of properties, MVC operates generically on all kinds of models, owing to
the adoption layer which presents the model instances using a common format and
structure.

Compared to version control mechanisms in conventional SCM systems, the major
difference with the model-based approach is that entities have relations between them
that also need to be handled. Such relations do not exist between files in the file-based
approach. In file-based version control, the versioning of an entity (file) is done inde-
pendently, and does not affect the versioning of other entities in the system, since no
relations exist between them. In contrast, the versionable objects of a model are inter-
related and creating a new version of an object might influence the versions of others.

Similar to file-based SCM systems, by only saving the changes between versions
of a model, this algorithm maintains efficient storage in the repository and avoids the
duplication of information. In addition, comparison between different versions of a
model can be efficiently deduced.

MVC provides mechanisms that allow a user to save and extract any part of the
system model. In a ‘checkin’ operation, changes to the model since the last checkin
operation are saved in the repository. When performing a ‘checkout’ operation, the
specified element is reconstructed for a given version, together with its subparts,
forming an XML document of the information in the repository. This document is
then further transformed by the adaption layer to create a tool-specific format that can
be used by the tool. The details of these operations are performed transparently to the
user, allowing him/her to interface with the modelling tool’s interface and format.
Further details on the implemented algorithm can be found in [18].

3.5 Integration vs. Unification

As an alternative to integrating PDM and SCM systems as proposed in [4] and [6], the
MDM architecture ought to be interpreted as a unified solution that aims to support
the needs of both disciplines, assuming model-based development.

The need to move from the file-based approach of SCM to focus on models in-
stead, makes much of the mechanisms currently available technically obsolete. So, the

29Model Data Management

only advantage of maintaining both systems using the integration approach would be
to maintain the user interface and terminologies software engineers are accustomed
to. Integration techniques struggle with trying to synchronise and balance between the
two disciplines.

Instead, the unification approach imposes new common mechanisms with common
terminology that are expected to be accepted by both disciplines. Naturally, this ap-
proach faces more resistance from established developers and disciplines. However,
the shift to model-based development would require a paradigm change that the soft-
ware community may have to face anyway.

Failures in PDM/SCM integration efforts due to cultural differences [1] ought to be
seen as integration problems in the organisation itself that have to be dealt with. In the
best case, a unified approach can only bring the conflicts to the surface to be dealt
with appropriately.

Accepting the resistance and time it takes tool vendors to change, integration may
be the first step, but the future is unification.

4 Related Work

SCM systems targeting models, instead of file objects, are increasingly appearing in
the literature ([5], [20] and [23]). In these approaches, an information model of the
documents to be handled is assumed, allowing for the management of the internal in-
formation stored in the documents, as well as the specification of relations between
information from different documents. While focused on software models, these ap-
proaches are helpful since the mechanisms can be extended to apply to any kind of
models throughout the development lifecycle. The MVC implementation advocated in
this paper is inspired by these approaches, broadening their use for more general
model types. More importantly, basing the implementation on the facilities already
available in PDM systems, instead of using conventional databases, helps in the inte-
gration with the mechanisms in the discipline of hardware development.

In [4], three techniques of integrating PDM and SCM systems are proposed. Of
these, the full integration technique was considered ideal and most desired. In the full
integration solution, the systems’ functionalities are separated from their own reposi-
tories, and reintegrated into a common repository with a common information model.
A common user interface is also built on top, in order to give all users a common look
and feel. However, it is argued that full integration is difficult to implement using to-
day’s tools due to the tight integration of the tools’ components. All the suggested ap-
proaches accept the status quo of software and hardware development and conse-
quently needed to deal with fundamental differences. This lead to limited integration
success. Rejecting the status quo and focusing on the commonality between the disci-
plines (model-based development), should instead lead to a smoother integration.

In [6], a configuration management system is suggested that can be applied to both
software and hardware design documents. The system also allows for relationships,
such as dependencies, to be established between documents. However, the entities
handled by the system are file documents with no fine-grained management of their
content.

30 Jad El-khoury

5 Conclusion

In multidisciplinary development, the integration of the various management systems
used by different disciplines is of critical value. An integrated environment allows the
efforts of all developers to be well communicated and reduces any risks of inconsis-
tencies and conflicts between them.

Due to the difference in maturity levels of these disciplines, such integration efforts
has had limited success in the past. Specifically, the implementation-centred devel-
opment approach of software systems expected a coarse-grained support from SCM
systems, where documents are the smallest entities managed, while ignoring the inter-
nal model semantics contained within them. In comparison, mechanical development
expects the handling of the detailed product data by their corresponding PDM systems
using standard information models.

However, with the move towards model-based development, where the use of
models becomes the central activity in making, communicating and documenting de-
sign decisions, disciplines share a common need to handle the same kind of entities –
models. In this way, management systems can be brought closer together.

This paper presented an architecture for a Model Data Management (MDM) sys-
tem that aims to provide the support functionalities expected of a model-based devel-
opment environment. The system aims to generically handle and control the various
kinds of models produced by the different tools during the development of software-
intensive, yet multidisciplinary, products. The proposed architecture builds on exist-
ing technologies from the more mature discipline of mechanical engineering, while
borrowing new ideas from the software engineering discipline.

To illustrate the MDM solution, an initial implementation of a Model Version Con-
trol (MVC) functionality was performed, allowing for the fine-grained version man-
agement of two types of models from two different tools. MVC permits stakeholders
to perform design activities in terms of models, where they can organise, share and
modify their models, transparent to the underlying file structure. A simplified version
control functionality has been realised. The ability to perform branches and merges in
the changes of an element is a very important feature of version control, specifically
desired in software development. This is needed in order to study different design al-
ternative, provide product variants, or deal with a bug fix from an earlier release.
MVC needs to handle this functionality in the future.

The major aim of the current platform implementation has been to experiment and
illustrate the concepts discussed in this paper. While the current implementation has
only been validated through the use of a small case study, a more commercial size
case study would be needed to appropriately validate the usability of this approach.
This remains to be done in the future.

The advantage of MDM over conventional PDM/SCM systems is the inclusion of
the internal content of its supported models, allowing for a tighter integration of the
design information between different models. In addition, functionalities are generi-
cally applicable for many kinds of models, simplifying the process of adding new
tools into the toolset. However, an initial effort is required to integrate new models in
the development of the adaption layer. The fine-grained management of models is
bound to require more computational effort that the coarse-grained approach.

31Model Data Management

The development process of software and hardware products will always differ due
to the nature of the products themselves. However, in a unified approach the same
mechanisms ought to be used to support these differing processes. Moreover, by pro-
viding different strategies for different kinds of models, the development needs of
both disciplines can be satisfied, using variants of the same basic mechanisms in a
unified management system. It is essential however to base the strategies on the same
basic mechanisms and user interface, allowing the reuse of basic components and pre-
venting confusion in terminologies.

In the case where development is not (completely) model-based, MDM facilities
may still be used. Any product data inputted into the platform is restructured and in-
terpreted to form model data. For example, a MDM system can manage the files of a
Java project by reinterpreting each file as a class model, extracting and managing the
attributes and methods contained within each file as fine-grained structured data.

The approach is currently implemented using a PDM system. It is our ideal vision
that with the acceptance of model-based development, one no longer needs to discuss
the integration of PDM and SCM systems. Instead, a truly unified approach to model
data management can be used by both disciplines.

6 Acknowledgements

This work has been supported by the Swedish Strategic Research Foundation, through
the SAVE project.

References

1. Dahlqvist, A.P., Crnkovic, I. and Asklund, U., Quality Improvements by Integrating Devel-
opment Processes, 11th Asia-Pacific Software Engineering Conference, 2004.

2. OMG, Model Driven Architecture Specification, MDA Guide Version 1.0.1, Document
Number: omg/2003-06-01, June 2003.

3. OMG, Unified Modeling Language (UML) Specification, V1.5, March 2003.
4. Crnkovic I., Asklund U. and Persson Dahlqvist A., Implementing and integrating product

data management and software configuration management, Artech House Publishers, 2003.
5. Ohst D. and Kelter U., A fine-grained version and configuration model in analysis and de-

sign, Proceedings of the International Conference on Software Maintenance, 2002.
6. Westfechtel B. and Conradi R., “Software Configuration Management and Engineering Data

Management: Differences and Similarities” Proceedings 8th International Workshop on Sys-
tem Configuration Management, Springer-Verlag, pages 95-106, 1998.

7. Kemmerer S. J. (editor), “STEP, the grand experience”, National Institute of Standards and
Technology, special publication 939, 1999.

8. Estublier J., Favre J. M. and Morat P., Toward SCM / PDM integration?, International
Workshop on Software Configuration Management, (SCM8), Springer Verlag, 1998.

9. Kruchten, P., Casting Software Design in the Function-Behavior-Structure Framework, IEEE
Software, Volume 22, Issue 2, 2005.

10. Ohst D., Welle M. and Kelter U., “Differences between Versions of UML Diagrams”, Pro-
ceedings of the joint European software engineering conference (ESEC) and SIGSOFT
symposium on the foundations of software engineering (FSE-11), 2003.

32 Jad El-khoury

11. Simulink, Mathworks, http://www.mathworks.com/products/simulink/, accessed March
2005.

12. OMG, Meta Object Facility (MOF) Specification, V1.4, April 2002.
13. Dome, “Dome Guide” Version 5.2.2, http://www.htc.honeywell.com/dome/index.htm,

1999.
14. GME, A Generic Modeling Environment, GME 4 User’s Manual, Version 4.0, Institute for

Software Integrated Systems, Vanderbilt University, 2004.
15. El-khoury J., Chen D. and Törngren M., “A survey of modelling approaches for embedded

computer control systems (Version 2.0)” Technical report, ISRN/KTH/MMK/R-03/11-SE,
TRITA-MMK 2003:36, ISSN 1400-1179, Department of Machine Design, KTH, 2003.

16. Kemmerer S. J. (editor), STEP, the grand experience, National Institute of Standards and
Technology, special publication 939, 1999.

17. El-khoury J., Redell O. and Törngren M., A Tool Integration Platform for Multi-
Disciplinary Development, to be published, 31st Euromicro Conference on Software Engi-
neering and Advanced Applications, 2005.

18. El-khoury J and Redell O., A Model Data Management Architecture for Multidisciplinary
Development, Internal Technical Report, Mechatronics Lab. Royal Institute of Technology,
Stockholm. 2005.

19. MatrixOne, Matrix10, http://www.matrixone.com/, accessed April 2005.
20. Nguyen T. N., Munson E.V., Boyland J.T. and Thao C., Flexible Fine-grained Version

Control for Software Documents, 11th Asia-Pacific Software Engineering Conference,
2004.

21. Cooling J., Software Engineering for Real-time Systems. Pearson Education Limited, ISBN
0201596202, 2003.

22. Redell O., El-khoury J. and Törngren M., The AIDA toolset for design and implementation
analysis of distributed real-time control systems, Microprocessors and Microsystems, Vol-
ume 28, Issue 4, 2004.

23. Chien S. Y., Tsotras V. J., Zaniolo C., Version Management of XML Documents, Third In-
ternational Workshop WebDB 2000 on The World Wide Web and Databases, 2000.

24. Becker S. M., Haase T. and Westfechtel B., Model-based a-posteriori integration of engi-
neering tools for incremental development processes, Journal of Software and Systems
Modeling, Volume 4, Number 2, Springer, 2005.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profi t or commercial advantage and that copies bear this notice and the full citation on the fi rst page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee.
SCM 2005, September 5-6, 2005, Lisbon, Portugal. Copyright © 2005 ACM

Observations on Versioning of Off-the-Shelf
Components in Industrial Projects (short paper)

Reidar Conradi1,2 and Jingyue Li1

1Department of Computer and Information Science,
Norwegian University of Science and Technology (NTNU),

NO-7491 Trondheim, Norway
2Simula Research Laboratory, P.O.BOX 134, NO-1325 Lysaker, Norway

{conradi, jingyue}@idi.ntnu.no

Abstract. Using OTS (Off-The-Shelf) components in software projects has be-
come increasing popular in the IT industry. After project managers opt for OTS
components, they can decide to use COTS (Commercial-Off-The-Shelf) com-
ponents or OSS (Open Source Software) components. We have done a series of
interviews and surveys to document and understand industrial practice with
OTS-based development in Norwegian, German, and Italian IT industry. The
perspective is that of a software architect or system integrator, not a developer
or maintainer of such components. The study object is a completed develop-
ment project using one or several OTS components. This paper reports on the
versioning aspects of OTS components in such projects. We found that one
third of the COTS components actually provided source code, in addition to all
OSS components. However, OTS components were seldom modified (i.e. re-
used �as-is�), even if source code was available. Although backward compati-
bility of new releases did not cause noticeable problems for a single OTS com-
ponent, using several different OTS components in a project caused difficulties
in maintenance planning of asynchronous releases and system integration of
new releases. Several new research questions have been formulated based on
the results of this study.

1. Introduction

Software reuse in the form of component-based software development (CBSD) has
long been proposed as a �silver bullet�. It is supposed to offer lower cost, shorter
time-to-market, higher quality, and stricter adherence to software standards. Software
developers are therefore increasingly using COTS (Commercial-Off-The-Shelf) and
OSS (Open Source Software) components in their projects, commonly called OTS
(Off-the Shelf) components. COTS components are owned by commercial vendors,
and their users normally do not have access to the source code [1]. On the other hand,
OSS components are provided by open source communities, with full access to the
source code [6].

34 Reidar Conradi and Jingyue Li

The granularity of an OTS component can be different. Some regard that OTS
components could or should include very large software packages such as Microsoft
Office. Others limit OTS components to GUI libraries. In this study, we focus on
OTS components as software components. Such a component is a unit of composi-
tion, and must be specified so that it can be composed with other components and in-
tegrated into a system (product) in a predictable way [10]. That is, a component is an
�Executable unit of independent production, acquisition, and deployment that can be
composed into a functioning system.� We also limit ourselves to components that
have been explicitly decided either to be built from scratch or to be acquired exter-
nally as an OTS-component. That is, to components that are not shipped with the op-
erating system, not provided by the development environment, and not included in
any pre-existing platform. That is, platform (�commodity�) softwares are not consid-
ered, e.g. an OS like Linux, DBMSes, various servers, or similar softwares. This
definition implies that we include not only components following COM, CORBA,
and EJB standards, but also software libraries like those in C++ or Java. This defini-
tion is consistent with the scope used in the component marketplace [9].

To record, understand, and possibly improve industrial practice wrt. OTS-based
development, we have carried out several empirical studies of on the usage of COTS
and OSS components. This paper will report some results from these studies wrt. ver-
sioning of such components. The remainder of this paper is organized as follows:
Section two motivates and states the research questions and the research method. Sec-
tion three describes the results and section four discusses these. Finally, conclusions
and future research are presented in section five.

2. Research questions, research method, and data collection

2.1 Motivation and some context

There is a growing literature on OTS-based development, but alas with few represen-
tative studies on industrial practice. For instance, Torchiano and Morisio [7] inter-
viewed 7 small IT companies in Norway and Italy on their experience with COTS-
based development. Even by this tiny study, they stated six theses that refute many
assumptions from the literature. For instance, they claim that OSS and COTS compo-
nents are used very much in a similar way, e.g. that components are normally not
modified even if source code is available.

Based on their study, we first performed a pre-study on COTS components as
structured interviews of 16 COTS-based projects in 13 Norwegian IT companies [4].
From the pre-study, we gathered some new insights on COTS-based development and
clarified our research questions and hypotheses. The study presented in this paper ex-
tended the pre-study in two dimensions. First, it included OSS components because
they represent an alternative to COTS components. Second, this study included sam-
ples from Norway, Italy and Germany. In addition, the sample was selected randomly
instead of on convenience as in the pre-study. The study was performed as a survey

2

35Observations on Versioning Off-the-Shelf Components in Industrial Projects

with a web-questionnaire, using a randomized sample of 133 projects from small,
medium, and large IT companies [2, 5]. The perspective was largely that of a system
integrator.

2.2 Research questions

To investigate the state-of-the-practice of versioning problems in OTS-based devel-
opment, we first designed research question RQ1 to study separate OTS components.
We then designed research question RQ2 to study the whole OTS-based project,
which might use several different OTS components.

2.2.1 Research question RQ1: In RQ1, we want to know whether and to what extent
OTS components are actually modified locally. The source code is namely available
not only for OSS components, but also for many COTS components [4]. But even if
the need and opportunity is there, will such changes actually be performed? The first
research question is therefore:

RQ1: To what extent are OTS components actually modified locally?
2.2.2 Research question RQ2: Some OTS-based projects integrate several OTS
components. Updates (releases) to these components may contain unpredictable func-
tionality and come at different intervals � on which a system integrator has little con-
trol. Previous studies indicate that the number of different OTS components used in
one project has a strong relationship with maintenance effort [1, 3], even postulates
that maintenance costs depend on the square of the number of components. The sec-
ond research question is:

RQ2: Is system maintenance perceived to carry a risk due to future versioning in-
compatibilities?

2.3 Research design

To clarify RQ1 and RQ2 we will use data from the mentioned survey [5]. However,
the survey questions were not designed to collect comprehensive data on versioning-
related issues. We have selected the survey questions given below, with boldfacing as
in the original questionnaire.

For RQ1, we first asked the respondent to select the most important OTS compo-
nent in their project, i.e. providing the most functionality for the actual application.
This is named Comp.1 below. Then we asked questions Q5.4, Q5.5, Q5.6 and Q5.10.

� Q5.4: What was the source code status of the selected component Comp.1?
The options are:
- OSS, i.e. with source code available
- COTS, but with source code available
- COTS, without source code

� Q5.5: Have you read parts of the source code of OTS-component Comp.1?
We used a five-point Likert scale (very little, little, some, much, very much -

36 Reidar Conradi and Jingyue Li

plus don�t know) to measure the answers to this question. The answers were
mapped to ordinal values 1 to 5 later.

� Q5.6: Have you modified parts of the source code of OTS-component
Comp.1? We used the same measurement scale as in Q5.5.

� Q5.10 Did you encounter some of the following aspects (risks) with the se-
lected OTS component Comp.1? The relevant option is:
- Q5.10.d: The recent OTS component versions were not backward-

compatible with the pervious version.
We used only yes, no, and don�t know to measure the answer to this question.

For RQ2, we asked about possible versioning-maintenance problems of the whole
project through question Q4.1 and three sub-questions:

� Q4.1 What is your opinion on the following aspects (risks) of your OTS-
based project? The relevant sub-questions are:
- Q4.1.k: It was difficult to plan system maintenance, e.g. because differ-

ent OTS components had asynchronous release cycles.
- Q4.1.l: It was difficult to update the system with the last OTS compo-

nent version.
- Q4.1.m: OTS components were not satisfactorily compatible with the

production environment when the system was deployed.
For each sub-question, we used another five-point Likert scale (don�t agree at all,

hardly agree, agree somewhat, agree mostly, strongly agree - and don�t know) to
measure the answer. The answers were mapped to ordinal values 1 to 5 later.

For RQ2, we also investigated whether the number of different OTS components
used in the project will influence integration effort as measured in Q4.1. We gathered
the relevant information through question Q5.1: How many different OTS compo-
nents have been used in the project?

2.4 Data collection and analysis

The unit of study for RQ1 and RQ2 is a completed software development project.
Sampling is described elsewhere [2], and data was mostly collected via a web-tool.
According to the focus of the different research questions, we used different data
analysis methods:
� For RQ1, we first clustered OTS components into two categories, with source

code and without source code, according to the answers of Q5.4. We then analyzed
the distribution of answers to questions Q5.5 and Q5.6 concerning OTS compo-
nents with source code. After that, we calculate the distribution of answers to ques-
tion Q5.10.

� For RQ2, we first studied the distribution of answers to Q4.1. We then calculate
the correlation between the possible risks (Q4.1.k, Q4.1.l and Q4.1.m) with the
number of different OTS components used in the project (Q5.1).

4

37Observations on Versioning Off-the-Shelf Components in Industrial Projects

3. Research results

We have gathered results from 133 projects (47 from Norway, 48 from Germany, and
38 from Italy). Three companies gave results for more than one project. In these 133
projects, 83 used only COTS components, 44 used only OSS components, and six
used both COTS and OSS components. For these six projects, five of them gave de-
tailed information of one COTS component, and one gave information of an OSS
component. In total, we gathered detailed information on 88 COTS components and
45 OSS components.

3.1 Answers to research question RQ1

For RQ1, the answers to Q5.4 show that 29 (or 1/3) of 88 COTS components actually
made available the source code to their users, i.e. software integrators.

The general distribution of answers to Q5.5 is shown in Figure 1. It shows that the
median value concerning reading of COTS components is 3 (meaning some). The
median value of OSS components is the same. This means that 1/3 of the COTS com-
ponents (having available source code) and all the OSS components are read to some
degree.

Figure 1. Answers to Q5.5: Has the source code been read?

The detailed answers to question Q5.5 is shown in Table 1. We observe that COTS
components with source code were actually read slightly more frequently than their
OSS counterparts.
 Table 1. Detailed answers of Q5.5 (source code reading)

Valid answers Read somewhat
(with value more than 3)

COTS components with
source code

26 out of 29 20 out of 26 (77%)

OSS components 44 out of 45 30 out of 44 (68%)

38 Reidar Conradi and Jingyue Li

Figure 2 and Table 2 below shows similarly the answers to Q5.6. Figure 2 shows
that the COTS components with source code have been somewhat modified, i.e. with
a median value of 2 (meaning little). OSS components � all with source code � had
also been somewhat modified and with the same median value. The distribution indi-
cates that users less frequently modify than read the source code of OTS components,
even it such source was available. In Table 1 above, we saw that COTS components
with source code were more frequently read than their OSS counterparts. Table 2
shows that OSS components were more frequently modified than their COTS coun-
terparts. In the pre-study [4], respondents often expressed that they wanted to perform
certain source code modifications of a component, but decided not to perform these
for fear of costly maintenance and re-integration with future releases.

 Figure 2. Answers to Q5.6: Has the source code been modified?

 Table 2. Detailed answers of Q5.6 (source code modification)

Valid answers Modified somewhat
(with value more than 3)

COTS components with
source code

27 out of 29 4 out of 27 (15%)

OSS components 44 out of 45 16 out of 44 (36%)

The result of Q5.10 (backward compatibility) is finally shown in Table 3. The re-
sults show that only 17% (10 out of 59) of COTS components and 11% (3 out of 27)
of OSS components had back compatibility problems. From this we can conclude that
versioning-maintenance problems were not frequent in the selected OTS components.
It also shows that there is no significant difference of backward compatibility prob-
lems between COTS and OSS components.

6

39Observations on Versioning Off-the-Shelf Components in Industrial Projects

 Table 3. Result of Q5.10 on backward compatibility problems.
Yes No Don’t know All (N)

COTS component 10 59 19 88
OSS component 3 27 15 45

3.2. Answers to research question RQ2

For RQ2, the answers of sub-questions Q4.1.k (asynchronous release cycles), Q4.1.l
(last version gives system update problems), and Q4.1.m (last version gives problems
with production environment) are shown in Figure 3. We do not tell the differences
between projects using COTS and OSS because they are facing the same versioning
risk, i.e. that OTS component versioning is out of the OTS component users� control.

Results of Q4.1 show that the median values of Q4.1.k, Q4.1.l, and Q4.1.m are all
2 (meaning hardly agree). It means most OTS component users did not regard the
versioning mismatches as a serious maintenance risk in general.

129123123N =

Q.4.1.MQ.4.1.LQ.4.1.k

6

5

4

3

2

1

0

 Figure 3. Answers to Q4.1 on some project versioning risks.

To investigate the correlation between the above versioning risks and the number
of different OTS components in one project, we used Spearman rank correlations in
SPSS 11.0. Although the number of different OTS components is an interval (integer)
variable, we used it as an ordinal variable. That is, we gave a project using less OTS
component a lower rank than a project using more OTS components. The relationship
between answers to Q4.1.k, Q4.1.l, and Q4.1.m and the number of different OTS
components is shown in Table 4.
 Table 4. Correlation between “versioning problems” and number of different
 OTS components

Correlation coefficient Significance (2-tailed)
4.1.k with number .182 .047*
4.1.l with number .289 .001*
4.1.m with number .027 .760

*Correlation is significant at the .05 level (2-tailed).

40 Reidar Conradi and Jingyue Li

From Table 4, we can see that the number of different OTS components used in
the project have a significant effect on the asynchronous release-cycle problem
(Q4.1.k), on the last-version-gives-system-update problem (Q4.1.l).

4. Discussion

This study is basically a state-of-the-practice survey, where we observed some basic
trends in OTS-based development in industry. These observations invoked several
new research questions that we would like to investigate in the future.

4.1 New Research Question NRQ1: Why OTS source code was seldom modified?

For this study, we discovered that most OTS component users do read the source
code when it is available. However, OTS component users did not change the source
code very much. Some studies assume that users didn�t need to see or modify, or
lacked the knowledge, skills or resources to do so [7]. Another possible reason is that
the users fear costly future maintenance (cost of reintegration) when a new OTS com-
ponent version is released [4]. If the reason is the latter one, a new research question
NRQ1 will be: If it is necessary to locally modify the source code in an OTS compo-
nent, how to support integration of new OTS component versions (releases) with the
local modifications? An obvious remedy is to apply (semi-)automatic merge tools, of-
ten as part of common SCM tools. In the OSS community there is heavy use of OSS�s
own bug tracking tool, Bugzilla [8] that again uses the open CVS tool for versioning.
Furthermore, there is a commitment in the OSS community to report back local modi-
fications. Thus the merge/integration job may possibly be delegated to the �owner� of
an OSS component. However, we have no specific information in this survey on such
integration or any use of SCM tools.

4.2 New Research Question NRQ2: How to manage versioning problems when
using several OTS components in the same project?

Results of Q5.10 show that the versioning problems of reusing a single OTS compo-
nent are very few. However, the versioning risk will increase as the number of differ-
ent OTS components increases. Our data gives further support the findings in [3], that
the most significant factor that influences lifecycle cost of a COTS-based system is
the number of COTS packages that must be synchronized within a release.

However, our study shows that using more than one OTS component in a project is
sometimes unavoidable. 90 of the 133 projects used more than one OTS component.
Therefore, another interesting research question NRQ2 is: How to estimate the “op-
timal” number of OTS components in a project to balance initial development sav-
ings with later maintenance costs? Moreover, some of our investigated projects had
very few versioning problems, even if they used more than 10 different OTS compo-

8

41Observations on Versioning Off-the-Shelf Components in Industrial Projects

nents in their project. Summarizing their experience by case studies to give guidelines
on OTS- based development could be yet another, new research question.

4.3 Possible treats to validity

Construct validity In this study, most variables and alternatives are taken directly, or
with little modification, from existing literature. The questionnaire was pre-tested us-
ing a paper version by 10 internal experts and 8 industrial respondents before being
published on a web tool. About 15% of the questions have been revised based on pre-
test results. However, a possible threat to construct validity is that we forgot to give a
clear �no� alternative in questions Q5.5 and Q5.6 (not only �very little�, �little� etc.).

Internal validity We promised respondents in this study a final report and a seminar
to share experience. The respondents were typically persons who wanted to share
their experience and wanted to learn from others. We therefore think that the respon-
dents answered the questionnaire truthfully. However, different persons in the same
project might have different opinions on the same project. Asking only one person in
each project might not be able to reveal the whole picture of the project. Due to
length limitation of a questionnaire, we asked the respondent to fill in information for
only one component in the project. The possible threat is that other OTS components
in the same project might lead to different answers to our questions.

Conclusion validity This study is a state-of-the-practice study. We studied what had
happened in industrial projects. However, we did not investigate the cause-effect rela-
tion of the phenomena discovered in this study. The sample size is generally suffi-
cient for valid statistical conclusions.

External validity We used different randomization to select samples in different
countries. However, the sample selection processes were not exactly the same due to
resource limitations [2]. Another possible threat to external validity is that our study
focused on fine-grained OTS components. Conclusions may be different in projects
using complex and large OTS packages, such as ERP, content management systems,
and web services in general.

5. Conclusion and future work

This paper has presented results of a state-of-the practice survey on OTS-based de-
velopment in industrial projects. The results of this study have answered two ques-
tions relevant for software configuration management:
� RQ1: To what extent are OTS components actually modified locally?

Our results show that most OTS component users took advantage of the available
source code and read it. However, few of them actually modified it.

42 Reidar Conradi and Jingyue Li

� RQ2: Is system maintenance perceived to carry a risk due to future versioning
incompatibilities?

Our results show that versioning problems when using a single OTS component
were few. However, the key challenge is to coordinate versioning when several OTS
components were used in the project.

Results of this study have shown state-of-the-practice data. By observing the cur-
rent trend in industry, we discovered several interesting research questions to be stud-
ied in the future. The next step is to do a larger qualitative study with personal inter-
views to further study some of the new research questions.

Acknowledgements

This study was partially funded by the INCO (INcremental COmponent based devel-
opment, http://www.ifi.uio.no/~isu/INCO) project. We thank the colleagues in this
project, and all the participants in the survey. We also thank the local OSS enthusiast
Thomas Østerlie for valuable comments.

References

1. Basili, V. R. and Boehm, B.: COTS-Based Systems Top 10 List. IEEE Computer, 34(5):91-
93, May/June 2001.

2. Conradi, R., Li, J., Slyngstad, O. P. N., Bunse, C., Kampenes, V.B., Torchiano, M., and
Morisio, M.: Reflections on conducting an international CBSE survey in ICT industry.
Submitted to 4th International Symposium on Empirical Software Engineering (ISESE�05),
17-18 Nov. 2005, Noosa Heads, Australia, 11 pages.

3. Donald, J. R., Basili, V., Boehm, B., and Clark, B.: Eight Lessons Learned during COTS-
Based Systems Maintenance. IEEE Software, 20(5):94-96, Sep./Oct. 2003.

4. Li, J., Bjørnson, F. O., Conradi, R., and Kampenes, V. B.: An Empirical Study of Variations
in COTS-based Software Development Processes in Norwegian IT Industry. Submitted to
the Journal of Empirical Software Engineering, 29 pages.

5. Li, J., Conradi, R., Slyngstad, O. P. N., Bunse, C., Khan, U., Torchiano, M., and Morisio,
M.: An Empirical Study on Off-the-Shelf Component Usage in Industrial Projects. Proc. 6th

International Conference on Product Focused Software Process Improvement
(PROFES'2005), 13-16 June, 2005, Oulu, Finland, Springer Verlag LNCS Volume 3547,
pp. 54 - 68

6. Open Source Initiative (2004): http://www.opensource.org/index.php
7. Torchiano, M. and Morisio, M.: Overlooked Aspects of COTS-based Development. IEEE

Software, 21(2):88-93, March/April 2004.
8. Bugzilla tool used for OSS (2005): http://www.bugzilla.org/
9. ComponentSource (2004): http://www.componentsource.com/
10. Crnkovic, I., Hnich, B., Jonsson, T., and Kiziltan, Z.: Specification, Implementation, and

Deployment of Components. Communication of the ACM, 45(10):35 � 40, October 2002.

10

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profi t or commercial advantage and that copies bear this notice and the full citation on the fi rst page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee.
SCM 2005, September 5-6, 2005, Lisbon, Portugal. Copyright © 2005 ACM

Continuous Release and Upgrade of
Component-Based Software

Tijs van der Storm

Centrum voor Wiskunde en Informatica (CWI)
P.O. Box 94079, 1090 GB Amsterdam

The Netherlands, storm@cwi.nl

Abstract. We show how under certain assumptions, the release and de-
livery of software updates can be automated in the context of component-
based systems. These updates allow features or fixes to be delivered to
users more quickly. Furthermore, user feedback is more accurate, thus
enabling quicker response to defects encountered in the field.
Based on a formal product model we extend the process of continuous
integration to enable the agile and automatic release of software compo-
nents component. From such releases traceable and incremental updates
are derived.
We have validated our solution with a prototype tool that computes and
delivers updates for a component-based software system developed at
CWI.

1 Introduction

Software vendors are interested in delivering bug-free software to their customers
as soon as possible. Recently, ACM Queue devoted an issue to update manage-
ment. This can be seen as a sign of an increased awareness that software updates
can be a major competitive advantage. Moreover, the editorial of the issue [7],
raised the question of how to deliver updates in a component-based fashion. This
way, users only get the features they require and they do not have to engage in
obtaining large, monolithic, destabilizing updates.
We present and analyse a technique to automatically produce updates for

component-based systems from build and testing processes. Based on knowledge
extracted from these processes and formal reasoning it is possible to generate
incremental updates.
Updates are produced on a per-component basis. They contain fine-grained

bills of materials, recording version information and dependency information.
Users are free to choose whether they accept an upgrade or not within the
bounds of consistency. They can be up-to-date at any time without additional
overhead from development. Moreover, continuous upgrading enables continuous
user feedback, allowing development to respond more quickly to software bugs.
The contributions of this paper are:

 This work was sponsored in part by the Netherlands Organisation for Scientific
Research, NWO, Jacquard project Deliver.

44 Tijs van der Storm

– An analysis of the technical aspects of component-based release and update
management.

– The formalisation of this problem domain using the relational calculus. The
result is a formal, versioned product model [4].

– The design of a continuous release and update system based on this formal-
isation

The organisation of this paper is as follows. In Section 2 we will elaborate
on the problem domain. The concepts of continuous release and upgrade are
motivated and we give an overview of our solution. Section 3 presents the for-
malisation of continuous integration and continuous release in the form of a
versioned product model. It will be used in the subsequent section to derive con-
tinuous updates (Section 4). Section 5 discusses the prototype tool that we have
developed to validate the product model in practice. In Section 6 we discuss links
to related work. Finally, we present a conclusion and list directions for future
work in Section 7.

2 Problem Statement

2.1 Motivation

Component-based releasing presumes that a component can be released only
if its dependencies are released [18]. Often, the version number of a released
component and its dependencies are specified in some file (such as an RPM
spec file [1]). If a component is released, the declaration of its version number
is updated, as well as the declaration of its dependencies, since such dependen-
cies always refer to released components as well. This makes component-based
releasing a recursive process.
There is an substantial cost associated with this way of releasing. The more

often a dependent component is released, the more often components depending
on it should be released to take advantage of the additional quality of func-
tionality contained in it. Furthermore, on every release of a dependency, all
components that use it should be integration tested with it, before they can be
released themselves.
We have observed that in practice the tendency is to not release components

in a component-based way, but instead release all components at once when
the largest composition is scheduled to be released. So instead of releasing each
component independently, as suggested by the independent evolution history of
each component, there implicitly exists a practice of big-bang releasing (which
inherits all the perils of big-bang integration1).
One could argue, that such big-bang releases go against the philosophy of

component-based development. If all components are released at once as part of
a whole (the system or application), then it is unlikely that there ever are two
components that depend on different versions of the same component. Version

1 See http://c2.com/cgi/wiki?IntegrationHell for a discussion.

45Continuous Release and Upgrade of Component-Based Software

Continuous
Release

Update
Server

Update
Client

Internet
RKBVCS

Fig. 1. Continuous Release Architecture

numbers of released components can thus be considered to be only informative
annotations that help users in interpreting the status of a release. They have no
distinguishing power, but nevertheless produce a lot of overhead when a release
is brought out.
So we face a dilemma: either we release each component separately and re-

lease costs go up (due to the recursive nature of component-based releasing). Or
we release all components at once, which is error-prone and tends to be carried
out much less frequently.
Our aim in this paper is to explore a technical solution to arrive at feasible

compromise. This means that we sacrifice the ability to maintain different ver-
sions of a component in parallel, for a more agile, less error-prone release process.
The assumption of one relevant version, the current one, allows us to automate
the release process by a continuous integration system. Every time a component
changes it is integrated and released. From these releases we are then able to
compute incremental updates.

2.2 Solution Overview

The basic architecture of our solution is depicted in Fig. 1. We assume the
presence of a version control system (VCS). This system is polled for changes
by the continuous release system. Every time there is a change, it builds and
tests the components that are affected by the change. As such the continuous
release process subsumes continuous integration [6]. In this paper, we mean by
“integration” the process of building and testing a set of related components.
Every component revision that passes integration is released. Its version is

simply its revision number in the version control system. The dependencies of a
released component are also released revisions. The system explicitly keeps track
of against which revisions of its declared dependencies it passed the integration.
This knowledge is stored in a release knowledge base (RKB). Note that integrated
component revisions could pass through one or more quality assurance stages
before they are delivered to users. Such policies can easily be superimposed on
the continuous release system described in this paper.
The RKB is queried by the update server to compute updates from releases.

Such updates are incremental relative to a certain user configuration. The up-
dates are then delivered to users over the internet.

46 Tijs van der Storm

Integration

Requires

*

Success

Revision

History

Component

*

*Attempt

Fig. 2. Continuous Integration Component Model

3 Continuous Release

3.1 Component Model

Our formalisation is based on the calculus of binary relations [16]. This means
that essential concepts are modelled as sets and relations between these sets.
Reasoning is applied by evaluating standard set operations and relational oper-
ations.
We will now present the sets and relations that model the evolution and

dependencies of a set of components. In the second part of this section we will
present the continuous release algorithm that takes this versioned product model
as input. As a reference, the complete model is displayed in a UML like notation
in Fig. 2.
The most basic set is the set of components Component. It contains an ele-

ment for each component that is developed by a certain organisation or team.
Note that we abstract from the fact that this set is not stable over time; new
components may be created and existing components may be retired.
To model the evolution of each component we define the set of component

revisions as follows:
Revision ⊆ Component× N

This set contains tuples C, i where C is a component and i is a revision iden-
tifier. What such an identifier looks like depends on the Version Control System
(VCS) that is used to store the sources of the components. For instance, in the
case of CVS this will be a date identifying the moment in time that the last com-
mit occurred on the module containing the component’s sources. If Subversion
is used, however, this identifier will be a plain integer identifying the revision
of one whole source tree. To abstract from implementation details we will use
natural numbers as revision identifiers. A tuple C, i is called a “(component)
revision”.
A revision records the state of a component. It identifies the sources of a

component during a period of time. Since it is necessary to know when a certain
component has changed, and we want to abstract from the specific form of

47Continuous Release and Upgrade of Component-Based Software

revision identifiers, we model the history of a component explicitly. This is done
using the relation History, which records the revision a component has at a
certain moment in time:

History ⊆ Time× (Component× Revision)

This relation is used to determine the state of a set of components at a certain
moment in time. By taking the image of this relation for a certain time, we get
for each component in Component the revision it had at that time.
Components may have dependencies which may evolve because they are part

of the component. We assume that the dependencies are specified in a designated
file within the source tree of a component. As a consequence, whenever this file
is changed (e.g., a dependency is added), then, by implication, the component
as a whole changes.
The dependencies in the dependency file do not contain version information.

If they would, then, every time a dependency component changes, the declaration
of this dependency would have to be changed; this is not feasible in practice.
Moreover, since the package file is part of the source tree of a component, such
changes quickly ripple through the complete set of components, increasing the
effort to keep versioned dependencies in sync.
The dependency relation that can be derived from the dependency files is a

relation between component revisions and components:

Requires ⊆ Revision× Component

Requires has Revision as its domain, since dependencies are part of the evolution
history of a component; they may change between revisions. For a single revision,
however, the set of dependencies is always the same.
The final relation that is needed, is a relation between revisions, denoting the

actual dependency graph at certain moment in time. It can be computed from
Requires and History. It relates a moment in time and two revisions:

Depends ⊆ Time× (Revision× Revision)

A tuple t, Ai, Bj ∈ Depends means that at point in time t, the dependency
of Ai on B referred to Bj ; that is: Ai, B ∈ Requires and t, B, Bj ∈ History.

3.2 Towards Continuous Release

A continuous integration system polls the version control system for recent com-
mits and if something has changed, builds all components that are affected by it.
After each integration, the system usually generates a website containing results
and statistics. In this section we formalise and extend the concept of continuous
integration to obtain a continuous release system.
The continuous release system operates by populating three relations. The

first two are relations between a number identifying an integration attempt and

48 Tijs van der Storm

Algorithm 1 Continuous Integration
1: procedure integrateContinuously
2: i := 0
3: loop
4: deps := Depends[now]
5: changed := carrier(deps) \ range(Attempt)
6: if changed = {} then
7: todo := deps−1∗[changed]
8: order := reverse(topsort(deps)) ∩ todo
9: integrateMany(i , order , deps)
10: i := i + 1
11: end if
12: end loop
13: end procedure

a component revision:

Attempt ⊆ N× Revision
Success ⊆ Attempt

Elements in Success indicate successful integrations of component revisions,
whereas Attempt records attempts at integration that may have failed. Note
that Success is included in Attempt.
The second relation records how a component was integrated:

Integration ⊆ Success× Success

Integration is a dependency relation between successful integrations. A tuple
i, r, j, s means that revision r was successfully integrated in iteration i
against s, which, at the time of i was a dependency of r. Revision s was success-
fully integrated in iteration j ≤ i. The fact that j ≤ i conveys the intuition that
a component can never be integrated against dependencies that have been inte-
grated later. However, it is possible that a previous integration of a dependency
can be reused. Consider the situation that there are two component revisions A
and A which both depend on B in iterations i and i + 1. First A is integrated
against the successful integration of B in iteration i. Then, in iteration i+1, we
only have to integrate A because B did not change in between i and i+1. This
means that the integration of B in iteration i can be reused.
We will now present the algorithms to compute Success, Attempt and Integration.

In these algorithms all capitalised variables are considered to be global; perhaps
it is most intuitive to view them as part of a persistent database, the RKB.
Algorithm 1 displays the top-level continuous integration algorithm in pseudo-

code. Since continuous integration is assumed to run forever, the main part of
the procedure is a single infinite loop.
The first part of the loop is concerned with determining what has changed.

We first determine the dependency graph at the current moment in time. This

49Continuous Release and Upgrade of Component-Based Software

Algorithm 2 Integrate components
1: procedure integrateMany(i , order , deps)
2: for each r in order do
3: D := {i, d ∈ Attempt | d ∈ deps[r],¬∃j, d ∈ Attempt : j > i}
4: if D ⊆ Success then
5: if integrateOne(r , D) = success then
6: Success := Success ∪ {i , r}
7: Integration := Integration ∪ ({i , r} ×D)
8: end if
9: end if
10: Attempt := Attempt ∪ {i , r}
11: end for
12: end procedure

is done by taking the (right) image of relation Depends for the current moment
of time (indicated by now). The variable deps represents the current depen-
dency graph; it is a relation between component revisions. Then, to compute
the set of changed components in changed , all component revisions occurring in
the dependency graph for which integration previously has been attempted, are
filtered out at line 5. Recall that Attempt is a relation between integers (integra-
tion identifiers) and revisions. Therefore, taking the range of Attempt gives us
all revisions that have successfully or unsuccessfully been integrated before.

If no component has changed in between the previous iteration and the cur-
rent one, all nodes in the current dependency graph (deps) will be in the range of
Attempt. As a consequence changed will be empty, and nothing has to be done.
If a change in some component did occur, we are left with all revisions for which
integration never has been attempted before.

If the set changed is non-empty, we determine the set of component revi-
sions that have to be (re)integrated at line 7. The set changed contains all
revisions that have changed themselves, but all current revisions that depend
on the revisions in changed should be integrated again as well. These so-called
co-dependencies are computed by taking the image of changed on the transitive-
reflexive closure of the inverse dependency graph. Inverting the dependency
graph gives the co-dependency relation. Computing the transitive-reflexive clo-
sure of this relation and taking the image of changed gives all component revi-
sions that (transitively) depend on a revision in changed including the revisions
in changed themselves. The set todo thus contains all revisions that have to be
rebuilt.

The order of integrating the component revisions in todo is determined by the
topological sort of the dependency graph deps. For any directed acyclic graph
the topological sort (topsort in the algorithm) gives a partial order on the nodes
of the graph such that, if there is an edge x, y, then x will come before y. Since
dependencies should be integrated before the revisions that depends on them,
the order produced by topsort is reversed.

50 Tijs van der Storm

B B

A

C

B

A

B

AA

1 2 63 4 5

A

C

A

Fig. 3. Six iterations of integration

The topological order of the dependency graph contains all revisions partic-
ipating in it. Since we only have to integrate the ones in todo, the order is (list)
intersected with it. So, at line 8, the list order contains each revision in todo in
the proper integration order.
Finally, at line 9, the function integrateMany is invoked which performs

the actual integration of each revision in order . After integrateMany finishes,
the iteration counter i is incremented.
The procedure integrateMany, displayed as Alg. 2, receives the current

iteration i , the ordered list of revisions to be integrated and the current depen-
dency graph. The procedure loops over each consecutive revision r in order , and
tries to integrate r with the most recently attempted integrations of the depen-
dencies of r . These dependencies are computed from deps at line 3. There may
be multiple integration attempts for these dependencies, so we take the ones
with the highest i , that is: from the most recent iteration.
At line 4 the actual integration of a single revision starts, but only if the

set D is contained in Success, since it is useless to start the integration if some
of the dependencies failed to integrate. If there are successful integrations of all
dependencies, the function integrateOne takes care for the actual integration
(i.e. build, smoke, test etc.). We don’t show the definition of integrateOne
since it is specific to one’s build setup (e.g. build tools, programming language,
platform, searchpaths etc.). If the integration of r turns out to be successful, the
relations Success and Integration are updated.

3.3 A Sample Run

To illustrate how the algorithm works, and what kind of information is recorded
in Integration, let’s consider an example. Assume there are three components,
A, B, C. The dependencies are so that A depends on B and C, and B depends
on C. Assume further that these dependencies do not evolve.

51Continuous Release and Upgrade of Component-Based Software

Figure 3 shows six iterations of integrateContinuously, indicated by the
vertical swimlanes. In the figure, a dashed circle means that a component has
evolved in between swimlanes, and therefore needs to be integrated. Shaded
circles and dashed arrows indicate that the integration of a revision has failed.
So, in the first iteration, the current revisions of A, B, and C have to be

integrated, since there is no earlier integration. In the second iteration, however,
component C has changed into C , and both A and B have remained the same.
Since A and B depend on C , both have to be reintegrated.
The third iteration introduces a change in A. Since no component depends

on A at this point, only A has to be reintegrated. In this case, the integrations
of B and C in the previous iteration are reused.
Then, between the third and the fourth iteration B evolves into B. Since

A depends on B, it should be reintegrated, but still the earlier integration of
C  can be reused. In the next iteration B evolves into B. Again, A should
be reintegrated, but now it fails. The trigger of the failure is in B or in the
interaction of B and C . We cannot be sure that the bug that triggered the
failure is in the changed component B. It might be so, that a valid change in
B might produce a bug in A due to unexpected interaction with C . Therefore,
only complete integrations can be reused.
Finally, in the last iteration, it was found out that the bug was in A, due to

an invalid assumption. This has been fixed, and now A successfully integrates
with B and C .

4 Continuous Upgrade

4.1 Release Packages

In this section we will describe how to derive incremental updates from the sets
Success and Integration. Every element i, r ∈ Success represents a release i of
revision r. The set of revisions that go into an update derived from a release,
the release package, is defined as:

package(s) = range(Integration∗[s])

This function returns the bill of materials for a release s ∈ Success.
As an example, consider Fig. 4. It shows the two release packages for com-

ponent A. They differ in the choice between revisions B and B. Since a release
package contains accurate revision information it is possible to compare a re-
lease package to an installed configuration and compute the difference between
the current state (user configuration) and the desired state (a release package).
If ugrades are to be delivered automatically they have to satisfy a number

of properties. We will discuss each property in turn and assert that the release
packages derived from the RKB satisfy it.

Correctness Releases should contain software that is correct according to some
criterion. In this paper we used integration testing as a criterion. It can be seen
from the algorithm integrateMany that only successfully integrated compo-
nents are released.

52 Tijs van der Storm

A

B

A

B

C

3 4

Fig. 4. Two release packages for A

Completeness A component release should contain all updates of its dependen-
cies if they are required according to the correctness criterion. In our compo-
nent model, the source tree of each component contains a special file explicitly
declaring the dependencies of that component. If a dependency is missed, the
integration of the component will fail. Therefore, every release will reference all
of its released dependencies in Integration.

Traceability It should be possible to relate a release to what is installed at the
user’s site in a precise way. It is for this reason that release version numbers
are equated with revision numbers. Thus, every installed release can be traced
back to the sources it was built from. Tracing release to source code enables the
derivation of incremental updates.

Determinism Updating a component should be unambiguous; this means that
they can be applied without user intervention. This implies that there cannot
be two revisions of the same component in one release package. More formally,
this can be stated as a knowledge base invariant. First, let:

components(s) = domain(package(s))

The invariant that should be maintained now reads:

∀s ∈ Success : |package(s)| = |components(s)|

We have empirically verified that our continuous release algorithm preserves this
invariant. Proving this is left as future work.

4.2 Deriving Updates

The basic use case for updating a component is as follows. The sofware vendor
advertises to its customers that a new release of a product is available [9]. De-
pending on certain considerations (e.g. added features, criticality, licensing etc.)

53Continuous Release and Upgrade of Component-Based Software

the customer can decide to update to this new release. This generally means
downloading a package or a patch associated to the release and installing it.
In our setting, a release of a product is identified by a successful integration

of a top component. There may be multiple releases for a single revision r due
to the evolution of dependencies of r. The user can decide to obtain the new
release based on the changes that a component (or one of its dependencies) has
gone through. So, a release of an application component is best described by the
changes in all its (transitive) dependencies.
To update a user installation one has to find a suitable release. If we start

with the set of all releases (Success), we can apply a number of constraints to
reduce this set to (eventually) a singleton that fits the requirements of a user.
For instance, assume the user has installed the release identified by the first

iteration in Fig. 3. This entails that she has component revisions A, B, and C
installed at her site.
The set of all releases is {1, 2, 3, 4, 5, 6}. The following kinds of constraints

express policy decisions that guide the search for a suitable release.

– State constraints: newer or older than some date or version. In the example:
“newer than A”. This leaves us with: {3, 4, 5, 6}.

– Update constraints: never remove, or patch, or a add, a certain (set of)
component(s). For example: “preserve the A component”. The set reduces
to: {3, 4, 6}.

– Trade-offs: conservative or progressive updates, minimizing bandwidth and
maximizing up-to-dateness respectively. If the conservative update is chosen,
release 3 will be used,—otherwise 6.

If release 3 is used, only the patch between C and C  has to be transferred
and applied. On the other hand, if release 6 is chosen, patches from B to B

and A to A have to be deployed as well.

5 Implementation

We have validated our formalisation of continuous release in the context the
Asf+Sdf Meta-Environment [17], developed within our group SEN1 at CWI.
The Meta-Environment is a software system for the definition of programming
languages and generic software transformations. It consists of around 25 com-
ponents, implemented in C, Java and several domain specific languages. The
validation was done by implementing a prototype tool called Sisyphus. It is im-
plemented in Ruby2 and consists of approximately 1000 source lines of code,
including the SQL schema for the RKB.
In the first stage Sisyphus polls the CVS repository for changes. If the repos-

itory has changed since the last iteration, it computes the Depends relation
based on the current state of the repository. This relation is stored in a SQLite3

database.
2 www.ruby-lang.org
3 www.sqlite.org

54 Tijs van der Storm

The second stage consists of running the algorithm described in Sect. 3. Every
component that needs integration is built and tested. Updates to the relations
Attempt, Succes and Integration are stored in the database.
We let Sisyphus reproduce a part of the build history of a sub-component

of the Asf+Sdf Meta-Environment: a generic pretty-printer called pandora.
This tool consists of eight components that are maintained in our group. The
approximate size of pandora including its dependencies is ≈190 KLOC. The
Sisyphus system integrated the components on a weekly basis over the period of
one year (2004). From the database we were then able to generate a graphical
depiction of all release packages. In the future we plan to deploy the Sisyphus
system to build and release the complete Asf+Sdf Meta-Environement.
A snapshot of the generated graph is depicted in Fig. 5. The graph is similar

to Fig. 3, only it abstracts from version information. Shown are three integration
iterations, 22, 23, and 24. In each column, the bottom component designates the
minimum changeset inbetween iterations.
Iteration 22 shows a complete integration of all components, triggered by

a change in the bottom component aterm. In iteration 23 we see that only
pt-support and components that depend on it have been rebuilt, reusing the
integration of error-support, tide-support, toolbuslib and aterm.
The third iteration (24) reuses some of these component integrations, namely:

tide-support, toolbuslib and aterm. The integration of component error-
support is not reused because it evolved in between iteration 23 and 24. Note
that the integration of pt-support from iteration 23 cannot be reused here since
it depends on the changed component error-support.

6 Related Work

6.1 Update Management

Our work clearly belongs to the area of update management. For an overview
of existing tools and techniques we refer to [9]. Our approach differs from the
techniques surveyed in that paper, mainly in the way how component releases
and the updates derived from them are linked to a continuous integration process.
The package deployment system Nix [3] also automatically produces updates

for components. This system uses cryptographic hashes on all inputs (including
compilers, operating system, processor architecture etc.) to the build process to
identify the state of a component. In fact this more aggressive than our approach,
since we only use revision identifiers.
Another difference is that Nix is a generic deployment system similar to De-

bian’s Advanced Package Tool [15], Redhat’s RPM [1] and the Gentoo/BSD
ports [14, 20] systems. This means that it works best if all software is deployed
using it. Our approach does not prohibit that different deployment models peace-
fully coexist, although not across compositions.
Updates produced by Nix are always non-destructive. This means that an

update will never break installed components by overwriting a dependency. A

55Continuous Release and Upgrade of Component-Based Software

22 23 24

pt-support

sglr

pandorapandora

sglr

pt-support

pandora

sglr

pt-support

aterm

error-support error-support

toolbuslib

tide-support

asc-support asc-support asc-support

asf-supportasf-supportasf-support

Fig. 5. Three weekly releases of the pandora pretty printing component in 2004

consequence of this is that the deployment model is more invasive. Our updates
are always destructive, and therefore the reasoning needed to guarantee the
preservation of certain properties of the user configuration is more complex.
Nevertheless, this makes the deployment of updates simpler since no side-by-
side installation of different versions of the same component is needed.

6.2 Relation Calculus

The relational calculus [16] has been used in the context of program under-
standing (e.g. [10, 12]), analysis of software architecture [8, 5], and configuration
management [11, 2]. However, we think that use of the relational calculus for the
formalisation of continuous integration and release is novel.
Our approach is closest to Bertrand Meyer’s proposal to use the calculus

for a software knowledge base (SKB). In [13] he proposes to store relations
among programming artifacts (e.g., sources, functions) in an SKB to support the
software process. Many of the relations he considers can be derived by analyzing
software artifacts. Our approach differs in that respect that only a minimum of
artifacts have to be analyzed: the dependencies between components that are
specified somewhere. Another distinction is that our SKB is populated by a
software program. Apart from the specification of dependencies, no intervention
from development is needed.

56 Tijs van der Storm

7 Conclusion and Future Work

Proper update management can be a serious advantage of software vendors
over their comptetitors. In this paper we have analysed how to successfully and
quickly produce and deploy such updates, without incurring additional overhead
for development or release managers.
We have analysed technical aspects of continuous integration in a setting of

component-based development. This formalisation is the starting point for con-
tinously releasing components and deriving updates from it that are guaranteed
to have passed integration testing.
Finally we have developed a prototype tool to validate the approach against

the component repository of a medium-sized software system, the Asf+Sdf
Meta-Environment. It proved that the releases produced are correct with respect
to the integration predicate.
As future work we will consider making our approach more expressive and

flexible, by adding dimensions of complexity. First, the approach discussed in this
paper assumes that all components are developed in-house. It would be inter-
esting to be able to transparently deal with third-party components, especially
in the context of open source software.
Another interesting direction concerns the notion of variability. Software com-

ponents that expose variability can be configured in different ways according to
different requirements [19]. The question is how this interacts with automatic
component releases. The configuration space may be very large, and the inte-
gration process must take the binding variation points into account. Adding
variation to our approach would, however, enable the delivery of updates for
product families.
Finally, in many cases it is desirable that different users or departments use

different kinds of releases. One could imagine discerning different levels of release,
such as alpha, beta, testing, stable etc. Such stages could direct component
revisions through an organisation, starting with development, and ending with
actual users. We conjecture that our formalisation and method of formalisation
are good starting points for more elaborate component life cycle management.

Acknowledgements Gratitude goes to Paul Klint, Jurgen Vinju and Gerco
Ballintijn, who suggested important improvements to drafts of this paper. We
thank the anonymous referees for providing many insightful comments.

References

1. E. C. Bailey. Maximum RPM. Taking the Red Hat Package Manager to the Limit.
Red Hat, Inc., 2000. Online: http://www.rpm.org/max-rpm (August 2005).

2. E. Borison. A model of software manufacture. In Proceedings of the IFIP In-
ternational Workshop on Advanced Programming Environments, pages 197–220,
Trondheim, Norway, June 1987.

57Continuous Release and Upgrade of Component-Based Software

3. E. Dolstra, M. de Jonge, and E. Visser. Nix: A safe and policy-free system for soft-
ware deployment. In Lee Damon, editor, 18th Large Installation System Admin-
istration Conference (LISA ’04), pages 79–92, Atlanta, Georgia, USA, November
2004. USENIX.

4. J. Estublier, J.-M. Favre, and P. Morat. Toward SCM / PDM integration? In
Proceedings of the Eighth International Symposium on System Configuration Man-
agement (SCM-8), 1998.

5. L. Feijs, R. Krikhaar, and R. van Ommering. A relational approach to support
software architecture analysis. Software Practice and Experience, 4(28):371–400,
April 1998.

6. M. Fowler and M. Foemmel. Continuous integration. Available at: http://www.
martinfowler.com/articles/continuousIntegration.html (February 2005).

7. E. Grossman. An update on software updates. ACM Queue, March 2005.
8. R. C. Holt. Structural manipulations of software architecture using tarski rela-

tional algebra. In Proceedings of the Working Conference on Reverse Engineering
(WCRE’98), 1998.

9. S. Jansen, G. Ballintijn, and S. Brinkkemper. A process framework and typology for
software product updaters. In 9th European Conference on Software Maintenance
and Reengineering (CSMR), 2005.

10. P. Klint. How understanding and restructuring differ from compiling—a rewriting
perspective. In Proc. of the 11th International Workshop on Program Comprehen-
sion (IWPC03), pages 2–12. IEEE Computer Society, 2003.

11. D. A. Lamb. Relations in software manufacture. Technical report, Department of
Computing and Information Science, Queen’s University, Kingston, Ontario K7L
3N6, october 1994.

12. M. A. Linton. Implementing relational views of programs. In P. Henderson, editor,
Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments, pages 132–140, Pittsburgh, PA,
May 1984. Association for Computing Machinery, Association for Computing Ma-
chinery.

13. B. Meyer. The software knowledge base. In Proc. of the 8th Intl. Conf. on Software
Engineering, pages 158–165. IEEE Computer Society Press, 1985.

14. FreeBSD Ports. Online: http://www.freebsd.org/ports (August 2005).
15. G. Noronha Silva. APT HOWTO. Debian, 2004. Online: http://www.debian.

org/doc/manuals/apt-howto/index.en.html (August 2005).
16. A. Tarski. On the calculus of relations. J. Symbolic Logic, 6:73–89, 1941.
17. M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge,

T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser,
and J. Visser. The ASF+SDF Meta-Environment: a Component-Based Language
Development Environment. In R. Wilhelm, editor, Compiler Construction (CC
’01), volume 2027 of Lecture Notes in Computer Science, pages 365–370. Springer-
Verlag, 2001.

18. A. van der Hoek and A. L. Wolf. Software release management for component-
based software. Software—Practice and Experience, 33(1):77–98, 2003.

19. T. van der Storm. Variability and component composition. In J. Bosch and
C. Krueger, editors, Software Reuse: Methods, Techniques and Tools: 8th Interna-
tional Conference (ICSR-8), volume 3107 of Lecture Notes in Computer Science,
pages 86–100. Springer, June 2004.

20. S. Vermeulen, R. Marples, D. Robbins, C. Houser, and J. Alexandratos. Work-
ing with Portage. Gentoo. Online: http://www.gentoo.org/doc/en/handbook/
handbook-x86.xml?part=3 (August 2005).

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profi t or commercial advantage and that copies bear this notice and the full citation on the fi rst page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee.
SCM 2005, September 5-6, 2005, Lisbon, Portugal. Copyright © 2005 ACM

Process Model and Awareness
in SCM

Jacky Estublier and Sergio Garcia

LSR-IMAG, 220 rue de la Chimie
BP53

38041 Grenoble Cedex 9, France

{Jacky.Estublier, Sergio.Garcia}@imag.fr

Abstract. The development of large and complex systems, under hard time
constraints, requires the participation of many developers working concurrently.
SCM systems allow concurrent access to software artifacts, but provide poor
support to maintain data consistency when concurrent changes are performed
on the same artifacts. This problem can be reduced if developers are aware of
the others work and warned about the conflicts that may arise, allowing the
users to manage the risks more effectively.
Awareness, without any knowledge about the cooperative process and system
models cannot help much, and indeed is not very much used today. We claim
that awareness takes its potential only when it takes into account the
cooperative process, and the system model in use. This paper, based on the
experience gained with our tool Celine, explores the relationships between
awareness, process and system models, and shows how the knowledge of these
models can be used to improve the relevance of an awareness system.

1. Introduction

One of the key factors for the success of software in a competitive environment is
time to market. This fact, added to the increasing size of software systems, leave
organizations little choice other than to increase the number of engineers that work on
a same product at the same time [5]. Unfortunately, rising concurrency increases the
possibility of inconsistent modifications and puts the software stability at risk. SCM
systems allow concurrency, but provide simplistic and inadequate support to handle
this risk.

The databases community has in depth studied the problem of data concurrent
modifications. There are, however, fundamental differences that make concurrent
software engineering a field of research on its own. Those differences can be
summarized in the following two points [12]:

1. Consistency definition. In software engineering there exists no adequate global
criteria, such as serializability, to enforce the correctness of concurrent modifications.
Serializability is not adequate because software is composed of complex and tightly
interrelated data, such that most modifications have potential side effect on a large
and a priori unknown sub set of the data. This means that two concurrent

60 Jacky Estublier and Sergio Garcia

modifications are almost never serializable under the classic databases definition
[12][13].

2. Long duration. In databases, it is common to abort a failed transaction.
Engineering tasks take days of human work, which makes it unacceptable to drop
them. [12]

Usual SCM tools allow concurrent work by providing private workspaces and
mergers to try to reconcile concurrent work; but they do not provide effective
mechanisms to coordinate developers working concurrently. Without such
mechanisms, project managers must either impose simplistic restrictions on
concurrency (file locking) or they must leave all the burden of avoiding data
corruption to the developers. When the number of developers increases, the risk of
modifications being combined inconsistently increases.

It has been argued that this problem can be palliated by raising the awareness of
developers about the work of their partners [1][3]. The main hypothesis is that if
developers are given a continuous insight over the group activities, they can detect
and handle potential conflicts more effectively during the development process. The
challenge of an awareness system is to provide the user with the relevant, and only the
relevant information. This paper explains how process and data models are related to
awareness and how their knowledge allows building a smart awareness system.

Section 2 presents some background and section 3 explains what is the purpose of
awareness. Section 4 relates cooperative process with awareness, 5 with cooperative
policies and business processes. Section 6 introduces shortly the relationship between
system model and awareness. Section 7 presents Celine an section 8 concludes.

2. Background

2.1. Cooperative engineering

We can characterize cooperation as a group of persons pursuing the same goal. In
software engineering, the goal is to transform a software application from its actual
state say V0 into a new state say V1.

VI VF?

Fig. 1 Cooperation

The role of cooperative software engineering is to control and support how this
transformation happens [8]. There exist several basic strategies. For instance, work
can be serialized, allowing only one developer to modify the software at a time.

61Process Model and Awareness in SCM

V0 V1 V2 V3

Fig. 2 Serialization

To increase the development speed, the work load can be broken down in several
tasks and subtasks that are assigned to different developers and executed in parallel.
Those tasks should be designed such that they involve different parts of the system;
unfortunately, provided the strong coupling between the software artifacts, it is likely
that more than one developer will need to change the same software artifact.
Concurrent change of the same artifact must be possible. But since most development
activities require exclusive access to the data, concurrent software engineering needs
a system that supports multiple copies, called cooperative copies, of the developed
software. Concurrent engineering is about the control of how these cooperative copies
are created and reconciled into a common result.

2.2. Asynchronous Cooperation with Workspaces

SCM is not the only field supporting cooperative changes; indeed all engineering
domains face the cooperative engineering challenge. It is the nature and relationship
between data, the nature and duration of activities and the development process that
makes that some solution are relevant in some engineering domains but not in others.
For example, Computer Supported Cooperative Work (CSCW) systems aim at
controlling how a document is co-authored, which looks pretty close to software
engineering, but CSCW often follows a blackboard metaphor where multiple
participants work simultaneously on the same document. In those systems, even the
smallest modification is visible to anyone "as soon as" it occurs. Cooperative editors
implement that strategy propagating “instantaneously” all changes over the network,
for all the document views to be permanently synchronized. [16] [17]

The CSCW approach is not adequate for software engineering because most
software changes are performed as a set of partial modifications that make sense only
within the context of a single task. Interleaving these partial modifications would
therefore produce a document in an inconsistent state, prohibiting compilation and
test until the end of the whole work. In software engineering, instead, each task makes
sense by itself (e.g. fixing a bug), and should be compiled and tested independently.
Such tasks require time and, usually, the availability of a significant fraction, if not
all, the code.

This is precisely the role of workspaces: to host complete, isolated copies of the
software during arbitrarily long periods of time, allowing several independent
development activities to be performed simultaneously and independently.
Developers can modify their private copies, leave them in inconsistent states for
arbitrarily long periods of time, perform operations on them without being subjected
to the others changes, and vice versa [1][4]. This separation between private local
copies and public copies is known as workspace isolation.

62 Jacky Estublier and Sergio Garcia

Unlike CSCW systems, in software engineering, the synchronization among the
different workspaces is done explicitly and usually involves a complete and consistent
unit of work. What means “complete and consistent” is highly related to the
workspace purpose and development process. A large part of cooperative engineering
policies consists in defining “complete and consistent”, and to define between which
workspaces synchronization should occur.

2.3. Divergence and reconciliation

Our hypothesis of a final common result implies that eventually all the cooperative
copies are merged into the final result. Therefore cooperative engineering is
fundamentally about merge control. The problem is twofold:

�� Data consistency : Does merge provides a consistent result?

�� Process : Are changes performed by the right person, on the right artifact at the
right time?

The two points seems unrelated but experience shows that the process purpose is to
make in such a way merges have the best chance to produce consistent result, and to
be performed by the persons capable to solve conflicts if any. [2]

Serialization being the only well known consistency criteria, the merge function is
a substitute for serialization : it takes two changes performed independently and
concurrently on two copies of the same data and is supposed to produce the same
result as if the changes have been produced in sequence i.e. the “second” change
being performed on the data produced by “first” change. Unfortunately, the merge
function depends on the nature of the data. For example for sets, the merge function
exists and always produces the right result; for lists, only approximate merge
functions exist; for complex data structures, only specialized algorithm taking into
account the data semantics can perform merges. Programs are often assimilated as
lists (of lines code) for which only an approximate algorithm exists; language specific
mergers also exist but do not provide much better result and therefore are not used in
practice [14].

Line merging is therefore a difficult and error prone task that needs human
expertise and understanding of both the software and the modifications. When two
modifications are found incompatible, large parts of them might have to be discarded,
with the loss of hours or days of work. The risk of incompatible changes, and the
complexity of merge, increases with the amount of changes to be merged. It is well
known that, if waiting too much before to merge, the merge becomes very complex
and risky, if not impossible. The only solution is keep divergences “small enough” by
merging the different copies as soon as possible. These early merges create
intermediate "agreement" points that serve as the base for the next reconciliation,
reducing the gap that needs to be closed each time.

63Process Model and Awareness in SCM

Intermediate
Agreement
point

VI VF

Fig. 3 Cyclic reconciliation.

As a consequence, cooperative engineering is a compromise between (1)
maintaining isolation until the complete work is done and (2) merging as often as
possible. It is the development process that defines and controls that compromise.

2.4. The development processes

How data is modified, when, by who, and how work is combined towards a single
result is what we call the development process. From a data flow perspective, the
development process can be represented by a directed graph, where nodes represent
workspaces, and arcs represent the data flowing from origin node to destination node.

Fig. 4 Example of a static graph of workspaces

The development process can be controlled by different processes defined at
different levels :

1. Concurrent Engineering process, which defines the graph topology i.e. its nodes
and arcs. This graph defines how team work is structured and which paths the data
can follow.

2. Policy process, which manages the data flow along the cooperative graph.

3. Business process which includes the change control process, engineering
methodology, business activities, i.e. which activities are to be performed on which
entities, for which reason, by whom and so on.

64 Jacky Estublier and Sergio Garcia

In this paper we will focus in the first level only, but our tool Celine covers point 1
and 2 [6], and is integrated with Apel [7] and Melusine [9], which cover point 3.

3. Awareness : purpose and issues

Given that the merge algorithm for software source code is not perfect, merges can be
made safer enforcing the following practices:

�� Merge often, so conflicts are easier to solve.

�� Allow only concurrency on unrelated changes, so to reduce the probability of
conflict.

�� Give the task to merge to the person most likely to perform the right job.

A mixture of these strategies can be provided either by implementing a well
defined process (the concurrent engineering policy) or by trusting the developers to
apply the safe practices by themselves. Unfortunately, without any information about
the work of their partners; developers do not know what are the current changes, who
did them, for what purpose and so on. Therefore developers cannot apply the above
practice. This is why many companies simply prohibit concurrent engineering for
being too risky. The purpose of awareness is to give the developers the necessary
context and information allowing them to apply the above good practice, making
concurrent engineering “safe enough” for the advantages of a faster development
significantly outweigh the risk of inconsistent or impossible merges [3].

Since the problem of safe concurrent engineering is clearly the problem of
controlling the merge, the main criteria to evaluate the effectiveness of an awareness
system is to measure to what extend the system helps the developer in deciding what
to modify and when to merge.

We call absence of concurrent engineering process the fact modifications can flow
without control between any pair of workspaces. Under this chaotic model, data can
follow any possible path, making it impossible to foresee how and where a merge will
occur. Without process, an awareness system can only inform all the users about the
differences among all the existing work copies.

For a large numbers of workspaces, not only the system cannot give any hint on
what is likely to occur (anything can occur), but also displaying this raw information
leads to the problem of cognitive overload [1]: when too much information is
presented, the cost of understanding it is too high for awareness to be of any value.
For example, suppose 50 concurrent workspaces containing 100 files each, and for an
average of 1 changes per file1, a classic awareness system will display 5000
awareness messages which is much too much to consider; further, if you do not know

1 These values are those of the application on which Celine is used today and are typical of

many software development projects; but our Dassault Systems customer has 1000
concurrent workspaces, containing 2000 files in average, with 3 changes in average for each
file, i.e. 6 millions awareness messages to display to each developer!.

65Process Model and Awareness in SCM

why these changes are performed, and in which state they are, the information is of
little help.

So far, all the awareness systems we know are ignoring the process, and therefore
are of little value. We believe it is the reason why these systems have not been
adopted by practitioners. An awareness system, to succeed, must provide
simultaneously much less information and much more relevant information taking
into account the process and the product models, in order to forecast the upcoming
merges. The relationship between awareness and process models, and between
awareness and system models will be presented in the following sections.

4. Concurrent Engineering Process and Awareness

4.1. Concurrent Engineering Process

The concurrent engineering process defines how workspaces are organized to
communicate their work. This process defines which workspace can send its artifacts
to which other workspace.

Concurrent engineering is usually not chaotic, but relies on a graph that guarantees
some properties. For example, CVS, RCS, Oracle 8 workspaces, as well as most SCM
systems are based on a star topology: a central database serves as a hub for multiple
“satellite” workspaces that are not allowed to communicate directly. This approach is
attractive because it ensures that the central database will always contain a copy that
is not too old compared to the developer’s copies, making it optimal to represent the
collective work of the team at any time.

Unfortunately, for highly collaborative projects the number of workspaces under
the central database can quickly become too big to keep awareness information
tractable.

A concurrent engineering process well suited for awareness must satisfy the
following properties:

1) Scalability: the process should be able to host a large number of workspaces
while keeping the amount awareness information tractable.

2) Merge control relevant information: the process should provide the means to
forecast when, where and whom will perform merges.

4.2. Scalable processes : Groups.

We have already mentioned that a cooperative work aims at producing a single result
called the project’s reference copy. Conversely, we call work copy, the copy that each
developer can directly modify and that contains his/her work.

In our work, we made the hypothesis that the reference copy is hosted by a well
identified workspace, called the reference workspace. The reference workspace

66 Jacky Estublier and Sergio Garcia

contains at any time, the actual visible result of the collective work. This hypothesis is
often satisfied in practice, because software development is a continuous process
where successive reference copies need to be produced, each developer feels more
comfortable if is known where is the actual reference copy. In most usual systems, the
data base plays the role of reference workspace.

We call a group a set of workspaces that have an explicit reference workspace, and
where only the reference workspace communicates with the other workspaces.

Rest of the
participants

Group

Fig. 5 Group

Groups are useful in practice because [12]:

�� Groups easily match work division (it can be in charge to realize a task).

�� Groups may use different concurrent engineering policies.

�� Groups facilitate overall management, by hiding their operational details from
the rest of the organization.

Groups easily match administrative and geographical divisions within an
organization.

Interestingly from the awareness perspective, a group can also be organized
hierarchically by allowing a workspace in the group to become the reference
workspace of a sub-group. Such a hierarchy permits partitioning a task into sub-tasks.
At Dassault Systems, the development of the Catia system uses a 7 level group
hierarchy, allowing different types of concurrent engineering policies ranging from
very strict at the top levels where are located the “Best So Far” and “Public” releases,
to light constraints “in the trenches” : the development workspace groups at the
bottom of the hierarchy [6][18].

From awareness perspective, a groups hierarchy based on tasks and subtasks is
interesting because it makes groups a good candidates as the context for users to be
aware of. Limiting awareness to a group activities raises the scalability of the system:
the amount of information depends only on the number of workspaces within a group
not on the total number of workspaces.

Modifications in the different workspaces of a group are usually semantically
related because groups are created to perform particular tasks cooperatively, and
therefore the likelihood to work on overlapping sets of files is pretty high. A group

67Process Model and Awareness in SCM

member can examine his partner’s modifications under the light of the group’s
mission, which provides an help in understanding its logic and intention.

4.3. Distance and States

Groups give scalability to awareness, but without a mechanism to make group
awareness more precise about the forthcoming merges, the awareness information
remains too broad and the developer has difficulties to measure to what extend others
changes have consequences in his/her personal work.

We need a mechanism that indicates to the developer where and how divergences
between his and somebody else work will be merged. Group awareness can be made
richer by using the properties of the internal process.

We call distance between a source copy and a destination copy, the number of
nodes (workspaces), along the cooperative graph, the first copy has to cross before to
meet the destination copy.

Each time a copy moves from a node to the next one along the graph, the changes
performed in the source node are potentially discarded and/or merged with the work
performed in the new node. Therefore, for a long distance, the changes performed in
the source copy are likely to reach the destination node much later and significantly
transformed. The analysis of “far away” changes is likely to be at least partially
irrelevant.

The shorter the distance, the more urgent and relevant the divergence analysis.

The distance is a good measure of the awareness information relevance; it is the
main way an awareness system takes vantage of the cooperative process information.

As mentioned above, the cooperative policy defines when an through which node a
change will move from its actual location to the next one. It is the combination
cooperative graph, cooperative policy that defines the distance. The distance being
determined by the cooperative graph and cooperative policy, the selection of a
cooperative graph is of critical importance for concurrent engineering and awareness.

In the absence of cooperative policy (which is the usual case), with only the
cooperative graph as information, the minimal distance is easy to compute, but the
maximum distance in the general case is infinite, and the real distance unpredictable.

For example, on one extreme, for a graph being a line or a circle, the awareness
system can computes distances, i.e. it can exactly forecast when a given change will
reach a given developer. In that case, the information is only for information purpose
since developers have no way to influence the distance. On the other extreme, without
graph (each node is liked to all the others), and without policy, the minimum distance
is always 1, but the real distance is totally unpredictable. This context makes the
developed somehow nervous, since each change can be of maximum relevance (the
distance can be 1) but since the real distance in unknown, the relevance is unknown;
they are too many information to consider and no hint to know which one to consider
first. The awareness information is useless.

68 Jacky Estublier and Sergio Garcia

4.3.1. The simple star topology

For the star topology, where the reference workspace is in the center, the minimum
distance is one with the reference workspace, and two for the other workspaces. This
simple topology is very much used, since it clearly identifies a unique workspace (the
reference workspace) as being more relevant than any other one. If each group uses a
star topology, the whole workspace structure is a tree of groups.

We define the concept of state of an artifact copy as

�� The distance between that copy change and the reference copy,

�� The distance between somebody else change and that copy.

In a star topology, from the point of view of a workspace different from the
reference workspace, a change can only be in one of the following state :

�� Distance to the reference : 0 (Unchanged) or 1 (Modified)

�� Distance from a foreign change : 1 from the reference workspace (Obsolete), 2
from any other workspace (Changed).

In Celine, we call these states respectively modified, obsolete and changed, for
user convenience, the combination (Modified / Obsolete) is called Conflict which
means next move of that copy to or from the reference workspace will require to
perform a merge.

For example, a user that is aware of a “conflict” state might decide to perform an
early merge. A “changed” file might require no particular attention from the user, but
a dangerous combination of “changed” and “modified” states might trigger the
decision of one of the developers to stop further modifications of a file, or to both
developers to exchange information to solve the emerging conflict early.

4.4. The extended star topology (Public and private workspaces)

The star topology is one of the most popular because it separate changes in two
groups : those promoted to the reference workspace are implicitly made “official” and
available to the rest of the group members, and those still in the developer workspace
are supposed to be underway changes, with unknown level of stability and
permanence. This difference is well expressed by the distance 1 with the reference,
and 2 with the underway changes.

It would be interesting to have more complex types of processes within a group
allowing more variability in distance to classify divergences as more or less
urgent/relevant. The extended star topology is a good example of such a process.

In an extended star, each workspace is made of two parts : the first one (private)
contains the current state of the developer’s work in progress, and the second one
(public) holds the latest snapshot that the developer wants to share with the rest of the
group. With respect to the simple star, this topology has the following advantages :

�� The developer can make public a “stable” version of his/her work and continue
working.

69Process Model and Awareness in SCM

�� Making public a version can be performed even when working off line.

�� The promotion of the public versions into the reference workspace can be done
at a later time, in an order defined by the policy or by an “integrator” working in
the reference workspace.

In the reference workspace, the same occurs, the promotion occurs in the private area,
and can be made public only after some work (e.g. validation) have been performed.
In this topology the distances and states, are as follows :

Private Public

Private Public Private Public

Reference
Workspace

User
Workspace

Other
Workspace

Fig. 6 Extended star graph.

�� To reference workspace : 1 from public (Modified), 2 from private (Locally
Modified)

From others workspace : 1 from public reference workspace (Obsolete), 2 from
private reference workspace (Locally Obsolete), 3 from developer public
workspace (Changed), 4 from developer private workspace (Locally Changed).

Clearly, the relevance of someone else change is well represented by the distance
(four levels), but the number of states is now larger, especially if combined with the
state of its own changes (three levels including the unchanged one) (4*3 = 12) . Even
with this simple topology, the number of states increases pretty fast, making complex
graph without cooperative policies intractable, falling back again in the cognitive
overload mentioned above.

5. Policies, business processes and awareness

5.1. Cooperative Engineering Policies

A concurrent engineering policy is a process that enforces a particular strategy for
concurrent engineering, by the definition of the path that can be followed in the
cooperative graph, between two nodes. From a practical point of view, cooperative
policies are implemented using a “Lock” primitive, which reserve the right to change
a copy to a single workspace in a group, and controlling which operation (like
promote, synchronize, publish, etc) are allowed given the circumstances. [6][11]

70 Jacky Estublier and Sergio Garcia

Whatever the implementation, a policy constrains the distance to a narrow range of
values, if not a single one, even in complex graph. A policy is a way to use flexible
and complex graph, still maintaining the distance into predictable are relatively small
values.

If the awareness system knows the distance, as constrained by the cooperative policy,
the number of states to manage can be small enough for proposing a good awareness
system simple, relevant and useful. Indeed, In the absence of policy, only very simple
graphs, like those presented above can be used, and awareness is a substitute to
explicit policies : the visibility provided by awareness can be used by developers to
decide themselves what is the policy to use at any point in time.

Except Celine, we do not know any system that propose explicit and high level
cooperative policies, and that couples policy and awareness. This topic of defining
and implementing policy in Celine was the topic of a previous paper [6], but our way
to define policies will be modified, to improve and generalize the way policy and
awareness can work in symbiosis.

5.2. Awareness and business models

Policy models are process models intended to control the data flow along the
cooperative graph. Their main purpose is to make cooperative engineering safer,
through a better control of merges, and incidentally to improve awareness
functionalities.

Change control is the process that defines which change to implement, which
groups to create to support these changes, with which policy and so on. It is our claim
that change control would highly benefit from the existence of explicit cooperative
policies, cooperative processes, and awareness, as presented in this paper. Our system
Apel, since long, have addressed these issues [7].

Business process cover more high level processes addressing other topics, not
necessarily related to changes. Our Apel system have been designed with these issues
in mind, but is not discussed here.

It is our claim that these different levels of processes cannot be addressed in a
single formalism, but benefit from each other, and should be connected in some way.
Our work on Mélusine address this issues of heterogeneous processes interoperability
[9].

6. System models

A system model is the definition of the relationships between the entities forming a
system. In software engineering it includes the definition of the relationships between
the different files present in a workspace. Some relationships may indicate a strong
semantic dependency between files, meaning that a change in one of them,
semantically, is also a change in the other one, called indirect change.

71Process Model and Awareness in SCM

This information is of importance for awareness for two fundamental reasons :

�� Changes are not only direct but also indirect changes,

�� Granularity of operations like promote, synchronize or lock is not the file, not
the whole workspace, but the transitive closure of the dependency operation.

System model information is very important for cooperative engineering control,
since it increases the relevance of the information provided. Without system models,
systems are taking conservative policies : the granularity of operations (promote, ..) is
the whole workspace and only direct changes are considered by the awareness system.

We have defined an extension of the Eclipse framework for the complete support
of system models and we are in the process of integrating Celine with this workspace
system. We hope this experience will be reported in a future paper.

7. Celine

The Celine system has been built initially for the support of cooperative engineering
policies [6][10]; once deployed we have realized that most companies are not yet ripe
for policies, and prefer to rely on the developers expertise to handle cooperation,
provided that the right information is available to them. This is why we have added
awareness to Celine. We have first hard wired the star topology, then the extended
star one, and integrated with cooperative policies.

Celine is daily used in production at STMicroelectronics by a group of engineers
that with 70 workspaces (in average) collaborate on the development of large number
(a few hundred) of microelectronic design files that for all purposes can be considered
as software source code. Within those files, a kernel group of around 100 files is
under daily modification. The number of concurrent modifications is high for the
kernel files (50 concurrent changes in average), and the number of developers in the
team make impossible to rely on informal communication channels to find out who is
modifying what. Indeed, before to use Celine, that group was forced to lock file
(using the synchronicity version control system), and therefore to avoid concurrent
engineering, with high penalty in overall productivity.

In that team, the topology of the development process is a simple star. Celine
provides each user with a view of the data that exposes the different state of each file,
as explained in section 4.3.

In average, an engineer has 5 to 10 active simultaneous workspaces. To reduce the
amount of awareness information, we encapsulate the workspaces of a particular user
as a single source of divergences, displaying a single icon for a file even when present
in more than one workspace. The Celine interface provides a way to find precisely
who are the participants that have performed modifications and also to visualize the
differences between any of them and the user’s local copy.

Celine natively supports the star and extended star topology, on top of a CVS or
synchronicity repositories. Celine handles and supports the basic operations (promote,
synchronize, lock and so on), as part of its cooperative engineering policy (shown in
the right menu bar in the above picture).

72 Jacky Estublier and Sergio Garcia

Fig. 7 Celine

Since arbitrary cooperative graphs are special cases of cooperative policies, we
envision to extend Celine by a deeper integration with the cooperative policy support
layer. The goal is to deduce automatically from the cooperative policy what are the
possible states, and to generate a specific awareness support optimized for that policy.

Currently, Celine is in the process of being integrated with workspace supporting
system model (as an extension of Eclipse). The current evolution of Celine is to
support uniformly all the levels of process, individually or in combination, and to take
vantage of the system model to generate an optimal and highly relevant awareness
information.

8. Conclusion

Large software development projects need some concurrent engineering control to
reduce the risks inherent to simultaneous modification of sensitive artifacts (e.g.
source code). It is clear than a pessimistic (locking) strategy is not only too restrictive
but also inadequate as it does not take into account semantic relationships among the
different software elements.

In the absence of adequate means to control concurrent engineering, all the burden of
dealing with copy reconciliation is on the shoulders of developers. Worse, conflicts
are detected only when copies are merged, not when conflicts are created. Awareness
has been proposed as a mechanism supporting concurrent engineering, providing
developers with continuous insight of the team's activity. The hypothesis is that
developers, with that information, will anticipate conflicts, and will reduce the
probability of tricky or impossible merge, making cooperative engineering “safe
enough”.

73Process Model and Awareness in SCM

The above hypothesis does not hold in the general case, because it generates too
much and not relevant enough information. As a matter of facts, these systems exist
but are not used. We have shown that cooperative engineering relies on different
models:

�� Cooperative graph model (workspace topology)

�� Cooperative policy model (allowed path along the graph)

�� Business process model (partial order of activities)

�� System model (data dependency)

Our claim is that, to be relevant and useful, an awareness system must take into
account information coming from these models.

The cooperative graph introduce the concepts of group and distance. The group
concept allows scalable system and solves the awareness cognitive overload issue.
We have shown that an advanced awareness system can automatically transform the
distance into a state displayed to the developer. We have shown why distance is the
relevant information from cooperative engineering point of view, but distance can be
computed only for simple graphs.

Cooperative policies complement the cooperative graph, allowing to control
complex and flexible graphs, still maintaining short and predictability distances.
Policies allow to provide a relevant awareness information even using complex
cooperative graphs. Policies and awareness are two ways to provide cooperative
engineering control; policies providing and explicit and imperative process,
awareness relying instead on the developer expertise. Policy and awareness seem
opposite, but our experience shows they are complementary, the policy providing the
way to provide relevant awareness information, even in complex situations, which in
turn allows to let large parts of the process under the developer responsibility.

The Celine system is, to our knowledge, the first system that provides awareness
taking into account all the above models, and which is in daily industrial production.
The experience so far shows that awareness along with the other models provide a
very good solution to concurrent engineering; while each one of these model, alone,
falls short to address the complexity and variability of the concurrent engineering
challenge.

References

[1] Sarma, A., Noroozi Z., Van Der hoek, A.: "Palantir: Raising Awareness among
Configuration Management Workspaces". 25th International Conference on Software
Engineering. 05 03 – 05, 2003. Portland, Oregon

[2] Cleidson R.B. De Souza, David Redmiles, Gloria Mark, John Penix, Maarten
Sierhuis. “Management of interdependencies in Collaborative Software
Development”. 2003 International Symposium on Empirical Software
Engineering (ISESE'03)

[3] Paul Dourish, Victoria Bellotti. "Awareness and Coordination in shared workspaces"
Proceedings of the ACM Conference on Computer Supported Cooperative Work
(CSCW'92)

74 Jacky Estublier and Sergio Garcia

[4] Cleidson R. B. De Souza. David RedMiles, Paul Dourish. “Breaking the Code,
moving between private and public work in Collaborative Software Development"
ACM SIGGROUP Bulletin Volume 24 , Issue 1 (April 2003)

[5] Dewayne E. Perry, Harvey P. Siy, Lawrence G. Votta. "Parallel Changes in Large
Scale Software Development: An observational Case Study" ACM Transactions on
Software Engineering and Methodology (TOSEM)

[6] Jacky Estublier, Sergio Garcia, German Vega. "Defining and Supporting Concurrent
Engineering policies in SCM" SCM-11 May 2003, Portland, Oregon, USA

[7] J. Estublier, S. Dami and M. Amiour "APEL, an effective Process Support
Environment." First International workshop on Multi Facets Software Process
Engineering. September 22-23. Tunis, Pages 123, 137. Tunisia. 1997.

[8] Bischofberger W.R. Kleinferchner C.F. Mätzel K.-U. "Evolving a Programming
Environment Into a Cooperative Software Engineering Environment" Proceedings
of CONSEG '95, New Dehli, February 1995, pages 95-106, Tata McGraw-Hill,
1995.

[9] J. Estublier, G. Vega "Reuse and Variability on Large Software Applications”
ESEC/FSE, September 2005, Lisboa Portugal.

[10] J. Estublier “Objects control for software configuration management”. 8 June 2001.
CaiSE 2001, Interlaken, Suisse.

[11] A. van der Hoek, A. Carzaniga, D. Heimbigner, A.L. Wolf. "A Testbed for
Configuration Management Policy Programming," IEEE Transactions on Software
Engineering, vol. 28, no. 1, pp. 79-99, January 2002.

[12] M.H. Nodine, S. Ramoswamy, and S. Zdonik. A Cooperative Transaction Model for
Design Databases. In Database Transaction Models, pages 59--86. Morgan
Kaufmann, 1992.

[13] A. Skarra. "Localized correctness specifications for cooperating transactions in an
object-oriented database". Office Knowledge Engineering, 4(1):79-106, 1991.

[14] T Mens “A state-of-the-art survey on software merging” - IEEE Transactions on
Software Engineering, 2002. 28(5): p. 449-462

[15] P. Molli, H. Skaf-Molly and G. Oster. “Divergence awareness for virtual team
through the web”. Proceedings of the integrated design and Process technology,
2002.

[16] C. Sun and C. A. Ellis: "Operational transformation in real-time group
editors: issues, algorithms, and achievements, " In Proc. of ACM Conference
on ComputerSupported Cooperative Work, pp.59-68, Seattle, USA, Nov.
1998.

[17] M. Beaudouin-Lafon and A. Karsenty. “Transparency and awareness in a
real-time groupware system”. In 5th annual ACM symposium on User
Interface Software and Technology. ACM Press 1992

[18] J. Estublier “Distributed Objects for Concurrent Engineering”. International
Symposium, SCM-9, Toulouse, France, September 1999. Proceedings

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profi t or commercial advantage and that copies bear this notice and the full citation on the fi rst page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee.
SCM 2005, September 5-6, 2005, Lisbon, Portugal. Copyright © 2005 ACM

Towards a Suite of Software Configuration

Management Metrics

Lars Bendix, Lorenzo Borracci

Department of Computer Science, Lund Institute of Technology,

Box 118, S-210 00 Lund, Sweden
����������������� �������������������

Abstract. Software Configuration Management (SCM) is an important support

activity in software development. However, its transparent nature as a service

that makes life easier for others and as an insurance against disasters, often

makes it difficult to justify investments in tools and processes that apparently

do not have any direct return. We have made a first step towards establishing a

model for showing the return on investment in SCM, making the costs and

benefits explicit. In this paper, we also sketch how we plan to take the next im-

portant step and establish a set of metrics that can be used to manage and tune

the SCM processes and tools.

1 Introduction

Development and maintenance of software require the use and interaction of many

disciplines and groups of people. In the CMM model Software Configuration Man-

agement (SCM) is one of the key process areas that needs to be mastered to progress

from the initial level of ad-hoc chaos to level 2 (Repeatable). However, unlike other

key process areas, such as requirement engineering, SCM is not a discipline that ends

up with a tangible product that can be weighed and judged for cost and quality. It is

transparent (service and insurance) yet vital to help other disciplines carry out their

work. Most of its benefits are “invisible” and spread over many groups (budgets),

whereas the costs are mostly explicit and placed in the SCM group. So how do we

justify initial or further investment in SCM?

It would be nice if there existed a simple model to calculate the Return On Invest-

ment (ROI) for SCM. Of previous academic work we are only aware of Larsen and

Roald [LR98], that does not give a complete model, but measures some data pre and

post implementation of an SCM tool and process. Many tool vendors have some pro-

motional material, that use a simple ROI model [Merant01], but these models are not

complete, nor are the values they claim credible. Such simple models may be ade-

quate to justify the initial introduction of SCM, but they are not sufficiently complete

to calculate the ROI of upgrading the SCM tool or introducing new SCM processes.

We want to do a more thorough analysis of the costs and benefits of investing in

SCM to get a more complete picture. We are well aware that it is very difficult to get

the full picture and that many costs and especially benefits are subjective and/or hard

to quantify. This has to be dealt with in some way in such a model. Such a ROI model

76 Lars Bendix and Lorenzo Borracci

can have many uses and must be tailored for that. In our model, we aim both at com-

panies that want to introduce SCM and at companies that want to upgrade their SCM

tool and/or processes. Our motivation for doing this is the simplicity of handling only

one model and the fact that it is indeed possible to use a complete model to establish

the costs and benefits and calculate the ROI both for initial introduction of SCM and

for later adding to a partial implementation of SCM.

However, the ROI model is not our ultimate goal. We find it more interesting to go

one step further and provide help for the SCM manager to daily monitor, manage and

tune their SCM tool and processes – and to be able to predict specific SCM costs and

benefits for projects. Therefore we are looking for a set of SCM specific metrics.

Traditionally metrics and SCM is thought of as data supplied by SCM to monitor

other software development processes and not the SCM processes. In this work in

progress, we will treat the ROI model as an intermediate result and use it as a step-

ping-stone towards uncovering a set of SCM specific metrics.

Establishing a model for calculating the ROI, as well as finding SCM specific met-

rics and benchmarks, is something that calls for both theoretical analysis and empiri-

cal validation. However, as it was also pointed out by the previous work of Larsen

and Roald [LR98], this is something that requires a long period of time and this ongo-

ing work is currently entering the phase of the empirical validation, so in this paper,

we can present only the theoretical analysis.

In the following, we first present the ROI model for SCM and the analysis that led

to it, then we outline how we intend to use the coming validation of this model to

identify a set of SCM specific metrics and benchmarks, and finally we draw our con-

clusions.

2 Step One – A Return On Investment Model

To get the broadest possible coverage of potential costs and benefits, we wanted to

analyse SCM from several different perspectives. The first – and most obvious – was

to analyse costs and benefits of the four canonical activities of SCM, as laid out by

standards like ISO 10007:2004 and ANSI/EIA-649: configuration identification,

configuration control, configuration status accounting and configuration audit. To get

a better idea of the extent of especially the benefits, we wanted to widen our analysis

and focus not only on the coding phase of software development, but cover the entire

life cycle from requirements analysis through to maintenance. Finally, we wanted to

look at the people involved with SCM tasks to be sure to get a complete coverage of

benefits and – in particular – costs.

In the following, we briefly describe the results of the analysis from each of the

three perspectives. This is followed by the presentation of the model that results from

these analyses.

77Towards a Suite of Software Confi guration Management Metrics

2.1 Analysis by SCM activities

In general, SCM is looked at as a management discipline that can help in planning

and running a project. As such, it provides a SCM plan that describes the processes

that have to be followed and a tool – or set of tools – that to some degree can auto-

mate some of these processes. The general costs that we get are those associated with

the tool(s) (licences, maintenance), the making and maintenance of SCM plans, and

the training of people to understand and follow the established processes and tool(s).

To know more about the benefits we treat each of the four activities in turn.

Configuration identification. This activity deals with the recording and communi-

cation of information of identified configuration items and the baselining of these

items. It establishes clear and effective naming conventions and how to hierarchically

structure sets of configuration items. This creates a clear navigational structure for

information retrieval and explicitly addresses traceability in different contexts.

Configuration control. Most important here are the change process and the Change

Control Board (CCB) that defines how changes are handled. This ensures that the

impact of changes is assessed and analysed, and that changes are planned and man-

aged. This allows us to trace the status of changes as well as the entire product

through its various baselines.

Configuration status accounting. This is a system of formatted reports created

based on the data available in the SCM system. The associated cost is that of creating

the original data, the benefits those of traceability and better information for manage-

ment.

Configuration audit. Audits verify the functional characteristics and the form and

fit of the product. The costs are those of carrying out the audits, the benefits are im-

proved stability and quality of baselines/releases.

2.2 Analysis by the product’s life cycle

Usually SCM is considered an activity that is aimed only at the coding phase of a

software development project. However, all phases can and should apply the configu-

ration management principles and methods to their work products. We will look at

each of the life cycle phases in turn.

Requirements. By applying SCM to the requirements phase products we can get

the same benefits (and costs) as for the Coding phase. Furthermore, we can obtain

traceability between the work products of the different phases.

Design. This phase is equivalent to the Requirements phase.

Coding. The costs are getting tool(s), processes and training in place. Benefits

come from being able to handle variations, reused code, work in parallel (and/or dis-

tributed), automated builds and facilitating the co-ordination and collaboration be-

tween programmers and teams. Furthermore, traceability, both between phases and

between versions (or variants), is a benefit.

Testing. Testers benefit from the use of documented baselines to create the builds

that are to be tested. This way is always clear exactly what is being tested.

Release. The use of documented baselines makes is possible to always recreate old

releases. Furthermore, configuration audits ensures the quality of the release.

78 Lars Bendix and Lorenzo Borracci

Maintenance. This phase probably has the most benefits from SCM. From the “in-

formation base” that SCM provides we obtain traceability and history that helps in

tracking down and removing bugs. Benefits when adding new functionality are the

same as for the coding phase.

2.3 Analysis by people involved

In the analysis so far, we have mostly looked at SCM from the company’s point of

view. In this section, we acknowledge that there are different roles that are related to

using SCM and that these roles have different interests, as is also pointed out by Hass

[Hass03].

Senior management. They share many interests and benefits with the company –

better quality of the product, faster and more flexible response to customer requests

and shorter time-to-market times.

Project management. Most benefits are related to the planning, scheduling and

managing of activities. Status accounting gives improved insight into the project

status and the use of a CCB ensures that all changes are controlled and impact ana-

lysed so they can finish in time and within budget.

Developer. As pointed out by Babich [Babich86], SCM is just as much about team

collaboration and co-ordination as it is about management. In our case, we use the

term developer in a very broad sense, as also people from other phases of the life

cycle can use SCM for “developing” their products. The concepts of baseline and

workspace allows for stability in the developer’s daily work. The flexible merging of

parallel work improves productivity, as people (or projects) do not have to wait for

each other. The possibility to return to an older version gives courage and security.

Traceability and the ability to highlight differences between two versions is a great

help both during development and in particular during maintenance (debugging).

SCM manager. The fact that this role exists, indicate that there are also personnel

costs from SCM. Someone has to take care of SCM plans and processes. Usually the

SCM manager also takes part in the CCB meetings as secretary.

2.4 The resulting model

We are now ready to put all the pieces of costs and benefits together. However, before

we can do that, we have to deal with a problem that we mentioned in the Introduction

– the fact that that many costs and benefits are subjective or/and hard to quantify.

The aspect of subjectivity has to do with the fact that often we cannot exclude the

specific context in which things are carried out. For instance, the degree of benefit we

have from being able to handle variants depends on the degree to which we actually

have to deal with variant products. Another factor that can cause problems is that it

can be difficult or impossible to quantify a certain benefit or cost. For instance it

would be difficult to quantify the actual advantage of getting to the market two

months earlier than your competition – in some cases it would be a matter of survival

of the company and as such the parameter should have an infinitely high value.

79Towards a Suite of Software Confi guration Management Metrics

Figure 1. Characterising the measurability of parameters

To reflect these difficulties, we have divided up the parameters into three catego-

ries: measurable, partially measurable and not measurable, as shown in Figure 1. Our

intention with this categorization is that the measurable parameters can be used in a

general, basic ROI model, where the values of the parameters can be taken from

common benchmarks and will vary very little from company to company. The par-

tially measurable parameters will not apply to all companies and will have values that

can vary wildly from company to company and as such has to be estimated by each

company in question. Finally, the not measurable parameters will have to be consid-

ered an added bonus to the result from actually calculating a ROI – they do not apply

to all companies and it does not make sense to try to estimate values for these parame-

ters.

Using this categorization of costs and benefits, we obtain the two-by-three matrix

of parameters shown below in Figure 2. We can see that for the costs, most are

measurable, whereas for the benefits most are not measurable. This goes for the

number of costs and benefits, not necessarily for their economical impact.

It is not a good property for a ROI model to have a high number of parameters that

are not measurable. However, our model is still preliminary and we hope to be able to

move parameters towards being measurable as we work with the empirical validation

of the model. Furthermore, we can see that for the cost side most parameters are

measurable whereas for the benefit side most parameters are not measurable. This

means that if we use only measurable and partially measurable parameters to calculate

the return on investment, we can be quite sure not to get unpleasant surprises from

“hidden” costs and expect even more benefits in addition to the calculated ROI.

The model we present in figure 2 shows only an overview of the parameters. Obvi-

ously many details will be needed about the parameters to clarify their exact nature

and definition. This can be done [Borracci05]; however, we leave it out here for rea-

sons of space.

80 Lars Bendix and Lorenzo Borracci

Measurable Partially measurable Not measurable

C
o

st
s

� Tool costs

� Licenses and maintenance

costs

� Training costs (cost of

training the system admin-

istrator and the developers

to the tool and the new

SCM processes

� Added work associated

with new SCM tasks for

the:

� Config. Manager

� Admin &

� Developer technician

� Change process may

be more complicated

(loss of time and

money waiting for

authorization, average

CCB-time)

� Loss of time for doing

the status accounting

reports (depending on

the tool and the level

of automation)

� Fear of new procedures

� Decrease of the externally

reported defects (defect re-

port arrival rate)

� Less time per bugfix

� Ability to trace the original

product through its devel-

opment

� Save time with automated

software builds

� Manage versions, parallel

work, automatic merges

� Traceability implies less

time for V&V and testing

� Decrease of number

of staff changes / help

to integrate new em-

ployees (less cost of

training a new em-

ployee)

� Allows to handle very

complex activities

(variation of a prod-

uct)

� Reusing existing code

and reducing repeti-

tive development ef-

forts

� Gain factor fixing

bugs in different vari-

ants

� Helps the maintenance

� Changes are planned,

their impact is as-

sessed

� Reducing the number

of errors

� Employees are happier

� Provides for communication

and coordination in the

group

� Pleasure of working in

stability with a baseline and

an own workspace

� Working from home and

distributed development

� Ability to bring out the

product earlier

� Decrease the time required

to respond to user requests

� Assures that the customer

gets what he paid for

� Audit at the end of each

phase assures consistency of

the work

� Provides visibility of the

project

� Achieves a sense of organi-

sation and control instead of

chaos

B
en

ef
it

s

Quantitative � Qualitative

Figure 2. The Return-On-Investment model

We have not stated an explicit formula to calculate the ROI in this paper, but have

left it at the model showing the parameters. Such a formula can be made [Borracci05],

but it becomes very complex and is probably of little use. What complicates matters

the most is that some costs and benefits are one-time (like buying the tool) or once a

year (like licenses), whereas others are daily (like the support for parallel work). Yet

others are not linear (low benefit until you get to know the tool/process). Therefore it

81Towards a Suite of Software Confi guration Management Metrics

is difficult to make a precise calculation that takes into account all these factors.

However, the previous study of Larsen and Roald [LR98] indicates that the ROI in

SCM is high enough that such a precise calculation should not be necessary to justify

the introduction of SCM tools and processes. When it comes to upgrading tools

and/or processes, the number of relevant parameters will probably be low enough to

allow a precise calculation. However, in many cases the most interesting will not be

to calculate the profitability of SCM, but rather to estimate the SCM costs of a project

as the tool(s) and processes are already given by the company standard.

In the present model, we have not considered such parameters as compliance re-

quirements and support of development methods. We believe that these are political

issues that will not be influenced by SCM economics nor by the ability or not of SCM

to support them – we may, though, be wrong about this.

3 Step Two – Looking for Metrics

Now that we have a model for the costs and benefits of SCM, we can use that model

and its parameters to arrive at what we are really looking for – a set of metrics that are

targeted specifically at measuring the SCM processes.

The project information base, that the SCM repository constitutes, is an obvious

source of data for metrics. In fact the Configuration Status Accounting activity is

mostly concerned with putting together data that can be used to monitor and manage

projects and processes. However, these metrics are mostly targeted at general soft-

ware engineering processes and very rarely are the SCM processes ever considered.

We know of only the two cases of Farah [Farah04] and Jönsson [Jönsson04] and feel

that the field needs more work to advance it to a more mature and complete state.

Just like other processes, SCM processes need to be kept an eye on and to be im-

proved. This cannot be done if we do not have data from a set of SCM specific met-

rics that can be used to measure the performance of the SCM processes. We need

information about the current state to make data-driven decisions about changes. And

we need to track our progress to be able to assess the impact of SCM process changes.

In a project course at our department [HBM05], teams have to do four releases dur-

ing the course of six XP-iterations (each iteration being 14 hours of work). We keep

an explicit SCM metric for the time it takes to produce a release (extract code from

the repository, compile it and carry out unit and acceptance tests, and put together

system, source code, manual and documentation in one package ready to ship to the

customer). The first release is done manually in 2-4 hours, teams improve for each

release and most teams have an automated forth release – with a record to beat of 38

seconds. The customers guarantee that the teams do not trade quality for speed.

A set of SCM metrics and associated benchmarks can also be used to predict SCM

costs for new projects drawing on data from old and current projects. But we need to

find and define a set of SCM metrics and to collect data. The SCM metrics will tell us

when our SCM processes are working as expected – and more importantly, the

anomalies will give us early warning about SCM processes with potential problems.

In parallel with the project where we validate the ROI model, we also intend to es-

tablish a tentative set of SCM metrics. During a longer time-span we want to experi-

82 Lars Bendix and Lorenzo Borracci

ment with those metrics to see what stories they can tell about the company’s SCM

processes and a possible change of tool. We do not expect all the parameters from our

ROI model to become useful SCM metrics – and we expect more to pop up.

Already now we have some ideas for what metrics could be used for improving the

SCM processes. The time to produce a release, as mentioned above, is just one. Oth-

ers could be: number of merge conflicts, time to do a configuration audit, accuracy of

impact analysis – and many more. However, we still need to do a lot of work here and

would like to discuss our preliminary findings and our ideas for the continued work in

a forum of experts.

4 Concluding Remarks

We have screened our proposed ROI model with the local branch of a global com-

pany. They have found it useful and want to adopt it, not for calculating the ROI of

introducing SCM as they already has that in place, but to evaluate the profitability of

proposed changes to their SCM tool and/or processes.

During the course of the model’s validation, we want to look for a set of SCM spe-

cific metrics to help manage and tune SCM processes. The empirical validation of the

ROI model will surely show that some parameters have only marginal effect and are

best left out in order to reduce the model’s complexity. We also expect new parame-

ters to emerge that we have overlooked. And finally, it is our hope that with practical

experience, we can move some of the parameters towards being more measurable.

The ROI model that we have presented is just to be considered an intermediate

step; our ultimate goal is to uncover a set of “pure” SCM specific metrics. This is

work in progress that we want to evaluate and discuss now that we are in the transi-

tion from phase one (the ROI model) to phase two (the SCM metrics).

References

[Babich86]: Wayne A. Babich: Software Configuration Management – Coordination for Team

Productivity, Addison-Wesley Publishing Company, 1986

[Borracci05]: Lorenzo Borracci: A Return on Investment Model for Software Configuration

Management, Masters Dissertation, Lund Institute of Technology, May 2005.

[Farah04]: Joe Farah: Metrics and Process Maturity, The Configuration Management Journal,

December 2004.

[Hass03]: Anne Mette Jonassen Hass: Configuration Management Principles and Practice,

Addison-Wesley Publishing Company, 2003.

[HBM05]: Görel Hedin, Lars Bendix, Boris Magnusson: Teaching eXtreme Programming to

Large Groups of Students, Journal of Systems and Software, January 2005.

[Jönsson04]: Henrik Jönsson: Graphs for Change Requests, The Configuration Management

Journal, December 2004.

[LR98]: Jens-Otto Larsen, Helge M. Roald: Introducing ClearCase as a Process Improvement

Experiment, in proceedings of the SCM-8 Symposium, Brussels, Belgium, 1998.

[Merant01]: Assessing Return on Investment for Enterprise Change Management Systems,

Merant White Paper, 2001.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profi t or commercial advantage and that copies bear this notice and the full citation on the fi rst page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee.
SCM 2005, September 5-6, 2005, Lisbon, Portugal. Copyright © 2005 ACM

Service Configuration Management

Eelco Dolstra, Martin Bravenboer, and Eelco Visser

Department of Information and Computing Sciences, Universiteit Utrecht, P.O. Box 80089
3508 TB Utrecht, The Netherlands {eelco,martin,visser}@cs.uu.nl

Abstract. The deployment of services — sets of running programs that provide
some useful facility on a system or network — is typically implemented through
a manual, time-consuming and error-prone process. For instance, system admin-
istrators must deploy the necessary software components, edit configuration files,
start or stop processes, and so on. This is often done in an ad hoc style with
no reproducibility, violating proper configuration management practices. In this
paper we show that build management, software deployment and service deploy-
ment can be integrated into a single formalism. We do this in the context of the
Nix software deployment system, and show that its advantages — co-existence
of versions and variants, atomic upgrades and rollbacks, and component closure
— extend naturally to service deployment. The approach also elegantly extends
to distributed services. In addition, we show that the Nix expression language can
simplify the implementation of crosscutting variation points in services.

1 Introduction

The deployment of software services — sets of running programs that provide some
useful facility on a system or network — is very often a time-consuming and error-prone
activity for developers and system administrators. In order to produce a working service,
one must typically install a large set of components, put them in the right locations,
write configuration files, create state directories or initialise databases, make sure that
all sorts of processes are started in the right order on the right machines, and so on.
These activities are quite often performed manually, or scripted in an ad hoc way.

A software service typically consists of a set of processes running on one or more
machines that cooperate to provide a useful facility to an end-user or to another software
system. An example might be a bug tracking service, implemented through a web server
running certain web applications, and a back-end database storing persistent data. A
service generally consists of a set of software components, static data files, dynamic
state (such as databases and log files), and configuration files that tie all these together.

A particularly troubling aspect of common service deployment practice is the lack of
good configuration management. For instance, the software environment of a machine
may be under the control of a package manager, and the configuration files and static
data of the service under the control of a version management system. That is, these two
parts of the service are both under CM control. However, the combination of the two
isn’t: we don’t have a way to express that (say) the configuration of a web server consists
of a composition of a specific instance of Apache, specific versions of configuration files
and data files, and so on.

84 Eelco Dolstra, Martin Bravenboer, Eelco Visser

This means that we lack important features of good CM practice. There is no iden-
tification: we do not have a way to name what the running configuration on a system
is. We may have a way to identify the configurations of the code and data bits (e.g.,
through package management and version management tools), but we have no handle
on the composition. Likewise, there is no derivation management: a software service
is ideally an automatically constructed derivate of code and data artifacts, meaning that
we can always automatically rebuild it, e.g., to move it to another machine. However, if
administrators ever manually edit a file of a running service, we lose this property.

In practice, we see that important service deployment operations are quite hard.
Moving a service to another machine can be time-consuming if we have to figure out
exactly what software components to install to establish the proper environment for the
service. Having multiple instances of a service (e.g., a test and production instance)
running side-by-side on the same machine is difficult since we must arrange for the
instances not to overwrite each other, which often entails manually copying files and
tweaking paths in configuration files. Performing a roll-back of a configuration after an
upgrade might be very difficult, in particular if software components were replaced.

In this paper we argue that we can overcome these problems by integrating build
management, software deployment, and service deployment into a single formalism.
We do this in the context of the Nix deployment system [8, 7], which we developed
to overcome a number of problems in the field of software deployment, such as the
difficulty in reliably identifying component dependencies and in deploying versions
of components side-by-side. We show in this paper that the Nix framework is well
suited for service deployment, simply by treating the static, non-code parts of service
configurations as components. By doing so, we can build, deploy and manage services
with the same techniques that we previously applied to component deployment.

The central contribution of this paper is that we posit that deployment and service
configuration can be integrated by viewing service configurations as components. This
allows all of Nix’s advantages to apply to the service configuration realm. Specifically,
this yields the following contributions:

– Services become closures. Since Nix helps to prevent undeclared dependencies, we
can be reasonably certain that the Nix expression that describes a service has no
external dependencies, i.e., is self-contained. Thus, we can unambiguously repro-
duce such a service. For instance, we can trivially pick it up and move it to another
machine, and it will still work.

– Different instances of a service can automatically co-exist on the same machine.
This includes not just variation in feature space (e.g., test and production instances),
but also variation in time (e.g., older versions of the service). This allows us to
efficiently and reliably roll back to previous configurations.

– Since deployment of code and non-code parts of a service are now integrated in
a single formalism and tool, deployment effort and complexity is substantially re-
duced.

– Nix’s functional expression language allows variability in configurations to be ex-
pressed succinctly. A major annoyance in writing configuration files for services is
a lack of abstraction: crosscutting configuration choices (e.g., a port number) often
end up in many places in many different configuration files and scripts. By gener-

2

85Service Confi guration Management

ating these from feature specifications specified in Nix expressions, we reduce the
deployment effort and the opportunity for errors due to inconsistencies.

– We show how services can be composed from smaller sub-services, rather than
having a single monolithic description of the service as a whole.

– Multi-machine, multi-platform configurations can be described succinctly because
Nix expressions can specify for what platform each component is to be built, and
on what machine it is to run. Thus we obtain a centralised view of a distributed
service.

Outline This paper is structured as follows. In Section 2 we motivate our work, present
a simple, ‘monolithic’ example of service deployment through Nix, and introduce the
underlying concepts and techniques. Section 3 shows how Nix services can be made
compositional. In Section 4 we show how crosscutting configuration aspects can be im-
plemented. We demonstrate how distributed deployment can be elegantly expressed in
Nix in Section 5. We discuss our experiences with Nix service deployment in Section 6,
and related work in Section 7.

2 Overview

2.1 Service components

From the perspective of a user, a service is a collection of data in some format with
a coherent set of operations (use cases) on those data. Typical examples are a Sub-
version version management service [12] in which the data are repositories and the
operations are version management actions such as committing, adding, and renaming
files; a TWiki service [2] in which the data are web pages and operations are viewing,
editing, and adding pages; and a JIRA issue-tracking service in which the data consists
of entries in an issue data-base and the operations are issue management actions such
as opening, updating, and closing issues. In these examples, the service has persistent
data that is stored on the server and that can be modified by the operations of the server.
However, a service can also be stateless and just provide some computation on data pro-
vided by the client at each request, e.g., a translation service that translates a document
uploaded by the client.

From the perspective of a system administrator, a service consists of data directo-
ries containing the persistent state, software components that implement the operations
on the data, and a configuration of those components binding the software to the data
and to the local environment. (For the purposes of this paper, we define a component
as a unit of deployment that can be automatically built and composed.) Typically, the
configuration includes definitions of paths to data directories and software components,
and items such as the URLs and ports at which the service is provided. Furthermore,
the configuration provides meta-operations for initialising, starting, and stopping the
service. Fig. 1 illustrates this with a diagram sketching the composition of a version
management service based on Apache and Subversion components. The control com-
ponent is a script that implements the meta-operations, while the file httpd.conf defines
the configuration. The software components underlying a service are generally not self-
contained, but rather composed from a (large) number of auxiliary components. For

3

86 Eelco Dolstra, Martin Bravenboer, Eelco Visser

software

data

configuration

subversion

openssl db4perl expatperlBerkeleyDB

apache

/data/subversion/http.conf

control

Fig. 1. Dependencies between code, configuration, and data components in a subversion service.

ServerRoot "/var/httpd"

ServerAdmin eelco@cs.uu.nl

ServerName svn.cs.uu.nl:8080

DocumentRoot "/var/httpd/root"

LoadModule dav_svn_module /usr/lib/modules/mod_dav_svn.so

<Location /repos>

AuthType Basic

AuthDBMUserFile /data/subversion/db/svn-users

...

DAV svn

SVNParentPath /data/subversion/repos

</Location>

Fig. 2. Service configuration. Excerpts from a httpd.conf file showing hosting of Subversion by
an Apache server.

example, Fig. 1 shows that Subversion and Apache depend on a number of other soft-
ware components such as OpenSSL and Berkeley DB.

2.2 Service configuration and deployment

Setting up a service requires installing the software components and all of their de-
pendencies, ensuring that the versions of the installed components are compatible with
each other. The data directories should be initialised to the required format and possibly
filled with an initial data set. Finally, a configuration file should be created to point to
the software and data components. For example, Fig. 2 shows an excerpt of an Apache
httpd.conf configuration file for a Subversion service. The file uses absolute pathnames
to software components such as a WebDAV module for Subversion, and data directories
such as the place where repositories are stored.

4

87Service Confi guration Management

Installation of software components using traditional package management systems
is fraught with problems. Package managers do not enforce the completeness of depen-
dency declarations of a component. The fact that a component works in a test environ-
ment, does not guarantee that it will work on a client site, since the test environment
may provide components that are not explicitly declared as dependencies. As a conse-
quence, component compositions are not reproducible. The installation of components
in a common directory makes it hard to install multiple versions of a component or
to roll back to a previous configuration if it turns out that upgrading produces a faulty
configuration.

These problems are compounded in the case of service management. Typically,
management of configuration files is not coupled to management of software compo-
nents. Configuration files are maintained in some specific directory in the file system
and changing a configuration is a destructive operation. Even if the configuration files
are under version management, there is no coupling to the versions of the software
components that they configure. Thus, even if it is possible to do a roll back of the
configuration files to a previous time, the installation of the software components may
have changed in the meantime and become out of synch with the old configuration files.
Finally, having a global configuration makes it hard to have multiple versions of a ser-
vice running side by side, for instance a production version and a version for testing an
upgrade.

2.3 Capturing component compositions with Nix expressions

The Nix software deployment system was developed to deal with the problems of cor-
rectness and variability in software deployment. Here we show that Nix can be applied
to the deployment of services as well, treating configuration and software components
uniformly. We first show the high-level definition of service components and their com-
position using Nix expressions and then discuss the underlying implementation tech-
niques.

The Nix expression language is a simple functional language that is used to define
the derivation of software components from their dependencies. (A more detailed ex-
position of the language is given in [7].) The basic values of the language are strings,
paths such as ./builder.sh, and attribute sets of the form { f1=e1; . . . fn=en;}, binding
the value of expressions ei to fields fi. The form { f1, . . . , fn}: e defines a function with
body e that takes as argument an attribute set with fields named f1, ..., fn. A function
call e1 e2 calls the function e1 with arguments specified in the attribute set e2.

For example, Fig. 3 shows the definition of a function for building a Subversion
component given its build-time dependencies. The keyword inherit in attribute sets
causes values to be inherited from the surrounding scope. The dependency stdenv com-
prises a collection of standard utilities for building software components, including a C
compiler and library. The function fetchurl downloads a file given its URL and MD5
hash. Likewise, the other arguments represent components such as OpenSSL. Thus, the
body of the function is an attribute set with everything needed for building Subversion.
The build script builder.sh (Fig. 4) defines how to build the component given its inputs,
in this case, using a typical command sequence for Unix components. The locations of
the build inputs in the file system are provided to the script using environment variables.

5

88 Eelco Dolstra, Martin Bravenboer, Eelco Visser

{ stdenv, fetchurl, openssl, httpd, db4, expat }:
stdenv.mkDerivation {
name = "subversion-1.2.0";

builder = ./builder.sh;

src = fetchurl {
url = http://.../subversion-1.2.0.tar.bz2;

md5 = "f25c0c884201f411e99a6cb6c25529ff";

};
inherit openssl httpd expat db4;

}

Fig. 3. subversion/default.nix: Nix expression defining a function that derives a Subversion com-
ponent from its sources and dependencies.

tar xvfj $src

cd subversion-*

./configure --prefix=$out --with-ssl --with-libs=$openssl ...

make

make install

Fig. 4. subversion/builder.sh: Build script for the Subversion component.

The special environment variable out indicates the location where the result of the build
action should be installed. An instance of the Subversion component can be created by
calling the function with concrete values for its dependencies. For example, assuming
that pkgs/i686-linux.nix defines a specific instance of the Subversion function, the in-
vocation

nix-env -f pkgs/i686-linux.nix -i subversion

of the command nix-env builds this instance and makes it available in the environment
of the user. The result is a component composition that can be uniquely identified and
reproduced, as will be discussed below.

A service can be constructed just like a software component by composing the
required software, configuration, and control components. For example, Fig. 5 de-
fines a function for producing a Subversion service, given Apache (httpd) and Sub-
version components. The build script of the service creates the Apache configuration
file httpd.conf and the control script bin/control from templates by filling in the paths
to the appropriate software components. That is, the template httpd.conf.in contains
placeholders such as

LoadModule dav_svn_module @subversion@/modules/mod_dav_svn.so

rather than absolute paths. The funcion in Fig. 5 can be instantiated to create a concrete
instance of the service. For example, Fig. 6 defines the composition of a concrete Sub-
version service using a ./httpd.conf file defining the particulars of the service. Just like
installing a software component composition, service composition can be reproducibly
installed using the nix-env command:

6

89Service Confi guration Management

{ stdenv, apacheHttpd, subversion }:
stdenv.mkDerivation {
name = "svn-service";

builder = ./builder.sh; # Build script.

control = ./control.in; # Control script template.

conf = ./httpd.conf.in; # Apache configuration template.

inherit apacheHttpd subversion;

}

Fig. 5. services/svn.nix: Function for creating an Apache-based Subversion service.

pkgs = import ../pkgs/system/all-packages.nix;

subversion = import ../subversion/ {
Get dependencies from all-packages.nix.

inherit (pkgs) stdenv fetchurl openssl httpd ...;

};
webServer = import ../services/svn.nix {
inherit (pkgs) stdenv apacheHttpd;

};

Fig. 6. configuration/svn.nix: Composition of a Subversion service.

nix-env -p /nix/profiles/svn -f configuration/svn.nix -i

The service installation is made available through a profile, e.g., /nix/profiles/svn,
which is a symbolic link to the composition just created. The execution of the service,
initialisation, activation, and deactivation, can be controlled using the control script with
commands such as

/nix/profiles/svn/bin/control start

2.4 Maintenance

A service evolves over time. New versions of components become available with new
functionality or security fixes; the configuration needs to be adapted to reflect chang-
ing requirements or changes in the environment; the machine that hosts the service
needs to be rebooted; or the machine is retired and the service needs to be migrated to
another machine. Such changes can be expressed by adapting the Nix expressions ap-
propriately and rebuilding the service. The upgrade-server script in Fig. 7 implements
a common sequence of actions to upgrade a service: build the new service, stop the old
service, and start the new one. (In Section 6.2 we sketch how we can prevent the down-
time between stopping and starting the old and new configurations.) Since changes are
non-destructive, it is possible (through a similar command sequence) to roll back to a
previous installation if the new one is not satisfactory. By keeping the Nix expressions
defining a service under version management, the complete history of all aspects of
the service is managed, and any version can be reproduced at any time. An even better

7

90 Eelco Dolstra, Martin Bravenboer, Eelco Visser

Recall the old server

oldServer=$(readlink -f $profiles/$serverName || true)

Build and install the new server.

nix-env -p $profiles/$serverName -f "$nixExpr" -i

Stop the old server.

if test -n "$oldServer"; then

$oldServer/bin/control stop || true

fi

Start the new server.

$profiles/$serverName/bin/control start

Fig. 7. upgrade-server script: Upgrading coupled to activation and deactivation.

approach is to have upgrade-server build directly from a version management reposi-
tory, rather than from a working copy. That way, we can always trace a running service
configuration back to its sources in the version management system.

2.5 Implementation

ĀȀ̀ЀĀԀऀࠀ܀؀

਀଀ఀഀ଀฀ༀက଀ᄀሀ̀ጀጀጀ᐀ᔀᘀᜀ᐀ᜀጀ᠀ጀༀᤀ

ᨀ̀ᘀ

ᨀ̀ᘀᔀᘀ᐀ᜀጀԀ܀

ᘀᔀᬀᰀᴀḀഀ଀ࠀἀ ᴀጀጀጀ᐀Ԁ!ᘀᰀऀࠀԀ̀܀Ȁ᐀ሀጀༀጀ"

ᘀ̀Ȁ

ԀᰀȀ฀ᔀᄀ̀Ȁ

ᨀ̀ᘀ

ᨀ̀ᘀԀᰀȀጀጀጀԀ܀

#Ȁ"ᬀ̀Ѐကᨀ ᘀἀ$ጀጀጀ᐀਀؀؀ᬀᔀ᐀ༀጀ"ጀကᜀ

ᘀ̀Ȁ

਀؀؀ᬀᔀ

ᔀༀ̀ᤀሀ̀Ԁ฀ఀఀఀᘀጀጀጀ᐀ԀᰀȀ᐀Ԁऀࠀᰀ̀ἀऀ

ᘀ̀Ȁ

ἀ܀Ȁ܀ࠀ؀ᨀ

ἀ܀Ȁ

਀؀؀ᬀᔀጀἀ܀Ȁ

Nix supports side-by-side deployment of configura-
tions and roll-backs by storing components in isola-
tion from each other in a component store [8]. An
example for some of the components built from the
webServer value in Fig. 6 is shown on the right. The
arrows indicate references (by file name) between
components. Each call to mkDerivation results in the
construction of a component in the Nix store, resid-
ing in a path name containing a cryptographic hash
of all inputs (dependencies) of the derivation. That
is, when we build a derivation described in a Nix ex-
pression, Nix recursively builds its inputs, computes
a path for the component by hashing the inputs, then
runs its builder to produce the component. Due to the
hashing scheme, changing any input in the Nix ex-
pression and rebuilding causes the new component
to end up in a different path in the store. Hence, different components never overwrite
each other. The advantage of hashes is that they prevent undeclared build-time depen-
dencies, and enable detection of runtime dependencies by scanning for hashes in the
files of components.

By storing components in isolation, Nix enables side by side installation of ser-
vices. That is, there can be multiple configuration files instantiating the same software
components for different services. For example, two Subversion servers with differ-
ent authentication regimes, or webservers for different domains can be hosted on the

8

91Service Confi guration Management

software

data configuration

subversion

openssl db4perl expat

apachetwiki

mail

/data/subversion/

/data/twiki subversion.conftwiki.conf

http.conf

control

Fig. 8. Architecture of an Apache-based composition of the Subversion and TWiki services.

same machine. Furthermore, since a collection of Nix expressions exactly describes all
aspects of a service, it is easy to reproduce service installations on multiple machines.

We support roll-backs through profiles, which as mentioned above are symbolic
links to the current instance of a service configuration. When we build a new configura-
tion, we make the symlink point to the store path of the new configuration component.
To perform a roll-back, we simply switch the symlink back to the store path of the
previous configuration.

3 Composition of Services

In the previous section we have shown a sketch of an Apache-based Subversion service
deployed using Nix. The major advantage is that such a service is a closure: all code and
configuration elements of the service are described in the Nix expression, and can thus
be reproduced at any time. Clearly, we can deploy other services along similar lines.
For instance, we might want to deploy an Apache-based TWiki service by providing
Nix expressions to build the TWiki components and to compose them with Apache
(which entails writing a parameterised httpd.conf that enables the TWiki CGI scripts
in Apache). However, suppose we now want a single Apache server that provides both
the Subversion and TWiki services. How can we easily compose such services?

We solve this by factoring out the service-specific parts of httpd.conf into sepa-
rate components called subservices. That is, we create configuration components that
contain httpd.conf fragments such as twiki.conf and subversion.conf. The top-level
httpd.conf merely contains the global server configuration such as host names or port
numbers, and includes the service-specific fragments. A sketch of this composition is
shown in Fig. 8.

9

92 Eelco Dolstra, Martin Bravenboer, Eelco Visser

subversionService = import ../subversion-service {
httpPort = 80; # see Section 4.

reposDir = "/data/subversion"; ...

};
jiraService = import ../jira-service {
twikisDir = "/data/twiki"; ...

};
webServer = import ../apache-httpd {
inherit (pkgs) stdenv apacheHttpd;

hostName = "svn.cs.uu.nl";

httpPort = 80;

subServices = [subversionService jiraService];

};

Fig. 9. Nix expression for the service in Fig. 8.

Fig. 9 shows a concrete elaboration. Here, the functions imported from ../subversion-
service and ../jira-service build the Subversion and JIRA configuration fragments and
store them under a subdirectory types/apache-httpd/conf/ in their prefixes. The func-
tion imported from ../apache-httpd then builds a top-level httpd.conf that includes
those fragments. That is, there is a contract between the Apache service builder and the
subservices that allows them to be composed.

The subServices argument of the function in ../apache-httpd specifies the list of
service components that are to be composed. By modifying this list and running upgrade-
server, we can easily enable or disable subservices.

4 Variability and crosscutting configuration choices

A major factor in the difficulty of deploying services is that many configuration choices
are crosscutting: the realisation of such choices affects multiple configuration files or
multiple points in the same file. For instance, the Apache server in Fig. 9 requires a
TCP port number on which the server listens for requests, so we pass that informa-
tion to the top-level webServer component. However, the user management interface of
the Subversion service also needs the port number to produce URLs pointing to itself.
Hence, we see that the port number is specified in two different places. In fact, Apache’s
configuration itself already needs the port in several places, e.g.,

ServerName example.org:8080

Listen 8080

<VirtualHost _default_:8080>

are some configuration statements that can occur concurrently in a typical httpd.conf.
This leads to obvious dangers: if we update one, we can easily forget to update the other.

A related problem is that we often want to build configurations in several variants.
For instance, we might want to build a server in test and production variants, with the
former listening on a different port. We could make the appropriate edits to the Nix

10

93Service Confi guration Management

{productionServer}:

let {

port = if productionServer then 80 else 8080;

webServer = import ./apache-httpd {

inherit (pkgs) stdenv apacheHttpd;

hostName = "svn.cs.uu.nl";

httpPort = port;

subServices = [subversionService jiraService];

};

subversionService = import ./subversion {

httpPort = port;

reposDir = "/data/subversion"; ...

};

jiraService = import ./jira {

twikisDir = "/data/twiki"; ...

};

}

Fig. 10. Dealing with crosscutting configuration choices

expression every time we build either a test or production variant, or maintain two
copies of the Nix expression, but both are inconvenient and unsafe.

Using the Nix expression language we have the abstraction facilities to easily sup-
port possibly crosscutting variation points. Fig. 10 shows a refinement of the Apache
composition in Fig. 9. This Nix expression is now a function accepting a single boolean
argument productionServer that determines whether the instance is a test or production
configuration. This argument drives the value selected for the port number, which is
propagated to the two components that require this information. Thus, this crosscut-
ting parameter is specified in only one place (though implemented in two). This is a
major advantage over most configuration file formats, which typically lack variables
or other means of abstraction. For example, Enterprise JavaBeans deployment descrip-
tors frequently become unwieldy due to crosscutting variation points impacting many
descriptors.

It is important to note that due to the cryptographic hashing scheme (Section 2.5),
building the server with different values for productionServer (or manually editing in
the Nix expression any aspect such as the port attribute) yields different hashes and thus
different paths. Therefore, multiple configurations automatically can exist side by side
on the same machine.

5 Distributed deployment

Complex services are often composed of several subservices running on different ma-
chines. For instance, consider a simple scenario of a JIRA bug tracking system. This
service consists of two separately running subservices, possibly on different machines:
a Jetty servlet container, and a PostgreSQL database server. These communicate with
each other through TCP connections.

11

94 Eelco Dolstra, Martin Bravenboer, Eelco Visser

Such configurations are often labourious to deploy and maintain, since we now have
two machines to administer and configure. This means that administrators have to log in
to multiple machines, make sure that services are started and running, and so on. That
is, without sufficient automation, the deployment effort rises linearly.

In this section we show how one can implement distributed services by writing a
single Nix expression that describes each subservice and the machine on which it is to
run. A special service runner componentwill then take care of distributing the closure of
each subservice to the appropriate machines, and remotely running their control scripts.

An interesting complication is that the various machines may be of different ma-
chine types, or may be running different operating systems. For instance, the Jetty
container might be running on a Linux machine, and the PostgreSQL database on a
FreeBSD machine. Nix has the ability to do distributed builds. Nix derivations must
specify the platform type on which the derivation is to be performed:

derivation {

name = "foo";

builder = ./builder.sh;

system = "i686-linux"; ... }

Usually, the system argument is omitted because it is inherited from the standard en-
vironment (stdenv). When we build such a derivation on a machine that is not of the
appriate type (e.g., i686-linux), Nix can automatically forward the build to another ma-
chine of the appriate type, if one is known. This is done by recursively building the
build inputs, copying the closures of the build inputs to the remote machine, invoking
the builder on the remote machine, and finally copying the build result back to the local
machine. Thus, the user needs not be aware of the distributed build: there is no apparent
difference between a remote and local build.

Fig. 11 shows the Nix expression for the JIRA example. We have two generic ser-
vices, namely PostgreSQL and Jetty. There is one concrete subservice, namely the JIRA
web application. This component is plugged into both generic services as a subservice,
though it provides a different interface to each (i.e., implementing different contracts).
To PostgreSQL, it provides an initialisation script that creates the database and tables.
To Jetty, it provides a WAR that can be loaded at a certain URI path.

The PostgreSQL service is built for FreeBSD; the other components are all built
for Linux. This is accomplished by passing input packages to the builders either for
FreeBSD or for Linux (e.g., inherit (pkgsFreeBSD) stdenv ...), which include the stan-
dard environment and therefore specify the system on which to build.

The two generic servers are combined into a single logical service by building a
service runner component, which is a simple wrapper component that at build time takes
a list of services, and generates a control script that starts or stops each in sequence. It
also takes care of distribution by deploying the closure of each service to the machine
identified by its host attribute, e.g., itchy.labs.cs.uu.nl for the Jetty service. For instance,
when we run the service runner’s start action, it copies each service, then executes each
service’s start action remotely.

An interesting point is that the Nix expression nicely deals with a crosscutting aspect
of the configuration: the host names of the machines on which the services are to run.
These are crosscutting because the services need to know each other’s host names. In

12

95Service Confi guration Management

Build a Postgres server on FreeBSD.

postgresService = import ./postgresql {
inherit (pkgsFreeBSD) stdenv postgresql;

host = "losser.labs.cs.uu.nl"; # Machine to run on.

dataDir = "/var/postgres/jira-data";

subServices = [jiraService];

allowedHosts = [jettyService.host]; # Access control.

};

Build a Jetty container on Linux.

jettyService = import ./jetty {
inherit (pkgsLinux) stdenv jetty j2re;

host = "itchy.labs.cs.uu.nl"; # Machine to run on.

Include the JIRA web application at URI path.
subServices = [{ path = "/jira"; war = jiraService; }];

};

Build a JIRA service.

jiraService = import ./jira/server-pkgs/jira/jira-war.nix {
inherit (pkgsLinux) stdenv fetchurl ant postgresql jdbc;

databaseHost = postgresService.host; # Database to use.

};

Compose the two services.

serviceRunner = import ./runner {
inherit (pkgsLinux) stdenv substituter;

services = [postgresService jettyService];

};

Fig. 11. 2-machine distributed service

order for JIRA to access the database, the JIRA web application needs to know the host
name of the database server. Conversely, the database server must allow access to the
machine running the Jetty container. Here, host names are specified only once, and are
propagated using expressions such as allowedHosts = [jettyService.host].

6 Discussion

6.1 Experience

We have used the Nix-based approach described in this paper to deploy a number of ser-
vices, some in production use and some in education or development1. The production
services are:
1 The sources of the services described in this paper are available at http://svn.cs.uu.nl/repos/
trace/services/trunk. Nix itself can be found at [1].

13

96 Eelco Dolstra, Martin Bravenboer, Eelco Visser

– An Apache-based Subversion server (svn.cs.uu.nl) with various extensions, such as
a user and repository management system. This is essentially the service described
in Section 3.

– An Apache-based TWiki server (http://www.cs.uu.nl/wiki/Center), also using
the composable infrastructure of Section 3. Thus, it is easy to create an Apache
server providing both the Subversion and TWiki services.

– A Jetty-based JIRA bug tracking system with a PostgreSQL database backend, as
described in Section 5.

Also, Nix services were used in a Software Engineering course to allow teams of
students working on the implementation of a Jetty-based web service (a Wiki) to easily
build and run the service.

In all these cases, we have found that the greatest advantage of Nix service deploy-
ment is the ease with which configurations can be reproduced: if a developer wants
to create a running instance of a service on his own machine, it is just a matter of
a checkout of the Nix expressions and associated files, and a call to upgrade-server.
Without Nix, setting up the requisite software environment for the service would be
much more work: installing software, tweaking configuration files to the local machine,
creating state locations, and so on. The Nix services described above are essentially
“plug-and-play”. Also, developer machines can be quite heterogeneous. For instance,
since Nix closures are self-contained, there are no dependencies on the particulars of
various Linux distributions that might be used by the developers.

The ability to easily set up a test configuration is invaluable, as it makes it fairly
trivial to experiment with new configurations. The ability to reliably perform a roll-
back, even in the face of software upgrades, is an important safety net if testing has
failed to show a problem with the new configuration.

6.2 Online upgrading

As described in Section 2.4, to upgrade a service from an old to a new configuration
requires that we first run the stop action of the old service, and then the start action on
the new service. However, this means that there is a time window in which the service
is not available.

In the most general case, this is unavoidable. For instance, if we upgrade the Apache
httpd server, then we must restart, since neither the C language nor Apache itself has
any provisions for dynamic updating (replacing the code of an executing process). Dy-
namic updating is only very rarely available, so in such cases we have no choice but
to restart. However, if the new configuration only differs from the old one in that the
Apache configuration file or some other data file has changed, we can typically upgrade
on the fly. Usually this is accomplished by modifying the files in question (e.g., editing
httpd.conf), and then notifying the running service that it is to reload its configuration
files (e.g., by sending it a HUP signal in Unix).

The problem is that this fits poorly in the Nix model. This is because Nix com-
ponents, such as service configuration files, are pure — they cannot be modified after
they have been built. Also, we would like to use a service’s reload feature only if that
is all we have to do. For instance, if code components were also changed, we want to

14

97Service Confi guration Management

restart instead of reload. In other words, we wish to use configuration file reloading as
an automatic optimisation of restarting only if it is safe to do so.

We can solve the first problem by adding a level of indirection to configuration
files. Rather than having services load their configuration files directly from their lo-
cation in the Nix store, e.g., /nix/store/4mm5dzlnhs20.../httpd.conf, we load them
through temporary symbolic links that point to the actual locations, e.g., /tmp/instance-
943/httpd.conf. We also keep a mapping from running services to the temporary links
they are using. When a service is first started, we create this symlink. When we up-
grade, upgrade-service simply change the symlink to point to the new configuration file
(which is an atomic action on Unix), and signal the running server process to reload the
configuration file.

We can address the second problem — performing a reload only when that is suf-
ficient — by having upgrade-server compute the differences between the dependency
graphs and contents of the old and new configurations, and only reload only when only
“reloadable” parts have changed. This is a conservative approach. For instance, if two
Apache configurations only differ in that their top-level store paths differ and contain
differing httpd.conf files, then a reload is safe. If, on the other hand, any dependencies
of the top-level store path changed, we consider a reload unsafe and restart instead.

7 Related work

We are not the first to realize that the deployment of software should be treated as part
of software configuration. In particular the SWERL group at the University of Col-
orado at Boulder has argued for the application of software configuration management
to software deployment [13], developed a framework for characterizing software de-
ployment processes and tools [4], and the experimental system Software Dock integrat-
ing software deployment processes [11]. However, it appears that our work is unique in
unifying the deployment of software and configuration components.

Nix is both a high-level build manager for components, and a deployment tool.
As such it subsumes some of the tasks of both build managers (e.g., Make [9]), and
deployment tools (e.g., RPM [10]).

Make is sometimes used to build various configuration files. However, Make doesn’t
allow side-by-side deployment, as running make overwrites the previously built config-
urations. Thus, rollbacks are not possible. Also, the Make language is rather primitive.
In particular, since the only abstraction mechanisms are global variables and patterns,
it is hard to instantiate a subservice multiple times. Build tools such as Odin [5] and
Maak [6] have more functional specification languages.

Cfengine is a popular tool system administration tool [3]. A declarative description
of sets of machines and the functionality they should provide is given, along with im-
perative actions that can realise a configuration, e.g., by rewriting configuration files in
/etc. The principal downside of such a model is that it is destructive: it realises a con-
figuration by overwriting the current one, which therefore disappears. Also, it is hard
to predict what the result of a Cfengine run will be, since actions are typically specified
as edit actions on system files, i.e., the initial state is not always specified. This is in
contrast to the fully generational approach advocated here, i.e., Nix builder generate

15

98 Eelco Dolstra, Martin Bravenboer, Eelco Visser

configurations fully indepently from any previous configurations. Finally, since actions
are specified with respect to fixed configuration file locations (e.g., /etc/sendmail.mc),
it is not easy for multiple configurations to co-exist. In the present work, fixed paths are
only used for truly mutable state such as databases and log files.

8 Conclusion

In this paper we have presented a method for service deployment based on the Nix de-
ployment system. We have argued that its software deployment properties carry over
nicely into the domain of service deployment. Thanks to Nix’s cryptographic hashing
property, we gain the ability to reliably recreate configurations, to have multiple in-
stances of configurations exist side by side, and to roll back to old configurations. Nix’s
functional expression language gives us a way to deal with variability and crosscutting
variation points in an efficient way, and to componentise services. Finally, the approach
extends to distributed deployment.

References

1. Nix deployment system. http://www.cs.uu.nl/wiki/Trace/Nix, 2005.
2. Twiki—an enterprise collaboration platform. http://twiki.org/, 2005.
3. M. Burgess. Cfengine: a site configuration engine. USENIX Computing systems, 8(3), 1995.
4. A. Carzaniga et al. A characterization framework for software deployment technologies.

Technical Report CU-CS-857-98, University of Colorado, April 1998.
5. G. M. Clemm. The Odin System — An Object Manager for Extensible Software Environ-
ments. PhD thesis, University of Colorado at Boulder, February 1986.

6. E. Dolstra. Integrating software construction and software deployment. In B. Westfechtel,
editor, 11th International Workshop on Software Configuration Management (SCM-11), vol-
ume 2649 of Lecture Notes in Computer Science, pages 102–117, Portland, Oregon, USA,
May 2003. Springer-Verlag.

7. E. Dolstra, M. de Jonge, and E. Visser. Nix: A safe and policy-free system for software
deployment. In L. Damon, editor, 18th Large Installation System Administration Conference
(LISA ’04), pages 79–92, Atlanta, Georgia, USA, November 2004. USENIX.

8. E. Dolstra, E. Visser, and M. de Jonge. Imposing a memory management discipline on
software deployment. In Proceedings of the 26th International Conference on Software
Engineering (ICSE 2004), pages 583–592. IEEE Computer Society, May 2004.

9. S. I. Feldman. Make—a program for maintaining computer programs. Software—Practice
and Experience, 9(4):255–65, 1979.

10. E. Foster-Johnson. Red Hat RPM Guide. John Wiley and Sons, 2003.
11. R. S. Hall, D. Heimbigner, A. van der Hoek, and A. L. Wolf. An architecture for post-

development configuration management in a wide area network. In Proceedings of the 17th
International Conference on Distributed Computing Systems, Baltimore, Maryland, USA,
May 1997.

12. C. M. Pilato, B. Collins-Sussman, and B. W. Fitzpatrick. Version Control with Subversion.
O’Reilly, June 2004.

13. A. van der Hoek, R. S. Hall, A. Carzaniga, D. Heimbigner, and A. L. Wolf. Software deploy-
ment: Extending configuration management support into the field. Crosstalk, The Journal of
Defense Software Engineering, 11(2), February 1998.

16

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profi t or commercial advantage and that copies bear this notice and the full citation on the fi rst page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee.
SCM 2005, September 5-6, 2005, Lisbon, Portugal. Copyright © 2005 ACM

ArchEvol: Versioning
Architectural-Implementation Relationships

Eugen C. Nistor, Justin R. Erenkrantz,
Scott A. Hendrickson, and André van der Hoek

University of California, Irvine
Donald Bren School of Information and Computer Sciences

Department of Informatics
Irvine, CA 92697-3425 USA

{enistor, jerenkra, shendric, andre}@ics.uci.edu

Abstract. Previous research efforts into creating links between software
architecture and its implementations have not explicitly addressed ver-
sioning. These earlier efforts have either ignored versioning entirely, cre-
ated overly constraining couplings between architecture and implemen-
tation, or disregarded the need for versioning upon deployment. This
situation calls for an explicit approach to versioning the architecture-
implementation relationship capable of being used throughout design,
implementation, and deployment. We present ArchEvol, a set of xADL
2.0 extensions, ArchStudio and Eclipse plug-ins, and Subversion guide-
lines for managing the architectural-implementation relationship through-
out the entire software life cycle.

1 Introduction

Software architecture provides a high-level, abstract view of a system where it
is easier to identify and reason about a system’s main computational parts (the
components), the ways through which they interact (the connectors), and their
configuration [1]. In the early stages of development an architecture is typically
used as a communication tool to provide understanding to other developers but
it is also often analyzed to determine or ensure specific properties of the resulting
system [2].
The benefits of having an architecture in place can extend beyond the initial

stages if a mapping between the architectural model and the implementation
can be maintained throughout development. If an architecture describes proper-
ties that are not accurate, then there is no point in analyzing the architectural
model in the first place, since the results of the analysis cannot be guaranteed.
But even if the consistency is initially ensured, changes in the implementation
can lead to changes in architectural properties, leading to a phenomenon known
as architectural erosion [1]. Architectures are described using specialized ar-
chitecture description languages (ADLs), while implementations are described
using programming languages. During regular development, new requirements
might determine the necessity of branching the architecture and the associated

100 Eugen Nistor et al.2 E. Nistor, J. Erenkrantz, S. Hendrickson, A. van der Hoek

implementation of one or more components. In this case, we want to be able
to accurately determine which versions of the component implementations be-
long to the initial version of the architecture and which belong to the branched
version of the architecture. ArchEvol defines mappings between architectural de-
scriptions and component implementations using a versioning infrastructure and
addresses the evolution of the relationship between versions of the architecture
and versions of the implementation.

Maintaining mappings between different versions of architecture and imple-
mentation is an issue that has not been addressed adequately to date. Some
SCM systems try to blur the distinction between repository configuration and
architectural configuration. Adele [3] and the Cedar System Modeller [4] provide
consistency support between a description of a system in a module interconnec-
tion language and the underlying module implementations. However, their solu-
tion is enabled by having implementation, system description and configuration
management support in the same system, and limits their development to the ca-
pabilities of the particular tools offered. Architectural description languages have
evolved from module interconnection languages to include various new structural
and behavioral properties, and thus need specialized tools that support their de-
velopment and analysis beyond configuration descriptions. Popular configuration
management approaches today can maintain versions of implementation and ar-
chitecture as closed-semantics files and directories, just like they would keep any
other type of software artifact, but lack the capability of explicitly maintaining a
mapping between them [5][6]. Architecture-based development approaches have
maintained mappings between single versions of the architecture and implemen-
tation [7][8]. Other approaches, such as MAE, have focused on versioning of the
architecture, but do not integrally support the evolution of the implementation
nor the mapping of architecture to implementation [9].

Our approach centers around promoting strong interconnections between the
architecture, implementation, and the versioning sub-systems while still allowing
their independent development. Not only are the architecture and implementa-
tion described using different languages and concepts, but there are different
tools and environments that are used for creating and maintaining them. We do
not propose one single tool to perform all tasks, but instead propose adopting
the right tool available for the individual task and facilitating its interactions
with the other tools. Furthermore, the way the tools are used and integrated
commands an associated process. The links used in ArchEvol can be used to
support decentralized development of architectures and component implementa-
tions by different parties. The architecture and the individual components can
be developed in parallel and the common information between the two can be
synchronized at certain points in time.

ArchEvol specifically builds upon three previously existing tools: ArchStudio
[10], Eclipse [11], and Subversion [6]. Our solution could be applied to any combi-
nation of architectural development, source code development and configuration
management systems, but the three that we chose have particular features that
makes their integration easier. ArchStudio provides the facilities for managing ar-

101ArchEvol: Versioning Architectural-Implementation RelationshipsArchEvol: Versioning Architectural-Implementation Relationships 3

Subversion

ArchStudio Eclipse

architectural
versioning

component
versioning

architecture - implementation
mapping

Fig. 1. ArchEvol Overview.

chitectures, through its XML-based xADL2.0 architecture description language
[12]. Eclipse is an extensible development environment with comprehensive sup-
port for source code manipulation, used to manage implementations. Subversion
is an SCM system that provides a WebDAV-compliant repository, and it is used
to store evolving versions of the architecture and implementation. Our solution
requires the creation and maintenance of a versioned set of hyperlinks between
artifacts that did not previously exist, and its main contribution lies in main-
taining the mapping and ensuring that the right versions of the architectural
components map onto the right versions of the code (and vice versa).

2 Approach

ArchEvol provides an integrated approach for maintaining an accurate architec-
tural model which is consistently mapped to implementation throughout the de-
velopment process. This is achieved by integrating ArchStudio, an architectural
environment, Eclipse, a development environment, and Subversion, a WebDAV-
centric software configuration management system. While these three tools work
well independently, we have created an additional layer of infrastructure and a
process that allows these tools to work together to offer end-to-end automated

102 Eugen Nistor et al.4 E. Nistor, J. Erenkrantz, S. Hendrickson, A. van der Hoek

support for architecture-centric evolution that focuses on the identified problem
of maintaining the mapping among an evolving architecture and its evolving
code.

2.1 Architectural-implementation mapping

An architectural model describes properties of the components and connectors
in an abstract manner. However, these architectural entities must eventually be
implemented using a programming language in order to realize this abstraction.
Therefore, the first step of the ArchEvol process is to integrate the ArchStu-
dio and Eclipse environments by enabling design-time coordination between the
design of the architectural model and the implementation of the components.
The integration of ArchStudio and Eclipse presented two challenges that we

had to resolve in order to be successful. First, we had to create the necessary
extensions to ArchStudio and Eclipse to support bi-directional communication.
Secondly, and more importantly, we also had to construct a mapping between
their different elements: components and connectors are the primary extensibility
focus in ArchStudio, while Eclipse centers on projects, packages and classes.

Creating extensions. Both ArchStudio and Eclipse were intended to be easily
extensible development environments. However, they have taken different philo-
sophical approaches to extensibility: Eclipse allows extension through plug-ins
that implement pre-defined interfaces, while ArchStudio uses loosely coupled
tools that interact through exchanges of pre-defined event types. In order to
have the two environments communicate, we implemented an Eclipse plug-in
and an event-based ArchStudio component that are linked through an inter-
process connector.
Consequently, when both environments are running, the two environments

can exchange the required information about the architecture and implementa-
tion. It should be pointed out that it is not mandatory for both environments
to be run together at all times. Modifications to the architecture and the imple-
mentation can be carried out independently, and when both environments are
brought up together, the synchronization between the two can be completed.

Defining Mappings. Since the two environments are intended for different pur-
poses (architecture design versus implementation), we had to devise a mapping
between their elements. At the architectural level in ArchStudio, components
and connectors serve as the essential building blocks of the application. In a
dynamic architecture, such as the ones ArchStudio supports, these components
can be added, removed, and replaced on-the-fly. However, source code deals with
elements at a different level of granularity. The functionality of a component can
be implemented using one or more classes. The decision of how to split this
functionality is a low-level design decision that can be dictated by language
restrictions, clarity of design considerations or application of design patterns.
Therefore, we considered that a component should accommodate an arbitrary
number of classes.
Our solution supports the notion of a component in Eclipse as a component

project, an extension to a regular Java project. The implementation for a com-

103ArchEvol: Versioning Architectural-Implementation RelationshipsArchEvol: Versioning Architectural-Implementation Relationships 5

ponent or connector in the architecture will therefore consist of the contents
of the component project, and the architectural description will have links to
both a source code and a binary version of the implementation. These links will
point to a corresponding repository location if the component or connector is
not under development, or to a local Eclipse IDE workspace if the component or
connector is under development and needs to be tested before being committed.
A noteworthy observation is that, in what regards the mapping to source code,
we found no difference between components and connectors. The difference be-
tween them is a semantic and more important at the architectural level, but we
found implementing both as a component project being sufficient for time being.
Besides the regular packages and java class files, this project also contains

a special file that contains descriptions of component’s properties as metadata
[13]. Although in this paper we present the means by which to maintain the
mapping between architecture and implementation consistent, an interesting
problem that we plan to address in the future is how to use this mapping to
enforce the semantic consistency between the properties of the implementation,
as derived from the source code, and the properties claimed for the component
or connector in the architectural description. The role of the metadata is to me-
diate this problem, and its implementation is based on a simple observation: the
architectural model already contains a number of descriptions related to com-
ponent implementations. In order to enable parallel development of architecture
and components, the metadata in the component project will describe the same
types of properties that are relevant at the architectural level.
The problem of consistency between architecture and implementation is in

this way split in two parts: first, the component metadata and its implementa-
tion need to be maintained consistent, then the component metadata and the
architectural model need to be synchronized. An example of such a property
would be the name of a main class that is needed from the implementation in
order to instantiate the component. Within Eclipse, the component metadata
editor can check if the name chosen for this property actually denotes an existing
class in the implementation, and will help choose a valid one if not. Then, using
our integration between Eclipse and ArchStudio, the metadata can be updated
into architectural models that contain the component.
This link between Eclipse and ArchStudio is important because it allows im-

plementation for components independently from the architectural design while
at the same time makes sure that the properties implemented in the components
are the same as the ones described in the architecture.

2.2 Versioning Structure

Since the architectural model evolves alongside its component implementation,
the architecture description should itself be versioned. Therefore, a specific ver-
sion of the architecture consists of an architectural configuration made up of
specific component and connector versions. Besides recording the changes to the
architectural model, versioning in such a manner allows us to determine for each

104 Eugen Nistor et al.6 E. Nistor, J. Erenkrantz, S. Hendrickson, A. van der Hoek

/archevol
architecture
trunk
architecture.xml

branches
new-feature
architecture.xml

tags
1.0
architecture.xml

component1
trunk
source
Component1 Project folder
...source files...

binaries
comp1.jar

branches
July rewrite
source...

tags
1.0
source...
binaries...

1.1...
component2
trunk...
branches...
tags...

Fig. 2. ArchEvol Subversion Directory Structure.

version of the architecture the corresponding versions required for instantiation
of all components and connectors.
ArchEvol intends to manage the architecture and implementation evolution

throughout the design and deployment phases of the software life cycle, there-
fore a consistent versioning approach must be adopted throughout to ease the
transition between one phase and another. This transition mandates that all
necessary artifacts be consistently and uniformly available. One such technique
to achieve this consistency and uniformity is to leverage a WebDAV repository
to store the project artifacts.
In order to support both design-time and run-time evolution management

for compiled languages (such as Java), both source files and compiled binaries
need to be available at all times: our chosen method is making the resources
available via a WebDAV interface. An important observation should be made
here: relying upon URLs allows the source code for components and the archi-
tecture to be distributed throughout a potentially virtual organization by using
multiple WebDAV servers. However, the simplistic approach would be to have
one centralized WebDAV server that stores all of the necessary artifacts for a
project.

Adoption of Subversion. Subversion provides a WebDAV-compliant repos-
itory used for storing project artifacts as they evolve in ArchEvol. This is a
natural choice as Subversion provides a WebDAV interface as well as an Eclipse
plug-in via the Subclipse client [14]. However, the adoption of Subversion does
introduce one deficiency from other more traditional SCM systems in one re-

105ArchEvol: Versioning Architectural-Implementation RelationshipsArchEvol: Versioning Architectural-Implementation Relationships 7

spect: a lack of per-file revision numbers. Instead, it provides a global revision
number which includes directory versioning.

Therefore, for example, within Subversion, it is not possible to refer to just
revision 20 of a file foo.c. Instead, you must refer to repository revision 20 which
contains foo.c. To this end, it is considered standard practice by Subversion
developers [15] to use a subdirectory called trunk to store the latest revisions of
a project, and then copy the contents of trunk into a subdirectory within another
directory called tags when an official version is to be released. Additionally, if
development is to be split into multiple tracks, a corresponding copy of trunk
can be copied to the branches directory where the branch can be conducted.

This directory structure means that the location within a Subversion reposi-
tory explicitly indicates the version of the component, whether it is on the trunk,
part of an official release tag, or part of a development branch off the mainline.
As described in Figure 2, ArchEvol follows a particular versioning structure that
adheres to the published Subversion best practices and satisfies the constraints
of maintaining design-time and run-time evolution. The particular structure of
the repository illustrates a scenario where the architecture and the implemen-
tation for the components are maintained in the same directory. However, the
directory for the architecture and the directories for the components could be
maintained in a distributed fashion over a number of Subversion repositories.

Versioning Components. Each component in an architecture is assigned its
own directory within a Subversion repository. This directory contains two types
of information: source code, containing the Eclipse project associated with the
component, and binaries, where the result of compilation of the Eclipse project
should be deposited.

An ArchEvol component can be opened up as a component project in Eclipse
with the help of an Subversion client such as Subclipse. However, while the
project is open in Eclipse, the developer has a local copy of the project that can
be used to test the functionality in an open architecture in ArchStudio that uses
this component. Once the changes are declared satisfactory, the project can be
checked back in the trunk directory in Subversion, updating the same version,
or a new version can be created and the project has to be copied in a new tag
or branch directory.

In what concerns the binary packages, we now leave building them as the re-
sponsibility of the developer. The binaries have to be put in the specific directo-
ries that we prescribe, and the Subversion URL pointing to them will be synchro-
nized between Eclipse and ArchStudio using our communication infrastructure.
ArchStudio will need this information in order to instantiate the components.

One advantage of having the source code information separate from the bi-
nary packages for components is that we can provide a uniform way of instanti-
ating the components for which the source code is not released and we only have
the distribution package. Additionally, by having the release implementation for
each component packaged as a jar file this offers the support for architectural de-
ployment without a compiler. An architecture-based deployment tool will know

106 Eugen Nistor et al.
8 E. Nistor, J. Erenkrantz, S. Hendrickson, A. van der Hoek

����������

���������� �������

��������
������������

�����
����
��������

����������
�����
����
��������

��������� �������
� ������� �

� ����� �
� ����� �

� ������� �
� ����� �
� ����� �

��������� �������
� ������� �

� ����� �
� ����� �

� ������� �
� ����� �
� ����� �

�� ���������
������������

�� ����

����� � ����������

���� ��� ��������� ����

���� ���������
���������

�� ������
� �����

���� ������ ��������� ����

�� ��������
���������

�� ��������
������������

���� ����� �������������
�������

Fig. 3. ArchEvol Editing Process.

where the distribution packages are located, and it can rely upon the appropriate
files from the repository.

Versioning Architectures. A version of the architectural model can be opened
in ArchStudio for editing or for instantiation by providing a WebDAV URL to
ArchStudio. An architectural model in ArchStudio consists of a single xADL2.0
file. The current version of the architecture will be kept in the trunk directory,
while versions will be kept in tags and branches directories. It is important
to point out that Figure 2 only shows the organization of directories for one
architecture, but in reality the Subversion repository can contain any number of
architectures for different systems.

An architectural model will contain links to the corresponding binary distrib-
ution in the WebDAV repository for each component and connector. These links
can be used by ArchStudio’s built-in Architecture Evolution Manager (AEM) to
instantiate an architecture from the architectural description. When versioning
an architecture, the links to the corresponding versions for the components are
saved within the file.

107ArchEvol: Versioning Architectural-Implementation RelationshipsArchEvol: Versioning Architectural-Implementation Relationships 9

3 Example

The scenario depicted in Figure 3 shows how our infrastructure helps us in fulfill-
ing our vision for architectural-driven development and evolution. To date, the
critical aspects of our process are automated, however, it is sometimes necessary
to manually look up information presented in one of the three applications and
then paste it into another. Our scenario notes instances where manual interaction
is still necessary.
Figure 3 shows the steps involved in one cycle of development in an architec-

ture based evolution setting. At a certain point in time, there is an architectural
model and there are implementations for all the components in the architecture,
and they are kept in a Subversion repository in a similar directory structure as
we have described in 2.2. We want to follow the interaction of the three tools
through a modification of the architecture that requires a modification of one
component’s implementation as well. In our scenario we move a component to a
lower level in the architecture, which requires a change in the component’s im-
plementation because in the new position the component will handle additional
types of messages produced by the components above it.

Step 1: In the first step, a local copy of the architecture is checked out using
any Subversion client.

Step 2: The architect opens and modifies the architectural model in ArchStu-
dio. The modification consists of adding a new connector and moving a compo-
nent. Currently, ArchEvol does not determine if this type of change necessitates
a change to the implementation. However, future analysis based on existing con-
sistency mechanisms, such as incorporated in Rational Rose and other design
editors to map UML to code, may be able to detect this automatically.

Step 3a: The component developer opens Eclipse which connects to Arch-
Studio through the ArchEvol-Eclipse plug-in. The user is presented with a list
of components and connectors along with their respective source-code URLs.

Step 3b: The source-code URL is used to load the component’s source code as
a project into Eclipse. Currently the implementation must be manually checked
out into a local folder using Subclipse. Once the implementation is checked out, a
new component project is created using the contents of the checked out folder and
a locally created copy of the component’s architectural metadata contained in
the architectural description opened in ArchStudio. It retrieves the component’s
architectural metadata from ArchStudio automatically. Connectors are handled
in a similar way as components.

Step 4: The developer modifies the source code of the component. A con-
sistency critic, provided by the ArchEvol plug-in, informs the developer if the
class referred to in the component’s architectural metadata is not present in the
actual implementation.

Step 5: Once changes to the implementation are complete and consistent
with the local copy of the component’s architectural metadata, the local copy of
the component’s architectural metadata is used to replace that in architectural
description. We hope to provide the ability to merge this data in the future auto-
matically. It is not always necessary to perform this step. This is only necessary

108 Eugen Nistor et al.10 E. Nistor, J. Erenkrantz, S. Hendrickson, A. van der Hoek

if a change in the implementation necessitates a change in the architectural de-
scription. For example, this might occur when the name of the main class used
to instantiate the component is changed. At this point, with both ArchStudio
and Eclipse open at the same time, the developer can instantiate the system in
order to determine if the changes to the component’s source code are effective.
This is possible because the URL for the binary version of the component that is
being edited is temporarily replaced to point to the location of the locally com-
piled Java class files created by Eclipse when compiling the component’s source
code. Other components in the architecture that are not checked out locally can
be instantiated using the binary URL provided in the architectural description.
This allows a developer to instantiate an entire system without needing to check
out every component within it. Steps 4, and 5 when necessary, can be repeated
until the desired results are achieved.

Step 6: If the changes are satisfying, the folder for the component project in
Eclipse can be committed manually using the Subclipse plug-in.

Step 7: The architectural description can be saved from ArchStudio, and the
local copy can be committed using the same Subversion client that was used at
step 1. The scenario described here is just one step in the development cycle.
The benefits of having the versioning structure in place can also be seen during
the release process. When a component’s implementation is stable enough for
an official release, the content of the trunk folder in the component’s repository
can be copied to the tags folder. The architecture can be modified so that each
component’s URL points only to official component releases. Likewise, it can
be copied into its own tags folder. The official release architecture can then
be instantiated without the need to check-out and compile any source code
and without being effected by continuing development of the architecture or
components.

4 Related Work

Maintaining the relationships between architectural descriptions and component
implementation has been the focus of earlier research. One approach is to en-
force consistency by ensuring that an implementation conforms to its architec-
ture and that the architecture correctly represents its implementation. ArchJava
[8], proposes specific Java language extensions that incorporate architectural de-
scriptions into the source code. It enforces application communication integrity,
meaning that components only communicate along architecturally declared com-
munication channels. However, ArchJava uses implicit mappings, since architec-
ture and implementation are described in the same files. Furthermore, ArchJava
does not address any versioning constructs as the mapping between an architec-
ture and its implementation is static.
Projects, such as Software Concordance [16], have treated implementation

artifacts as hypertext with links to other project artifacts, such as specifica-
tions. The Molhado configuration management system [17], integrated with the
Software Concordance environment, aims at providing a generic infrastructure

109ArchEvol: Versioning Architectural-Implementation RelationshipsArchEvol: Versioning Architectural-Implementation Relationships 11

for maintaining versions of all kinds of software artifacts. In particular, Mol-
hadoArch is very similar to ArchEvol in that it offers versioning capabilities for
both the architecture and the individual components in an architecture. Their
architecture-implementation mapping shares many of the same characteristics,
but is specific to the Molhado environment. The architectural information can
be imported from an xADL file, but by doing so it is transformed into Molhado’s
internal data structures. Other architectural tools such as ArchStudio cannot be
used any longer on the architecture. ArchEvol, instead, builds upon the gener-
ally available architectural environment such as ArchStudio and adds integration
with familiar systems of Eclipse and Subversion. Therefore, the developer expe-
rience does not change or require use of different tools.
Focus [18] takes a reverse engineering approach to mapping architecture to

implementation. The source code for an application is reverse engineered to an
UML class diagram and then related classes are grouped together as components.
This approach maintains these mappings through evolution by applying the re-
covery process incrementally, to the changed portions of the source. The mapping
between architecture and implementation proposed by ArchEvol is similar to the
one in Focus in that a component is defined as a group of related classes. How-
ever, Focus seems more suitable for large applications that have all the source
code at the same location, and where changes are first done at the implemen-
tation level. ArchEvol instead tries to promote a decoupled development model
where architecture and implementation can be developed and evolved in parallel.
Traditional component-based development uses components as binary pack-

ages, but reusing them usually requires changes and customizations that can only
be performed at source code level [19]. The Source Tree Composition project
[20] proposes a component model that uses source code components rather than
binary ones, and offers a solution to merging the source code in different com-
ponents in order to build new systems with various configurations. ArchEvol
uses the same definition of components as being composed out of source code
elements, however Source Tree Composition goes further into solving different de-
pendencies and building mechanisms between components. ArchEvol is focused
more on the development of such components, while deployment and solving
dependencies are problems that can be solved in a future extension.

5 Conclusion

Since the architecture descriptions and implementations are kept separate by
ArchEvol, it is possible to have parallel development of architecture and com-
ponents. We explicitly focused on integrating existing best-of-breed off-the-shelf
applications to support a coherent decentralized development process. An ar-
chitect can focus on working with architectural environments and tools while
developers can work on implementation with familiar tools.
In the ArchEvol model, components become now not only the basic units for

deployment, but also the basic units for decentralized development. Our current
progress has demonstrated that ArchEvol can indeed achieve the integration

110 Eugen Nistor et al.12 E. Nistor, J. Erenkrantz, S. Hendrickson, A. van der Hoek

necessary to provide versioning support for maintaining relationships between
architecture and implementation. While the basic functionality is present, there
still remains work to increase the automation of the entire process. At present,
all functionality described in this paper is possible - however, some aspects still
require manual intervention where we believe automation would ultimately be
possible.
We also seek to examine the long-term effects of ArchEvol on the overall

development cycle and analyze whether our selected mappings between archi-
tectural entities and component projects are sufficient to describe real-world
projects. Defining consistency rules between architectural description and im-
plementation is still an open question, and involves determining which exact
parts from the source code have an influence at the architectural level. With the
proper feedback and refinements, we believe that ArchEvol will be able to pro-
vide developers with the support necessary to maintain meaningful relationships
between architecture and implementation throughout the software life cycle.

6 Acknowledgements

Effort funded by the National Science Foundation under grant numbers CCR-
0093489 and IIS-0205724.

References

1. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes 17 (1992) 40–52

2. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Transactions on Software Engineer-
ing 26 (2000) 70–93

3. Estublier, J., Casallas, R.: The Adele configuration manager. In Tichy, W., ed.:
Configuration Management. John Wiley and Sons, Ltd., Baffins Lane, Chichester,
West Sussex PO19 1UD, England (1994) 99–133

4. Lampson, B.W., Schmidt, E.E.: Organizing software in a distributed environment.
In: SIGPLAN ’83: Proceedings of the 1983 ACM SIGPLAN symposium on Pro-
gramming language issues in software systems, New York, NY, USA, ACM Press
(1983) 1–13

5. GNU: CVS. http://www.gnu.org/software/cvs/ (2005)
6. Collabnet: Subversion. http://subversion.tigris.org (2005)
7. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: An infrastructure for the rapid de-
velopment of xml-based architecture description languages. In: 24th International
Conference on Software Engineering (ICSE 2002), ACM (2002)

8. Aldrich, J., Chambers, C., Notkin, D.: Archjava: Connecting software architec-
ture to implementation. In: Proceedings of the 24th International Conference on
Software Engineering. (2002)

9. Roshandel, R., van der Hoek, A., Mikic-Rakic, M., Medvidovic, N.: Mae—a system
model and environment for managing architectural evolution. ACM Trans. Softw.
Eng. Methodol. 13 (2004) 240–276

111ArchEvol: Versioning Architectural-Implementation RelationshipsArchEvol: Versioning Architectural-Implementation Relationships 13

10. Institute for Software Research: ArchStudio 3. http://www.isr.uci.edu/projects/
archstudio/ (2005)

11. Eclipse Foundation: Eclipse. http://www.eclipse.org (2005)
12. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: A highly-extensible, xml-based
architecture description language. In: Working IEEE/IFIP Conference on Software
Architecture (WICSA 2001). (2001)

13. Orso, A., Harrold, M.J., Rosenblum, D.S.: Component metadata for software
engineering tasks. In: Second International Workshop on Engineering Distributed
Objects (EDO 2000), Springer Verlag: Berlin (2000) 126–140

14. Collabnet: Subclipse. http://subclipse.tigris.org (2005)
15. Collins-Sussman, B., Fitzpatrick, B.W., Pilato, M.: Version Control with Subver-
sion. http://svnbook.red-bean.com/ (2004)

16. Nguyen, T.N., Munson, E.V. In: The software concordance: a new software docu-
ment management environment. ACM Press (2003) 198–205

17. Nguyen, T.N., Munson, E.V., Boyland, J.T., Thao, C. In: Molhado: Object-
Oriented Architectural Software Configuration Management. IEEE Computer So-
ciety (2004) 510

18. Medvidovic, N., Jakobac, V.: Using software evolution to focus architectural re-
covery. Journal of Automated Software Engineering (2005)

19. Garlan, D., Allen, R., Ockerbloom, J. In: Architectural mismatch or why it’s hard
to build systems out of existing parts. ACM Press (1995) 179–185

20. de Jonge, M.: Source tree composition. In: Proceedings of the 7th International
Conference on Software Reuse: Methods, Techniques, and Tools, Springer-Verlag
(2002) 17–32

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profi t or commercial advantage and that copies bear this notice and the full citation on the fi rst page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee.
SCM 2005, September 5-6, 2005, Lisbon, Portugal. Copyright © 2005 ACM

On Product Versioning for Hypertexts

Tien N. Nguyen, Cheng Thao, and Ethan V. Munson

University of Wisconsin-Milwaukee
{tien,chengt,munson}@cs.uwm.edu

Abstract. Versioned hypermedia has shown its success in promoting
better understanding and management of evolving document collections
in many domains. However, providing versioning capability for a hyper-
media system raises several important structural and cognitive issues.
Our research has produced Molhado, the first hypermedia infrastruc-
ture that applies the product versioning model to versioned hypermedia.
Molhado not only supports configuration management for hypermedia
structures in a fine-grained manner, but also provides version control for
individual hyperlinks and document nodes. This paper explains how the
product versioning model in Molhado addresses serious issues identified
by earlier research on versioned hypermedia. We will also discuss the new
issues raised by using this versioning model.

1 Introduction

Versioned hypermedia (or hypertext versioning) is concerned with storing, re-
trieving, and navigating prior states of a hypertext, and with allowing groups of
collaborating authors to develop new states over time [1]. Hypertext versioning
has shown its usefulness in several domains. In software engineering, the ability
to capture the evolution of relationships between development artifacts makes
versioned hypermedia more powerful than traditional versioning systems that
only capture the evolution of the artifacts themselves. Relationships between re-
quirements, design, and implementation documents can be represented directly
so that traceability analysis and cost estimation become more tractable.

In legal systems, laws, regulations, and tax codes are a set of complex infor-
mation artifacts with many relationships. It is important to store and retrieve
previous document revisions because, in legal systems that prevent ex-post-facto
laws, the version of a law that affects a case is the one in effect at the time of an
infraction [1]. Hypertext support can make it easy to navigate to related laws,
precedents, regulations, and codes within the set of applicable laws at the time in
question. Thus legal systems can benefit from versioned hypermedia capability.

In the World Wide Web, the most popular and successful hypertext system,
documents are interrelated to each other via HTML hyperlinks. Versioned hy-
permedia could allow users to roll a Web site back to a specific time and navigate
it as if they were interacting with the Web sites as of that day. Using this facility,
an E-commerce site could determine the validity of customer complaints about
pricing errors or a news site could allow users to view the site for a particular
day and time.

114 Tien Nhut Nguyen et al.2 Tien N. Nguyen, Cheng Thao, and Ethan V. Munson

However, providing versioning capability for a hypermedia system raises some
important structural and cognitive issues, described in detail by Østerbye [2].
The structural issues are immutability of versions, version control for links, and
versioning for hypermedia structure. The cognitive issues are version creation
and hypermedia element version selection.

Our research has produced Molhado [3], an infrastructure for hypertext ver-
sioning and software configuration management that is well-suited for managing
logical relationships among software documents. Molhado uses a single versioning
mechanism for all software components and for the hypertext structures (includ-
ing anchors and links) that connect them. Molhado can track changes at a very
fine-grained level, allowing users to return to a consistent previous state not only
of a hypertext network but also of a single node or link. Molhado supports both
embedded (as in HTML) and first-class hyperlinks (as in XLink [4]). Molhado is,
to the best of our knowledge, the first system that applies the product versioning
model to versioned hypermedia. Molhado’s product versioning addresses all of
the issues mentioned by Østerbye. Of course, it raises other issues.

This paper is divided into seven sections, the first being this introduction. The
next section presents related work and describes the most important versioning
models used for hypertexts. Section 3 summarizes structural and cognitive issues
with versioned hypermedia raised by Østerbye. Section 4 describes Molhado’s
versioned hypermedia model and explains how it addresses those issues. Section 5
presents distinguished functionality of the Molhado versioned hypermedia tool.
Section 6 discusses new issues raised by the use of the product versioning model
and the final section presents conclusions.

2 Related work

There are three important approaches to version control for hypertext structure
and related software artifacts: the composition model, the total versioning model,
and the product versioning model.

In the composition model, versions of atomic components are maintained
and assembled into versions of composite components. Each atomic component
(usually a file) has a version history. Versions of composite components or of the
entire system are defined by revision selection rules (RSRs) that specify which
component versions are part of a version of the larger artifact.

Composition-model systems that provide versioning only for data include
Xanadu [5], KMS [6], DIF [7], and Hyperform [8]. The HyperWeb [9] and Hyper-
CASE [10] systems are both based on RCS [11], in which the smallest versionable
information unit is a file.

The use of RSRs allows versions of complex objects to be constructed by
composition of versions of simpler objects, but it creates some problems [12]. For
example, the indirect representation of a hypertext structure makes it difficult
to analyze the structure, unless the rules are actually executed. So, to avoid
the use of RSRs, some systems maintain a notion of current context [13–15]. A
context has been defined as a coherent structure, such as a document, a document

115On Product Versioning for HypertextsOn Product Versioning for Hypertexts 3

collection [2], or a partition of a hypertext [13]. However, the complexity and
overhead of maintaining the current context becomes significant if composite
components have many nested levels and hyperlinks among them.

While the previous systems focused on versioning the linked objects, other
research has explored how to maintain version histories for links as well while still
using composition versioning. In Neptune [16], the composite is used to represent
the isolated work area of each collaborator. HyperPro [2] records changes for links
by placing links inside a “version group” (i.e., a composite) that is versioned. It
supports both links to a specific version of a node and links to a node without
regard to its version. Like HyperPro, HyperProp [17] does not record the history
of links individually. In both HyperPro and HyperProp, the RSRs are stored on
the structure, affecting all link endpoints, and provides for selection of specific
document revisions from a versioned document. With this RSR approach, it is
inefficient to evaluate rules across the revisions of a specific link [18].

The research addressing versioning in open hypermedia systems has also ap-
plied the composition versioning approach. Microcosm [19] has a context-like
structure called the “application”, which is versioned. In the versioning proposal
for Chimera [20], a “configuration” is a named set of versions of Chimera hy-
permedia elements, representing the subset of a hypertext structure that might
be affected by modifications to an externally stored object. In the hypermedia
version control framework (HURL) [21], a hypertext structure is represented by
an “association”, which is a collection of link identifiers, anchor identifiers, and
the documents that define a connection. The IAM group has investigated the
Fundamental Open Hypermedia Model (FOHM)’s contextual model [22] to see
if it could replace the selection engine in a hypertext versioning server.

In the total versioning model, all items are versioned, including composite
and atomic components. Each item still has its own version space. The rela-
tionships among the items’ version spaces are defined by RSRs or by versions
of composites referring to versions of other components. In PCTE [23], a new
version is created by recursively copying the whole composition hierarchy and
establishing successor relationships between all components. In CoVer [14] and
VerSE [15], the RSRs are stored on the containment arc between a container
and its contents, providing selection of link revisions and document revisions
from versioned links and versioned documents, respectively. This structure ver-
sioning increases the work that must be performed to ensure that a structure
container holds a consistent hypertext [18]. The SEPIA [24] system has the no-
tion of “composite node”, which contains a partially ordered set of nodes and
links and represents subgraphs of the hypermedia network. The total versioning
model, in general, suffers from the version proliferation problem [25], where each
small change in a leaf of the hierarchy creates versions of multiple objects higher
in the compositional hierarchy or hyperlinked to that leaf node.

In contrast to total versioning, product versioning establishes a single view
of a software product, or even an entire database. This is done by arranging
versions of all items in a uniform, global version space. This approach is popular
in software configuration management (SCM) and versioning systems such as

116 Tien Nhut Nguyen et al.4 Tien N. Nguyen, Cheng Thao, and Ethan V. Munson

in change-based systems (COV [26], Aide-de-camp [27], PIE [28], etc), or state-
based systems (Voodoo [29]). Wagner’s product versioning infrastructure [30]
integrated version management with incremental program analyses. Our system,
Molhado, is currently the only versioned hypermedia system that applies this
product versioning model.

3 Issues with versioning for hypertexts

This section summarizes structural and cognitive issues with providing the ver-
sioning capability for a hypermedia system mentioned by Østerbye [2].

3.1 Immutability of versions

The first structural issue is called immutability of versions. It is obviously that
the contents of a frozen version of a resource should be immutable, that is, they
cannot be changed without creating a new version of the resource; it is less clear
how links pointing to it and its attributes should be treated. Yet it may be
useful to allow frozen versions to have new links (for instance, annotations or
comments) coming from and going to them without necessarily creating a new
version of the resource. At the same time, some links are carrying semantics
or substantial parts of the resource itself, and thus their modification should
definitely require the creation of a new version of the whole resource.

3.2 Version control for links

The second structural issue is associated with version control for links. Ver-
sioning for links is very important. The fact that existing hypermedia systems
for software development do not version individual links is a significant factor
preventing their wider use in the software engineering domain [1]. However, pro-
viding version control for individual links raises some serious problems.

� ����� �����

���� ����� �

Fig. 1. First issue with link versioning

The first one that Østerbye mentioned in his paper is the navigation problem
if a hyperlink has several versions. For example, in Figure 1, the version v1 of a
link connects two nodes A and B, and the version v2 of that link connects A and
C. The question is that when users navigate through the link, which destination

117On Product Versioning for HypertextsOn Product Versioning for Hypertexts 5

should be used. Human intervention would create cognitive overhead for users
and would make the user interfaces for versioned hypermedia complex.

Another problem with the version control for links is shown in Figure 2.
Suppose that we have “A→ the link→ B”. If B now is modified into B’ (a new
version v2 of B), a new version of the link l must also be created connecting A
to B’. The reason for this phenomenon is that links and resources have their own
version histories. This is due to the fact most of existing versioned hypermedia
systems followed either composition versioning or total versioning models.

� ��������� �����

���� ����� �����

Fig. 2. Second issue with link versioning

The third problem with link versioning is whether a system should treat a
hyperlink as a first-class object or a relation of anchor values. If the former one is
chosen, the question is how the system determines when a new version of a link
must be created [2]. If the latter choice is made, it is very hard for a system to
distinguish two versions of a link that contains the exact set of member anchors
or member resources.

3.3 Version control for hypermedia structure

The third structural issue that Østerbye mentioned is with version control for
hypermedia structure. Hypermedia structure often refers to the network consist-
ing of document nodes, anchors, and connecting hyperlinks. Østerbye suggested
that the hypertext versioning system must allow users to return to a consistent
previous state of entire network, rather than just a previous state of a single
document node or link. Providing version control for both hypermedia structure
and individual nodes/links is not easy to achieve [2].

3.4 Hypermedia element selection

A serious cognitive issue as providing versioning capability for hypermedia sys-
tems is associated with hypermedia element version selection. A prominent prob-
lem, when introducing versions of nodes, is to determine which element in the
versioned group (i.e. a group of all object versions) the link points to [2]. In some
systems (e.g. HAM, HyperPro), a link can point to either a specific element (i.e.
a specific object version) or entire group. The link could also point to the cur-
rent element, meaning the newest element in the versioned group. In a situation
where the elements in the versioned group are organized in a version tree, it

118 Tien Nhut Nguyen et al.6 Tien N. Nguyen, Cheng Thao, and Ethan V. Munson

is not clear which is the newest element. Some systems were based on a query
language to do element selection. This increases the cognitive overhead for users,
who have to specify a selection criteria each time a link is created. If a selection
query must be specified each time a link is created, the users are discouraged
from making links. Special care must therefore be taken at the interface level to
simplify the use of link selection.

Another related issue is the place to store element version selection rules.
There are two prominent choices. The first one is that element selection rules
are stored on the structure, affecting all link endpoints, and provides selection
of specific document revision from a versioned document (e.g. in HyperPro and
HyperProp). With this approach, it is inefficient to evaluate rules across the
revisions of a specific link [18]. The other popular choice is that the rules are
stored on the containment arc between a container and its containees, provid-
ing selection of link revisions and document revisions from versioned links and
versioned documents respectively. This structure versioning increases the work
that must be performed to ensure that a structure container holds a consistent
hypertext [18]. CoVer’s [14] and VerSE’s [15] followed this scheme.

3.5 Version creation

According to Østerbye, cognitive overhead can also increase with the version
creation operation. If a user is forced to come up with names for each and every
document node that is created, it will distract his/her attention from the actual
subject. Similarly, if the user must explicitly create new versions of nodes or
links all the time, and maintain some consistency among their versions, it will
further distract his/her attention from the real work to be done [2].

4 Versioned hypermedia in Molhado

This section describes the Molhado versioned hypermedia model. More details
can be found in another document [3].

4.1 Data model

The data model used in Molhado is the Fluid Internal Representation (Fluid IR).
The main concepts in this data model are node, slot, attribute, and sequence. A
node is the basic unit of identity and is used to represent any abstraction. A slot is
a location that can store a value in any data type, possibly a reference to a node.
A slot can exist in isolation but typically slots are attached to nodes, using an
attribute. An attribute is a mapping from nodes to slots. An attribute may have
particular slots for some nodes and map all other nodes to a default slot. The
data model can thus be regarded as an attribute table whose rows correspond
to nodes and columns correspond to attributes. The cells of the attribute table
are slots (see Figure 3). Slots in an attribute table can belong to three types:
constant, simple, or versioned slots.

119On Product Versioning for HypertextsOn Product Versioning for Hypertexts 7

Fig. 3. Data model

A constant slot is immutable; such a slot can only be given a value once,
when it is defined. A simple slot may be assigned even after it has been defined.
The third kind of slot is the versioned slot, which may have different values in
different versions (slot revisions). A sequence is a container with slots of the
same data type. It has a unique identifier. Sequences may be fixed or variable
in size and share common slots together. Once we add versioning, the attribute
table gets a third dimension: the version.

4.2 Product versioning

The version dimension follows the product versioning model. Instead of focusing
on individual components, Molhado versions a software project as a whole (see
Figure 4). All system objects including (atomic and composite) components and
hypertext structures are versioned in a uniform, global version space. Object
properties can be defined as versioned or un-versioned. A version is global across
the whole project and is a point in a tree-structured discrete time abstraction,
rather than being a particular state of an object as in total and composition
versioning models. That is, the third dimension in the attribute table in Figure 3
is tree-structured and versions move discretely from one point to another.

The state of the whole software system is captured at certain discrete time
points and only these captured versions can be retrieved in later sessions (for
example, the versions v1.0, v2.0, v3.0, etc in Figure 4). The current version is the
version designating the current state of the project. When the current version is
set to a captured version, the state of the whole project is set back to that version
(for example, v2.0 in Figure 4). Changes made to versioned objects of the project
at the current version create a temporary version, branching off the current
version. That temporary version will only be recorded if a user explicitly requests
that it be captured. To record the history of an individual object, the whole
project is captured. Capturing the whole project is quite efficient because the
versioning system only records changes and works at a very small granularity [3].

120 Tien Nhut Nguyen et al.8 Tien N. Nguyen, Cheng Thao, and Ethan V. Munson

����
������������

����

���� ����

������������

�����������������������������

���� ���� ������������

��������

����

������������

����

������������

��� ���

���

���

���

���

����������

���������

����������

Fig. 4. Product versioning in Molhado

4.3 Structure-oriented representation

To be able to control versions of software documents at a fine granularity, Mol-
hado follows a structure-oriented approach where each document is considered
to be logically structured into fine units, called structural units or logical units.
This approach is often taken in structured document research, e.g. SGML and
XML. In this approach, each software document is represented by a document
tree or a document graph in which each node encodes a logical unit of the doc-
ument. Since XML has become the standard structured document format and
very successful in representing many different data types, it is very natural to
use XML for representing non-program artifacts. Syntactical rules for a docu-
ment and its structural units are defined by users in a specification such as a
Document Type Definition (DTD) or XSchema specification. For a program, an
abstract syntax tree (AST) perfectly represents its logical structure.

To represent documents and hypermedia structure in this structure-oriented
approach, tree and directed graph data structures are built from the nodes,
slots, and attributes in the data model. A directed graph is defined with an
attribute (the “children” attribute) that maps each node to a sequence holding
its children. Trees additionally have the “parent” attribute, which maps each
node to its parent. We have developed a fine-grained versioning scheme for tree
and directed graph data structures in which fine-grained changes to the structure
of a tree or a graph and to the contents of associated slots are recorded [3].

Figure 5 shows an example of our representation for an XML document. Each
node in the XML document tree has an additional slot that stores its operator via
“operator” attribute. An operator, which can be shared among nodes, identifies
the syntactical type of its node and determines the number and syntactical types
of the node’s children. Nodes in an XML tree have operators drawn from two
categories: intermediate and text operators. The unique text operator is used to

121On Product Versioning for HypertextsOn Product Versioning for Hypertexts 9

����������

����������������

�����������������

���������������������������

�������������
��
�������������������������������������

��������������

���������������������������������������

����������������
��������������������������������

� � �������������������

���������������������������������������

�����������������
�����������

���

����������

��

��

���������

��

��

��

��

��

����������������� ����

������������� ����

������� ����������

���������������� ����

�������

������������������

�������������

����

���������

���������

������� ������������

���� ��������

����

��

��

��

��

��

��

���

���
������ ��� ��� ���

���������

���������

���������

���������

�������

Fig. 5. Structure-oriented representation

represent XML’s character data (CDATA) construct. Each node associated with
the text operator has an additional slot (defined by the “content” attribute) that
holds the CDATA string. Each element node in an XML document is associated
with an intermediate operator, whose name is the element’s name. Each node
associated with an intermediate operator has one additional slot for each XML
element-level attribute that is defined for that element (e.g. the “id” attribute).
This document tree is versioned according to our tree-based versioning scheme.

4.4 Hypermedia entities

To enable HTML-style hyperlinks among these documents, an “href” attribute is
defined for each node in a document’s tree or graph. A “href” attribute contains
a URL referring to a document node. Therefore, embedded hyperlinks can be
attached to and can point to any document node.

The Molhado versioned hypermedia model is based on the following con-
cepts: linkbase, hypertext network, link, and anchor. A linkbase is a container
for hypertext networks and/or other linkbases. The relation between a linkbase
and a hypertext network is the same as the relation between a directory and
a file in a file system. A hypertext network can belong to only one linkbase. A
hypertext network contains links and anchors. A link is a first-class entity and is
an association among a set of anchors. An anchor can belong to multiple links.
A link or an anchor can also belong to multiple hypertext networks. An anchor
is used to denote the region of interest within a document, and it refers to either
a document or a document node. This separation between anchors and docu-
ment nodes allows for the separation between hypertext networks and document
contents. Links and anchors can be associated with any attribute-value pairs.

4.5 Version control for hypermedia structure

To handle compositional relations among components or artifacts, Molhado also
provides a structure versioning mechanism at both coarse-grained and fine-
grained levels [3]. At the coarse-grained level, a composite component can con-
tain atomic components and/or other composite components. At the fine-grained

122 Tien Nhut Nguyen et al.10 Tien N. Nguyen, Cheng Thao, and Ethan V. Munson

level, an atomic component is allowed to have internal structure that can contain
logical units.

A linkbase is implemented as a composite component, whose internal struc-
ture is a tree structure composing of other linkbases and/or hypertext networks.
A linkbase is versioned according to the fine-grained versioning scheme for the
tree data structure [3]. A hypertext network is implemented as a type of atomic
component, whose internal structure is a directed graph. Each link or anchor is
represented by a node in that graph. A directed edge connects an anchor’s node
to a link’s node if the link contains the anchor. An additional attribute, attribute
“ref”, is defined for each anchor’s node in the graph. The value of a “ref” slot is
a reference to either a component or a logical unit within a component (but not
to a hypertext network or to a linkbase). In general, via our versioning scheme
for directed graphs, the history of a hypertext network is recorded [3]:

��������

����

�����

����

�����

��������

����

������
�����

������

�����

�����

� � �

�

�
�

�

�

������������

�

�

�

�

�

�

�

�����

����� ������������������������������������

����

��������

��������

�����������

����

���������

���������

����������

���

����

�����

���

���

����

��� ���

����������

��

��

��

��������

����

�����

����

�����

������
�����

������

�����

�����

����������

��

������

�����

� � �

� ��

�
�

�

��

��
�

������������

�

�

�

�

�

�

�

�����

����

��������

��������

����

���������

���������

����������

���

����

���

�����

����

���

�����

�

��

����

���������

����

����
���

���

���

�����

���

���

���������

����

����

����

����

����

����

����

����

�

����������� ���� ���� �����
���

������������
����

����

����

����

����

����

����

����

����

����������� ���� ���� �����

����������� ����

Fig. 6. Versioning for hypertext structure

Figure 6 shows an example of hypertext network versioning. Figure 6a) and d)
display the network at two versions v1 and v2. The directed graphs representing
for structures of the network at these two versions are in Figure 6b) and e).
Links’ nodes (e.g. nodes 2 and 6) have edges coming into them and do not refer to
anything. The attribute table is updated to reflect the changes to the hypertext

123On Product Versioning for HypertextsOn Product Versioning for Hypertexts 11

network. Figure 6c) shows part of the attribute table for the network at version v1
(document nodes in the attribute table are not shown except n(section1)). In this
example, attribute “content” defines for each document node a slot that contains
a string value. The “ref” cell for an anchor node (e.g. node 1) contains a reference
to the corresponding document node (e.g. n(section1)). Figure 6f) shows the
attribute table at version v2. Node 5 was deleted since doc3 was removed. Node 3
now has only one child. Node 9 (representing link3) and node 10 (representing
class3) are just created. The “ref” cell for node 10 points to document node
representing class3. The “content” slot of n(section1) has changed from “old” to
“new” to reflect the change in the content of (section 1, doc 1) in the network.

In Molhado’s product versioning model, a version is a point in tree-structured
discrete time line. Therefore, returning to previous state of entire project is a
basic versioning operation. When users set the current version to a recorded
version, the state of entire software project will be set back to that version.
Thus, documents as well as linkbases and hypertext networks will regain their
contents and structures at that version.

4.6 Version control for links

Via the example in Figure 6, we can see that the directed graph versioning scheme
also takes care of recording the history of individual hyperlinks (represented as
a graph node). This is because the connection structure of a graph node and
associated slots are captured over time.

Let us revisit the first issue with version control for hyperlinks (see Figure 1).
In this case, Molhado avoids this problem. The nature of product versioning in
Molhado allows developers to navigate to the right destination at the current
version. In Molhado (see Figure 7), two global versions v1 and v2 would be
created. At the version v1, the connection would be “A → the link → B”, and
at the version v2, the connection would be “A → the link → C”. When the
current version is selected explicitly or implicitly, the destination of the link will
be automatically chosen at the current version.

��

��

� ���� � �

� ���� � �

Fig. 7. No problem with link versioning in Molhado

Let us consider the second issue with versioning for hyperlinks (see Figure 2).
This scenario can be handled by putting all hypermedia entities including links
and resources in one global product versioning space such as in Molhado. Thus,
when users select v2 the current version, the destination of the link l would

124 Tien Nhut Nguyen et al.12 Tien N. Nguyen, Cheng Thao, and Ethan V. Munson

be the new version of the resource B (see Figure 8). The key idea is that, in
Molhado, link traversal occurs only among nodes at the current version.

��

��

� ������ �

� ������ ��

Fig. 8. No problem with link versioning in Molhado (2)

The third issue with link versioning is whether a system should treat a hyper-
link as a first-class object or a relation of anchor values. In Molhado, a hyperlink
is a first-class entity. It is represented as a node in a directed graph (representing
a hypertext network). Each graph node might be associated with multiple at-
tributes (representing properties of hypermedia entities). As explained, via the
fine-grained versioning scheme for attributed directed graphs, a hypertext net-
work as well as an individual link is versioned (see the example in Figure 6). In
general, when a versioned attribute value associated with the hyperlink changes,
or the connection of member anchors changes, or a document node on which a
member anchor rests changes, a new version must be created. In this case, a new
global version point is created in the tree-structured discrete time line, rather
than a new version of resources or a new version of links.

In brief, Molhado provides configuration management for hypermedia struc-
ture as well as version control for individual links and document nodes without
having problems that occurred in existing versioned hypermedia systems. Now,
let us revisit other issues mentioned by Østerbye and relate them to Molhado.

4.7 Revisiting other issues

Immutability of versions: There are two characteristics in Molhado’s product
versioning model that suggested us a simple solution for this issue. The first one
is that Molhado can control which aspects of a software project are versioned
or un-versioned. The other one is that resource versions and hyperlink structure
versions are maintained in the same global version space. To address this issue,
in Molhado, users are allowed to specify the set of “substantial” links (i.e. the
ones that if modified would create a new version), while all other links would be
considered as annotation or comment links and would not require a new version
if changed. Substantial links are modeled as versioned slots defined by “href”
attribute, while other links as simple slots defined by an additional attribute.
Therefore, when a substantial link is created and linked to a resource at the
current version, a temporary version will be created and this change is hold at
this temporary version. But when a non-substantial link is created, the change
is hold at the current version and no temporary version will be created.

125On Product Versioning for HypertextsOn Product Versioning for Hypertexts 13

For hypertext networks, when a first-class hyperlink and its anchors are cre-
ated and pointed to document nodes at the current version, a new version is
created. This choice is reasonable since a first-class hyperlink and its anchors
are considered as annotations on top of document nodes and are not parts of
the document contents. In this case, the change between these two versions (the
old and new ones) is the addition of the new first-class hyperlink and anchors.
But the components themselves are not changed between these two versions.

Hypermedia element selection: With product versioning in Molhado,
versioning for individual entities is subsidiary to versioning for entire project.
That is, an individual entity do not have its own version numbers. The current
version of entire project is selected implicitly (via user operations such as mouse
actions) or explicitly (via user commands). Molhado knows how to relate objects
and hypermedia structures at the current version together. Therefore, there is no
version selection rules or selection queries involving in user operations on links,
anchors, hypertext networks, and linkbases. For example, users’ traversal can be
done via HTML-style hyperlinks or via a hypertext network without involving
users’ selection of revisions of individual hypertext entities since the traversal
occurs among nodes at the current version. When creating a link, users also do
not have to make any selection about versions of targets. This characteristic of
Molhado has facilitated the construction of a graphical user interfaces (GUI) for
its versioned hypermedia services in the Software Concordance environment [31],
which will be described later.

Version creation: In Molhado, individual document nodes or links share
the same version space. To keep their version histories, a user has to commit
changes to entire project. However, it does not require the user to check in or
check out document nodes or hypertext elements individually. The user modi-
fies documents and hypertext structures. When the user is ready to record the
changes, he/she can issue a commit command and a new version will be created.
Intermediate versions during an editing session can be used for undoing tasks
but may not be saved in the SCM repository. In the total versioning model, when
a hypermedia entity gets a new version, all other connected hypermedia entities
(links, nodes, etc) and its ancestor entities in any compositional hierarchy need
to be checked in individually. Although Molhado does not have the type of ver-
sion creation problem that Østerbye described, a single change to a versioned
entity might potentially create a new version of entire project.

5 The versioned hypermedia tool

5.1 Library functions

The Molhado’s versioned hypermedia infrastructure is implemented in terms of
a set of library functions. Versioned hypermedia functionality can be divided
into two groups: 1) linkbase and hypertext network services, 2) link and anchor
services. The first group includes functions to create a linkbase or a hyper-
text network, to delete existing hypertext networks or linkbases, to re-structure
linkbases and relocate networks among linkbases, to open an existing hypertext

126 Tien Nhut Nguyen et al.14 Tien N. Nguyen, Cheng Thao, and Ethan V. Munson

network, select a hypertext network to be active, to import and export a hy-
pertext network from and to XLink format at any version. Services for links
include link creation, deletion, renaming, attribute’s value viewing, and link his-
tory viewing. Services for anchors include deleting an anchor, adding an anchor
into the active link, removing an anchor off some link, renaming an anchor, and
displaying the structural unit that the anchor refers to. More details on this set
of library functions can be found in another document [32].

5.2 User operations

This set of library functions can be used in any editing or development en-
vironment. Automatic link generation algorithms could be employed to create
links and our infrastructure could be used to store versions of documents and
links. Molhado’s hypertext versioning services were integrated into the Software
Concordance (SC) development environment [31] (see Figure 9). Configuration
management tasks are handled by Molhado’s configuration management infras-
tructure [33]. The rest of this section describes the distinguished versioned hy-
permedia functionality in the SC environment.

Fig. 9. Structured document editor

Molhado and the SC user interfaces support a variety of transactions. First
of all, a user can open an existing project. After selecting the current (work-
ing) version from a project history window, the system displays the project’s
directory structure and documents in a project structure window. From this

127On Product Versioning for HypertextsOn Product Versioning for Hypertexts 15

window, the user can choose to edit, delete, import, or export any document
and hypertext network. Also, via this window, the user can graphically modify
the project’s directory structure. If any modification is made to the versioned
components at the current version, a new version would be temporarily created,
branching off the current version. Subsequent modifications will not change the
temporary status of the version until a capture or a commit command is issued.
If the user does not want to keep the temporary version, he/she can discard it.
Otherwise, the user can capture the state of the project at a version. The capture
command changes a temporary version into a captured one. A unique name as
well as date, authors, and descriptions can be attached to the newly captured
version for later retrieval. A captured version plays the role of a checkpoint that
the user can retrieve and refer to.

The user can branch off a version by just switching the current version and
then starting the modifications. While working on one version, the user can
always switch to work on (view or modify) any other version. This switching
feature allows the user to work on many versions at the same time during one
session. This capability is called multi-version editing. The user may commit
changes at any time. Upon issuing this command, the user is asked which un-
captured, temporary versions should be saved and the chosen versions are then
saved along with any already captured versions. Only the differences are stored.
Saving complete version snapshots can improve version access time.

Fig. 10. History of a document node

The user can open a software document at the current version (e.g. XML,
HTML, Java program, SVG graphic, UML diagram). An appropriate editor will
be invoked. The editors are enhanced by versioned hypermedia services. Figure
9 shows the structured editor for a Java program. When the user right-clicks

128 Tien Nhut Nguyen et al.16 Tien N. Nguyen, Cheng Thao, and Ethan V. Munson

on a document node, a popup menu is displayed to allow the user to create an
anchor at the node and add it to the active hypertext network, to open the active
hypertext network of an anchor defined at the document node, or to create or
delete a HTML-style hyperlink at the document node.

In addition, the user is able to view a document node’s history (see Figure
10). Note that the method “loadDelta” was not created until v9.1. Therefore,
the earlier versions on the top window are “disabled”. If the selected logical unit
is the root of a document, the history of entire document will be displayed.

Fig. 11. History of a hyperlink

At any time, the user can create a hyperlink and make it active in a hyper-
text network. Then, he/she can add anchors into that hyperlink or any other
hyperlinks currently managed in the system. Members of the hyperlink and its
properties can be modified and changes are recorded. Figure 11 shows the history
of the link “agrees” between several requirement/design items and the class “SC-
Document”. The constructor of the class was displayed in the bottom window
since the user clicked on the corresponding anchor.

The user can also display, modify, or navigate through a hypertext network
via a simple editor. In Figure 12, there are two types of links: causal and non-
causal. There are directed edges coming from source anchors to a causal link,
and from a causal link to its target anchors. There are only non-directed edges
for non-causal links (e.g. link “n1”). While non-causal links are directly repre-
sented by our hyperlinks, causal links are extended from them with additional
attributes. Via anchors, the user can traverse to corresponding document nodes.

129On Product Versioning for HypertextsOn Product Versioning for Hypertexts 17

Fig. 12. A hypertext network

In this environment, multiple hypertext networks can also be defined during
a software development process. With our tool, document contents will not be
changed when a new network is defined since hypertext structure is separated
from document content.

6 Issues for future research

While using product versioning, we have encountered three problems that have
not been described for composition or total versioning systems. We plan to ex-
plore these issues in the near future.

6.1 Hyperlinks across different versions

Molhado’s current interfaces are not sufficient to allow users to easily create
hyperlinks between different versions. This is because links only exist within a
single version. So, there is no way to say “make a link to document D at version
vk,” because the linking interfaces have no parameter for the version. While this
may not be the most common use case for versioned hypermedia, it is certainly
necessary to support it and we have identified two approaches that should suffice.

The first solution is to allow links to other versions to be made as computa-
tional links. The anchors of a computational link are essentially queries against a
database of links. Using the example mentioned above, the anchor’s query would

130 Tien Nhut Nguyen et al.18 Tien N. Nguyen, Cheng Thao, and Ethan V. Munson

be “get document D for version vk.” The second solution is to change Molhado’s
interfaces to include or even require a version identifier for all accesses. While
this is logically possible, we have hesitated to support this choice because it is
inconvenient in the most common cases.

6.2 Hyperlinks across different projects

Another similar issue concerns about how to create a hyperlink among com-
ponents of different projects. Since a hyperlink is an entity that lives within a
version space of a single project, with the current interfaces in Molhado, there is
no way to do hyperlinking across different projects. However, the computational
link approach should suffice to handle this. In this case, the query would ask for
the opening of a different project, and loading a version and then a document.

6.3 The scope of the product versioning space

Molhado is built specifically for software engineering environments, where it
makes sense for software developers to handle versions of entire software projects.
Molhado’s notion of a “project” is also applicable to Web-based applications or
legal document management systems, representing an entire Web-based appli-
cation, a Web site, or a collection of legal documents and tax codes.
However, we suspect that there will be hypertext collections that are ill-

suited to being controlled in one version space. It is certainly the case that
linking material maintained under Molhado’s product versioning model with
material managed using other versioning models will be a challenge. While this
is clearly a topic for future research, we reject the idea that Molhado’s apparent
“incompatibility” with composition or total versioning systems is a reason to
reject the product versioning model. Rather, we think that versioning needs a
generalized access and maintenance model that covers all approaches.

7 Conclusions

The Molhado hypertext versioning infrastructure is well-suited for managing
logical relationships among software documents. It is the first system that ap-
plies the product versioning model to hypertexts. The structural and cognitive
issues that Østerbye [2] described has been well-addressed in Molhado by using
product versioning. This version control model facilitates the development of a
GUI for versioned hypermedia services. It reduces cognitive overhead for users
in version creation and version selection of hypermedia elements in user opera-
tions. Software components and hypertext structures are uniformly versioned in
a fine-grained manner. Users are allowed to return to a consistent previous state
not only of a hypertext network but also of a single node and of a hyperlink. The
use of product versioning for hypertexts also raises new issues that have not been
described in existing versioned hypermedia systems such as creating hyperlinks
across different versions or different projects. Our future plan includes exploring
those issues and carrying out experimental and usability studies for the tool.

131On Product Versioning for HypertextsOn Product Versioning for Hypertexts 19

References

1. Whitehead, Jr., E.J.: An Analysis of the Hypertext Versioning Domain. PhD
thesis, University of California – Irvine (2000)

2. Østerbye, K.: Structural and cognitive problems in providing version control for
hypertext. In: Proceedings of the ACM conference on Hypertext and Hypermedia.
(1992) 33–42

3. Nguyen, T.N., Munson, E.V., Boyland, J.T., Thao, C.: The Molhado Hypertext
Versioning System. In: Proceedings of the Fifteenth Conference on Hypertext and
Hypermedia, ACM Press (2004)

4. W3C: W3C XML Linking. http://www.w3c.org/XML/Linking (2005)
5. Nelson, T.H.: Xanalogical structure, needed now more than ever: parallel docu-
ments, deep links to content, deep versioning, and deep re-use. ACM Computing
Surveys (CSUR) 31 (1999) 33

6. Akscyn, R.M., McCracken, D.L., Yoder, E.A.: KMS: a distributed hypermedia
system for managing knowledge in organizations. Communications of the ACM 31
(1988) 820–835

7. Garg, P.K., Scacchi, W.: A hypertext system to manage software documents. IEEE
Software 7 (1990) 90–98

8. Wiil, U.K., Leggett, J.J.: Hyperform: using extensibility to develop dynamic, open,
and distributed hypertext systems. In: Proceedings of the ACM conference on
Hypertext and Hypermedia, ACM Press (1992) 251–261

9. Ferrans, J.C., Hurst, D.W., Sennett, M.A., Covnot, B.M., Ji, W., Kajka, P.,
Ouyang, W.: HyperWeb: a framework for hypermedia-based environments. In: Pro-
ceedings of the Symposium on Software Development Environments, ACM Press
(1992) 1–10

10. Cybulski, Reed: A Hypertext Based Software Engineering Environment. IEEE
Software 9 (1992) 62–68

11. Tichy, W.F.: Design, implementation, and evaluation of a revision control system.
In: Proceedings of the 6th International Conference on Software engineering, IEEE
Computer Society Press (1982) 58–67

12. Asklund, U., Bendix, L., Christensen, H., Magnusson, B.: The unified extensional
versioning model. In: Proceedings of the 9th Software Configuration Management
Workshop, Springer (1999)

13. Delisle, N.M., Schwartz, M.D.: Contexts: partitioning concept for hypertext. ACM
Trans. Inf. Syst. 5 (1987) 168–186

14. Haake, A.: CoVer: a contextual version server for hypertext applications. In:
Proceedings of the ACM conference on Hypertext and Hypermedia, ACM Press
(1992) 43–52

15. Haake, A., Hicks, D.: VerSE: towards hypertext versioning styles. In: Proceedings
of the 7th ACM conference on Hypertext and Hypermedia, ACM Press (1996)
224–234

16. Delisle, Schwartz: Neptune: A hypertext system for CAD applications. In: Pro-
ceedings of ACM SIGMOD ’86, ACM Press (1986) 132–142

17. Soares, L., Filho, G.S., Rodrigues, R., Muchaluat, D.: Versioning support in Hy-
perProp system. Multimedia Tools and Applications 8 (1999) 325–339

18. Whitehead, Jr., E.J.: Design spaces for link and structure versioning. In: Proceed-
ings of the conference on Hypertext and Hypermedia, ACM Press (2001) 195–204

19. Melly, Hall, W.: Version control in Microcosm. In: Proceedings of the Workshop
on the Role of Version Control in CSCW. (1995)

132 Tien Nhut Nguyen et al.20 Tien N. Nguyen, Cheng Thao, and Ethan V. Munson

20. Whitehead, Jr., E.J.: A proposal for versioning support for the Chimera system.
In: Proceeedings of the Workshop on Versioning in Hypertext Systems, ACM Press
(1994)

21. Hicks, D.L., Leggett, J.J., Nurnberg, P.J., Schnase, J.L.: A hypermedia version
control framework. ACM Transactions on Information Systems (TOIS) 16 (1998)
127–160

22. Millard, D.E., Moreau, L., Davis, H.C., Reich, S.: FOHM: a fundamental open
hypertext model for investigating interoperability between hypertext domains. In:
Proceedings of the ACM Conference on Hypertext and Hypermedia, ACM Press
(2000) 93–102

23. Wakeman, L., Lowett, J.: PCTE: the standard for open repositories. Prentice Hall
(1993)

24. Streitz, N., Haake, J., Hannemann, J., Lemke, A., Schuler, W., Schutt, H., Thuring,
M.: SEPIA: a cooperative hypermedia authoring environment. In: Proceedings of
the ACM conference on Hypertext and Hypermedia, ACM Press (1992) 11–22

25. Conradi, R., Westfechtel, B.: Version models for software configuration manage-
ment. ACM Computing Surveys (CSUR) 30 (1998) 232–282

26. Lie, A., Conradi, R., Didriksen, T., Karlsson, E., Hallsteinsen, S., Holager, P.:
Change oriented versioning. In: Proceedings of the 2nd European Conference on
Software Engineering. (1989)

27. Cronk, R.: Tributaries and deltas. BYTE (1992) 177–186
28. Goldstein, Bobrow: A Layer Approach to Software Design. Interactive Program-
ming Environments. McGraw-Hill (1984)

29. Reichenberger, C.: VOODOO: A Tool for Orthogonal Version Management.
In: Proceedings of the Software Configuration Management Workshop, SCM-5,
Springer (1995) 61–79

30. Wagner, T.A., Graham, S.L.: Incremental analysis of real programming languages.
In: Proceedings of the 1997 ACM SIGPLAN conference on Programming language
design and implementation, ACM Press (1997) 31–43

31. Nguyen, T.N., Munson, E.V.: The Software Concordance: A New Software Doc-
ument Management Environment. In: Proceedings of the ACM Conference on
Computer Documentation, ACM Press (2003)

32. Nguyen, T.N.: Object-oriented Software Configuration Management. PhD thesis,
University of Wisconsin – Milwaukee (2005)

33. Nguyen, T.N., Munson, E.V., Boyland, J.T., Thao, C.: An Infrastructure for De-
velopment of Object-Oriented, Multi-level Configuration Management Services.
In: Proceedings of 27th International Conference on Software Engineering (ICSE
2005), ACM Press (2005)

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profi t or commercial advantage and that copies bear this notice and the full citation on the fi rst page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee.
SCM 2005, September 5-6, 2005, Lisbon, Portugal. Copyright © 2005 ACM

�������� ������� ������ ����� ����� ������ ��
������ ����

�������� �������� ������ ������������ ��� ������� ������

�������� ������ �� ����������� ������� ��� ����������� ����� ����������� ���
�������������� ��������� ����� ��������� �����
���������� ��������� ��������������������

��������� �� �� ���������� ����������� ������� ���������� ���� ���
������ ����� � �������� ������� ������� ����� ������� ����������������
������� �������� �������� ���� � ������ ����� ����� ������� �� ��������
������� ������� �� ����� ��������� ����� ���������� �� �������� �������
��� �������� ����������� ���� � ������������ �������� ���� ��� ���� ��
��� ������� �� ��� ���� ���� �� ���� ������ �� ��� ���� �����
�� ���� ������ �� ������� � ������� ����� ��������� ��� ������ ���� ����
������� ��� ���� ��������� �� ������ ����������� �������� ��������
��� ������ ���� �� ����������� �� �� ������������ ��� ��������������
��� ��� ����� ��������� �� ��������� �� ��� ����������� ��������
�� ���� �� �������������� �� ��� ��������� ��� ��� ���� �������� ���
��� ���������� �������� ������� �������
����������� ����� ���� ��� �������� ��������� ����� ���� ��������
����� ������ ���� ��� �������� ������������ �����������

� ������������

��� ������ ��������� �� ���������� �� ��� �������� ��� ��������� ���������� ���
������� �� ��� ����������� ����������� �������� �� �� ���������� �����������
������ ��� ���������� ����������� ��� ���� ��� ����� ��������� ���� ���� ����� ��
��������� ����� ����������� �� ����� ��� ������� ����� ��� ������ ��� ��������
���� � ����������� �������� ������� �������
�� ���� ������������ ���� ��������� ����� ���� �� ����� ��� ��� �������

��� ������ ������������� �� ��� ���������� �� �������� ������� ������� �� ����
����� ��� ��������� ��� ���� �� ����� ������� ��� ������������ ���� ��� �����
����������� ������������� ��� ������� ��������� ��� �� ���� �� ������� ��
���� �� ��� �������� ������� ������� ������� ��� ���������� �� ����� �� ��� ��������
������� ������ ��� ��� �������� �� ����������� ��� ����������
��� ���� �� ������� �� ���� �������� �������� ������� ������ �� ���� �� �����

�� ��� ����� ���� �������� ���� � ����� �� ����������

������� ������ ����� ��� ���������� ���� ��� ���������� ��� ������� �� ���
���� ���� �� ��� ���� ������ ���� �� ��� ��������� ������� � �������� ��� �
���������� ���� ���� ���� ��������� ��� ��� ����� ��������� ���� � ���������
����� ��� ���� ��������� ���� ��� ��� ������������ ��������� �� �������
�������� ����� �� ����� ������� ����� ������ ���� �� ��� ������� ��������
��� �� ������� �� ������� ������ �����

134 Yasuhiro Hayase et al.�

���� �� �������� ������� �� ��� ��������� ������� � ��������� ��� ��� �����
��������� ���� � ������� �� ��� ���� ���������� ��� �������� ����������
���� ����� ������������ ��� �� ������� �������� �������� ������� �����
���� ����� ������������ ������ �� ������� ������ ������� ���� ����� ���
���� �����

����� �� � ������ ����� ���������� ������ �� ��� ����������� ��������
��� ������ ������ ����� ���� ���������� �� ��� �� ��� ������� �� ������� �����
��������� �� ��� � ������������ ������ ��� �������� ������� �� ��������� ����
����� ��� ��� ����� ������ �� ����������� ��������� �� �� ���� �� ����� ��
�������� ��������� ��� ���� ���������
�� ���� ������ �� ������� � ������� ��������� ����������� ���� ��� �������

����������� ��������� ��� ��������� ���� ������ �� ������������ �����������
���� �� ��� ������ ���� �� ��� ������� ������ ���� ������ ������ ��������
�� ��� �� ������������ �������� ����� �� ���� ��������� �� ����� ���

��� ������ ������� ����� ��� �������� �� �������� ����� ����������� ���������
����� �� ���� ��������� ���� ��� ����� �� ��� �������� �� ���������� ��������
�� ������ ����� ������� �� ������������ �������� ��� �������� �� ����������
�� ��� ����� ��� �������� ��������� ��������� �� ��������� ���� ��� �������
����������
�� ����������� ���� ��������� �� ��� ������ �������� ������� ������ �������

���� ���� ��� ������ ������� ���� ������ ������ ��� ��������� ����� ���� ��������
�� �������� ��� ������ �� �������� �� ������ �����
��������� �� �������� ��� ������� ��������� ���� ��� ��������� ������

������ �� ����� ������� ����������� �� �������� ��� ������ �� ��� ������ ���
�������� ������ ����� ������ ������ ����� ��� ������ ����� ��������� ���� ���
��������� ������� �� ������ ���������� ������������ �� � ������� ��� ������
����� ������� � ���� �������� ������� ���� �������� �������
��� ����� ������� �� �������� ������� � ���������� ������ �������� �������

������ ��� ����� ������� �� �������� �������� ������� ������� ������� � �������
������� ��� ������������ ���� �������������� �� ��� ������ ���� �� ����������� ����
���� � ����� ������� ������ ����� ���������� ������ �� ������ ���� �� � ��������
�� ��� �������� ������� � �������� ��� �������������� �� ��� ������� ������� �
����� ��������������� ��� �������������� ������� � �������� ��� ������ ���
������� ������ ������� ���������� ������� ��� ������ ���� ��� ����� �� �������
��

� �������� ������� ������

������ �� ��������� �������� ������� ������ ���� �� ���������� �������� ������
������ ��������� ��� ����� �� ������� �� ����� ��� ������� �� ��� ��������
���� ��� ������� �� ��� ����� ������������ ���� ��� �������

��� �������� ����������� ����� �������� ������� ������

�������� ������� ������ ����� ���� ������� ����������� ������� �� ���� ���� ��
������ ����� ��� ����������

135Revision Control System Using Delta Script of Syntax Tree �

Repository

Database
Storing

Development
History

Working CopyWorking Copy

Edited
Working Copy

Edited
Working Copy

Edit

Get File
from Repository

Store to Repository

Developer

File

���� �� �������� ������� ������

Repository

XX

X’’X’’

Edit

GetXX Get

Developer
B

Developer
A

Edit

X’X’ X

���� �� �������� ����������� �� ����� ����������

������ � ����� � ������ ������� �� �������� ����������� ����� ��������
������� ������� �������� ������� ������ ��� � �������� ������ ���������� �����
������ ��� �� ��������� ����� ��������� ���� ��� ���� �� � ��� ������ �������
���� ���� ���������� ������ ��������� ��� ���� ��� ����� ��� ��������� �����
���������� ��� ��������� ������ ��� ��� �� ��� ����������� �������� �����������
����� �������� ������� ������ �� �������� ��������� ���� ��������
����� ���� �� �������� ������� ������� ������� ��� �������� ����������� ��

�������� ����������� ������ � ����� ���� ��������� ��� ��� ���� �� � ��� ����
�� ����� ���������� ���� ���� �� ��� ���� ��� ���� ���� ��������� ��� ������
������� ���� �� �����
���� ���������� ������ � ��� �� �������� �� ���� ���� ����������� ������ ���

���� ������ ��� �� ���� �� ���� ��������� ������ ������ �� ��� ����������� ����� ��
������� ������ ����� ����������� ������������� ��� ��� �� ������ ����� ��������
��� ��� ����� ����������� ������������ ������� ��� ��� ��������� ������� ����
��� �� ������ �������� ������� �� ���� �� �������� ������� ������ �� �� �����

��� �������� �� �������

�������� �������� ������� ������� ����� ������������� ��� ������ ������� �� ���
���� �� ��� ���� ���� �� �������� �� ��� ������� �� ��������� ����������� ������
����� �� ������� ������� ������ ������ ��������� �������� ���� ���� ������� ���
����� ���������

����������� ��������� ������� ���� ���������� � ��� � ��� ������� ������
�� ���� ��� ��� ��������� ��� ��� ��� ��� ��������� �����
��� �����

��������� � ������� ��� ���� �� ���������� �������� ���� �� ������� ��� ������

136 Yasuhiro Hayase et al.�

X’’’X’’’

Store

Get
X’

Merging by
Revision Control System

XX

X’’X’’

Edit

GetXX Get

Developer
A

Edit

X’X’ Store
X

X’

X’’’

Developer
B

���� �� ������ ������ ������

�� �����������
��� �������

��������� � ����� ������� ����� �������� ���� �� ���� ���� �� ������� ������
������� ��� ����������� �� � ��� ��������� �� ������

��� ����� �� ��������� ����� ��

���������� � ��� � ������� ���� ����� �� ��� �������� ������� ������ ����� ����
����� ������������ �������� �� ���� ����� ��������� � ���� ������� ��� �������
������� � ������ ��� ��� ����� ��
�� ��� ������ ���������� ������������ ����� ���� ��� ������ ������ ������

��������� ���� ������ ���� ������������ ��� ��������

��� ������� �� ��������� ����� ��

������� ������� ������ ������ ������ ���������� � ��� � ��� ������� ������
�� ���� ��� ��� ��������� ��� ��� ��� ��� ��������� ���� ����� �������� �����
����������
��� ���� ���� ����

��������� � ���������� ���� �������� ��� �� ��� ���������� ��� ������� �� �� ����
�����
��� ���� ����

��������� � ����� � ��������� ����� �������� ��� �� ������� ������ ������� ���
����������� �� � ��� ��������� �� ������

��� ���� ���� ����
���
��� � ��������

��������� � ���� �� ����� ��� ����������� ��� ��������� ��� �����������
������ �������� �� ���� ����� ��� �������� ������� ������ ������� ������ ���� ��
������� ������� ��� ������������ ��� ��� �� ���� ������
��� ���� ����
���
��� � ��������

137Revision Control System Using Delta Script of Syntax Tree �

Repository

Working Copy
(Source Code)

Working Copy
(Source Code)

Modified
Working Copy
(Source Code)

Modified
Working Copy
(Source Code)

Edit

Convert Tree
to Source Code

Store

Developer

Get

Convert Source Code
to Tree

���� �� ���� ��� �� ������� ������� ������� ����

�������� ���������� �������� ��� �� ���� �� ���� ������ ����� ���� ������ ����
�������� ��� ��������� �� �� �� � �������� ������ ���� ���� �� �������� �� �����
������ ��� ��������� ����� ��� ����� ��� ������� ������� �� ����� �� ��������
�� ��������� ���� ������ �����
�� ��� ������ ���������� ������������ ����� ���� ��� ������ ������ ������

����������

� ������� ������ ���� �� ����������

�� ����� �� ������� �������� ��������� �� ������� ���� �� ������� � ��������
������� ������ ����� ������ �� ��� ���������� ��� ��� ������ ����� ��� ��� ���
���������� ���� �������������� �� ��� ������ ����� ��� ���� �� � ������ ���� ����
����� ����� ������� ��� ��������� ������������ ��� ���� �� �� ������� ���� ����
�� ����������� �� ��� ������ �� ����� ������ ��� ����� �� ��� ���� ���� ������
���� ������� ����� ��� ��� ��������� �� ������� ���� ���� ��������� �� ��� ����
�� ����������� ���� ����������� ��������� �� ��� ������ ���� ��� ������ ��
������� ����������� ���������

��� ������� ������ ���� �� ������ ����

���� ��������� ���� � ��� ������ ����� ��� ������ ������������� ����� � ���
���� �� ������� ��� ������ ����� ��� ��� ��� ������ ��� �� ��� ����� �� ���
����� ���� � ��� �� ������� ���� ��� ������ ����� ��� �������� ���� ���� ���
���������� ��� �������� �� �� ������ ���� ������� ��� ��� ������ ���� �� ��������
���� ��� ���� �� ����� � ��������������������� ����� ��� �������� ��� ���� ������
�� ��� ����� ���������� ��� ���� ������ ��� ������ ���� ��� ������ ��� �������
�� ��� ����������� ���� ��� ������ ������ ��� ������ ����� �� ������ ��� ������
���� ������ ����� � ���� ������� ���� ��� �� �������� ��� ��� ����� �� �������
����� ������� ��� ������� ������ ���� ��� ��� �������� ������ ���� ����� ���
���� �� ��� ������� ������ ���� ���� ���� ������� �� ��� ���� ��� �������� ���
���� �� �� ��� ����� ���� �� ��� ����� ��� ���� ���� ������� ������ �� ����
���� ��� �������� ��� ������ �� �� ��� �������

138 Yasuhiro Hayase et al.�

Delta Calculation between Trees

Editing
Script

Source
Code

Source
Code

Conversion
from Source Code

to Tree

Applying
Editing Script

Source Codes
as Candidates
of the Merging

Source Codes
as Candidates
of the Merging

Conversion
from Tree

to Source Code

Origin of Delta Calculation Destination of Delta Calculation

The Tree which is
Origin of Source Code

Target of
Application

���� �� ���� ��� �� �������

��� ������ ��� �� �����

�� �������� ��� ���� ���� �� �������� ������ ��� ������ ��� ��� �� ������ ���
��������� �� ��� ��� �� ��� ����� �� �� �������� ��� ���� ���� �� ��� ������ ��
��� ������ ���� �� ������ �� ��� ���������� �� ��� ������� ��� ��� ����� �� ���
�������� ���� ���� ��� �������� ������ ��� ������ �������� ��� ��� ����� �� ���
����� �� ��������� � ��� �� ���� ��������� �� ������ �������� �����������
�� ��� ���������� ��� ������ �� ��� ����������� �� � ��������� ��� � ������� �����
�� �� ��� �� ����� ��� ��� ������� �� ����� �� � ��� � ������������� ��� ���
� ���������� ����� ����� ��� ������ ��������� �� ��� ����� �� ��� ���� �� ���
����� �� ���������� �� ������ �� ��������� ����� �� �� ��� ��� ���� ��� �� �����
����� ���������� �� � ������������� ����� ��� �� �� ��� �� � ��� ��� ������
��� ������������� ��� ���� ������������ �� ���� ��� �������� ������������ �����
��� ������ ����� ����� ���� ��� ����� ����� ��� � �������� �� � �������� �� ���
����� ����� ������� �����

� ������� ��������� ����������� ������ �� ������ ����

�� ���� �������� �� ������� ��� ������� ��������� ���� �������� ��� ������ �� ���
������ ����� ���� ��������� ������� ��� ���� ��������� �� ������� ��
������ � ����� ���� ��� �� ������� ���������� ��� ������ �� ��� ���������

��� ��� ��� ������� ������ ���� ����� ��� ��� �������� ������ ���� ����� ��� ������
����������� ������ ���� �����
�� ����� ��� ��������� ������� ��� ��� ��� ���� ��� ��������� ��� ������

���� �� ��������� �� � �������� �� ���� ������� ���������� ������ ������� �������
�������� ����� ��� ������ �� �������� ��� ������� ������ �� ��� ���� �����

��� ����� ����������� ������� �����

��� ����� ������� ����� �� ��������� �� �� ������� ������� �� ������� ������ ��
� �������� �� ���� ������� ���������� �� ���� ������

139Revision Control System Using Delta Script of Syntax Tree �

�� ������� ��� � ���� �� ��� ����� ��� ���������� ��� ��� �� �� ��� �����
��� ���� �� ��� ����� �� �� ��� ������ ����� ��� � ������ ����� ���������
�������� �� ��� ���������

�� ������� ������ � ���� ���� ��� ����� ��� ��������� �� ��� �� �� ��� �����
�� ������� ������ ��� ���� �� ��� ����� ��� ���������� ��� ��� �� �� ��� �����
��� ��� ��� ���� �� ��� �����

�� ����� ���� � ������� ������ ��� ����� ��� ���������� ��� ��� �� �� ���� ����
�� ��� �������� �� �� ��� ������ ���� �� ������������ ��� � ������ �����
��������� �������� �� ��� ���������

��� ������ ����� � ���� �� �������� ������������ ��� ���������� ��������� �� ���
������� �������
���������� ��� ��� ��������� ����� � ��� �� ����� ��� �� ������� ������ ��

������� ���� ��� ������� � ���� �� �� ����� ��� ���� �� ��� ������� ������ ��
��� ������ ���� �� ���� ������ ��������� �� ��� ������� ��� �� ����� ��� ������
���� ������ ����� ��� ���� �� ��������� �� ������ �� ����� ����������� ����������
�� ��� ���� ��������� ��� �������� �� �������� �� �������� �� ��������

�������� �������� ���� �� � ����� ����������� ��������� ��� ������� ����
����� �� ���� ����������� ���� �������� ��� ����� �� �� �� ������� ���������
�� ������ ����� ����� �� � ������� �� ���������� ��������� ��� �������� �� ��
������� ���� �������� ������ ������� ���� ��� ����� �� � ������� ���� ��� �������
� ������ ����� ��� ������ �� ����� ���� ����� ���� �������� �����������
����� ����� ��� ������� ������ �� ����� �� ���� ��� ����� ������� ���
������� ��� �������� ���� ��� ���������� ���� �� �������� ���������� ��������
��������� ����� ����� ������� ������
����� � �������� ��������� �� ���� ��� �������� �� ����� ������������ �������

����� ������ �������� �� ��� ��� ����� ��� ��� ����������� ���� �� ���������� ����
��� ���� ���������� ����� ��� ��������� ����� ��� ��������� �� ��� ���������
����� �� ���� ����� ��� ���������� ��� ������� ������ ����������� ����� ��
������ ��� ��������� ����� ����� �� ��� ����� ���� ������� ��� ���� ���� ��
��� �������� ����� �� ��� ��������� ����� ����� �� ���� ���� ��� ������� �����
��� ����� �� ����� �� ��� ��� ��� ����� �� ��� �������� ���� ��������� ��

��� ����� ��������� ����� ��� ���������� �� ����� ����� �������

��� �������� ������� ������

���� ������� ��������� ��� ��������� ����� �������� ��� ������� ������ ���� ����
� �� ���� � �� ��� ������� ���� �� ��� ������ �� ��� ��������� ��� ��� �������
������ �� ��� ���� � �� ������ �� �������� ��� ��� ���� � �� ��� ������ �� ��
��� ������� ���������� �� ��� ������ ��� ��� ������ �� �� �������� ������

�������� ���� �������� � �� �� ��� � ����� ��� ����� ��� �� �� �������� ����
�� �� �� ���� ����� ������� ����� ���������� ��� ������ ���� �� ��� ����������
������� ��

140 Yasuhiro Hayase et al.�

Tree A

Tree C

Editing
Operation 1

Editing
Operation 2

Editing
Operation 3

Apply Apply Apply

Apply Can t Apply
Because Similar Node

isn t Found

Apply to
Similar Node

Don t Apply

Editing
Script

S

���� �� �������� ������� ������ �� ������ ���� ����

��������� ������� ����� ��� ��������� ������� ����� ��� �������� �� ���
����� ��� ���� ������ �� ����� �� ��� ���������� �� ������� ����� ������ ������
�������� ��� ��� ���� �� ��� ��� ����� �� ����� �� ���� ����� �� ��� ������ �����
��� ��� ������ �� �� ����� �������� ������� ��� ��������� �����������

� ��� ����� ����� ���� ��� ��� �� ���� �� ���� ����� �� ���� ��
� ��� ��� ����� �� ���� � ���� ���� ������ �����

���� ��� ����� ���� ��� �������� �������� ������� ��� ����� ��� ������ �� ����
��� ������� ��� ��������� ����� ��� �������� ������� ����� �� ���� � ������
�������� �� ���� �� ��� ����� ��� ��������� ����� ���� ���� ������� ���� �����
��� ��� ���� ������ ���� �� �� ��� ��������� ���� ���� ��� ����� �� ���� ��
�� ������ ���� ������ �� ���� ���� ����� ����� ���� ��� ��������� ����� ���

�������� ����� ������� ����� �� ��� ���� �� � �����
��� ������ ������ ���� ������ ����� ���� ����� ����� ��� ��������� �����

��� �������� ���� �������� �� ��� ���� ������ ���� �� �� ��� ������ ���� ��
��� ������ ����� ��� ��������� ����� ���� ���� ������� ���� ����� ��� ��� ����
������ ���� �� �� ��� ��������� ���� ���� ��� ����� �� ���� �� ���� ������ ��
���� ���� ���� ��� �� �� ������ �� ������ ���� ��� ��� ���� �� ��� ���� �������
��� ��������� ����� ������� �� ����� ������� ���� � ������ �� � ���������

���� ��� ���� �� �� ������ ����� ���� ��� ��������� ���� ��� � ������ ����� ���
��������� ���� ���� � ����� �� ���� �� ����� ������ �� ������ �� ��� ��������� ����
��� ���� �� �� ������������� ���� �� ������ �����
��� �������� �� ��������� �� ������� ��������� ��������� �� ��� �� �� ���

������ ���� ��� ��� ���� ����� �� ��� ��������� ������������ ����� ���� ����
�� ������� ��������� �� ������� �� ���� �� �� �� ��������� �� ������ ��� �������
��������� ��� ��������� ��������� ��� �������� ��� ������ ����� �� ����� ������
��� ������ ���� �� ��� ������ �������� �� ���� �� ��� ��������� ������

�������� ������� ������ �� �������� ���� �� �� ��������� �� ����� ��� ����
���� �� ��� ������ � �� ��� ���� � �� ����� �� ������ ������� ����� ��� ����������
���� ��� ������ � �� ������� �� ���� � ��� ���� � ���������������

141Revision Control System Using Delta Script of Syntax Tree �

Target
Node

L R L R

Range of
Search

��� ���� ������� �����

Target
Node

R … R… …

Range of
Search

��� ���� ������� ����� �����
������ ���� ������ �� �����

Target
Node

… …

P

… …

P

Range of Search

��� ���� ������ ����

���� �� ������� ������� �����

�������� ������� ������ ���� �������� ��� ���� ����������� �� �������� ����
������ ����� �� ��������� ��� ������ ���� � ���� �� ����� ��� ���� �������� ������
������ �� ������
���� �������� � ������ ��������� ����� ������ ���� ��� ����� ������ ���

����� ��� ������ ��� ���� ��� ������� �������� ��� ��� ���� �� ��� �������� �����
��� ��������� ������� ����� �� ������ ������ �������� ��� ������� ��� ����� ��

���� �� �� ���� ��� ��������� ������� ���� ���������� ��� ����� ���������� ����
��� ��������� ��� ������� �� ����� �� ��� ������ ��� ����� �� � ����� �� ��� ����
�� ��� �������� �� ����� ��� ��������� �� �������� �������� �� ��� ���� �� ����
���������� ��� ����� �� ������� �� ������ �� ��� ���� ��� ��� ���������

� ��� ��������������

���� ������� ��������� ��� �������������� �� ��� ������� �� ����������� ���
������ �� ��������� ��� ���������� �������� ������� ������� ��� �����������
���� �� ��� �������� ��� ������ ��������� �� ��������� �� ������� ���� ��� ���
�������������� �� ��� ������� ��������� �� ������� ����

��� �������� ��� ������

������ ���� ����� ��� �������� �������� ��� ������ ���������� �� �����������
�� ����������� ���������� �� � ������������� ������� ����� ������ ������� ���
���������� ��� ��� ������ ������� ��� ������� ����� ��� ������ ���� ��������
�������� ��� ��� ��������� ��� �������� ������� �������� ���� �������� � �����
��� ���� �� �������� �� ���������� �� ��� �����������

142 Yasuhiro Hayase et al.
��

subversion
Server

Repository

subversion
Client

Developer

Source Code
(Working Copy)

Convert EOL

Expand Keywords

Convert EOL

Restore Keywords

Get Get

StoreStore

Source
Code

��� �������� ��� ������ �� ��������
����������

subversion
Server

Repository

Developer

Source Code
(Working Copy)

Convert EOL

Expand Keywords

Convert EOL

Restore Keywords

Get Get

StoreStore

Convert to
Source Code

Convert to XML

subversion
Client

XML

��� �������� ��� ������ ���������
��� ���� ��������� �� ������ ����

���� �� �������� ��� ������ �� �������� ������ ��� ��� ������

�� ����� ��� ��������� ��������� �� ���������� �������

�� ���������� ���� ���� �� ������ ����
�� ���������� ���� ������ ���� �� ����

��� ���� �� ��������� �� ������� ������������ �������� ����� �� ���� ��� ����
������� ������ ��� ��� ���� �������� ������ ���� ����� ��� ������� �� ��� ���
������ ���������� ������� �� ��� ��� ����� ������� ��� �� ��������� ��� ��
������� ���� ���� ����������������������� �������� ���������� ������� ����
�� �������� �����������
�� ��� ��� ��� ���� ���� ����������������������� ��� ��� ��� �� ������ ��

��� ����������� ���� ��� �������� ������ ������ ��� ��� ���� ��� ������ ��������
��� ��� ��� �� ������ ���� ��� ���� ��� ������ ���� �� ������� ����� ����
��� �������� ������ ������� ��� ���� ��� ������ �������� ��� ������ ���� �� ��
��� ����
��� ��������� �������� �������� ��� �������������� �� ���������� �������

������ ���� ��� ��� ����

���������� ���� ������ ���� �� ��� ��� ��� ������ ��� ���� ������
����� ������� ����� ����� ������� ��� ��� �������� �� ��������� ��� ������ �����
��� ������ ������� �� ��� ��� ����� �������� ��� ���������� �� ��� ����� ��
��� ������ ������ ��� ����� ����� ������� ��� ��� �������� ��� ���� �������� ��
��� ��� ����
��� ��� ������ ����� ����� ���� �� ��������� ������� ����� � �������� �� �

������ �� ��������� ��������� ��� �������� �� ��� ������� ��� ��������� �������
��� ���� �� ������� ��� ������ ��� ������ ��������� � ��������� ��� ��� ��� �� ��
��������� �� �� ��� ����������� ������� �� ��� ����� ��� ��� ��� ���� ���������
�� �� ��������� ��� �� ��� ������ ������� �� ��� �����
����� ��� ������ ��� ������ �� �� ��� �������� �� ��� ��� ���� ���� ���

��� �� ����� �� ����������� ��� ������ ��� ��� �� �� ��� �������� �� ��� ��� ����

143Revision Control System Using Delta Script of Syntax Tree ��

subversion
Server

Repository

subversion
Client

Developer

Source Code
as Working Copy

Source
Code

Convert EOL

Expand Keyword

Convert EOL

Restore Keyword
Source Code as
Origin of Delta

Source Code as
Destination of

Delta

Calculate
Line-by-Line

Delta

Source Code
Converted from
working copy

Apply
Line-by-Line

Delta

Source Code
as Merging Result

Line-by-Line
Delta

���� �� ������� �� �������� ����������

subversion
Server

Repository

subversion
Client

Developer

Source Code
as Working Copy

XML

Convert EOL

Expand Keywords

Convert EOL

Restore Keywords

Convert to Source Code

Convert to XML
XML as

Origin of Delta

XML as
Destination of

Delta

Calculate
XML Delta

XML
Converted from
Working Copy

Editing
Script

Apply
Editing Script

XMLXMLXML

Sorted list
of XML

XMLXMLXML

Sorted list
of XML

XMLXMLXML

Sorted list of
Source Codes

as Merging
Result

XMLXMLXML

Sorted list of
Source Codes

as Merging
Result

���� ��� ������� ����������� ���� ��������� �� ������ ����

���� ��� �� ��� ��� ���� ��� ��� ��� ������ ������� �� ������ �� ��� �����������
��� �������� �� ��� ��� ��� ���� ������� ������ ����

����� ��� ������ ���������� ��� �������� �� ����� ������� ��� ��� ���
�� �� ��������� ��� ��� ��� ��� ������ �������� ���� ����������� ���� ����
��������� ��� �������� �� �������� ��������� �� ������� ���� �� ��� ������� ��
��� ��� ��� ��� ����������� �� �� ������� �� ��� ��� ���� ��� ������ ����
���� �� �� ��� ������� �� ��� ��� ��� �� ��� ������� �� ��� ��� ��� ���� ��
��� ������� �� ��� ��� ��� ��� ���� ��� ���������� �� ��� ����� ��� ������
���� ��� �� �� ��� ��������

��� ����������� ������ ��������� ������ �� ���� �� ��� ��� ���� ��� ����
��� ���� �� �� ��� ������� ������ ��������� ��� ��� ������ ���� ������� ���
��� ��������� �� �������� ����� ���� �� ��� ��������

���������� ���� ��� ��� �� ������ ���� ��� ��� ��� �� ���������
���� ��� ������ ���� ���� �� �������� ��� ��� ���� ��� ��� ���� ������� ���
��� �������� ����� ��� ����� �� ��� ������ ���� �� � ���� ������� �� ����� ��
����������

144 Yasuhiro Hayase et al.��

��� �������

������ � ����� ���� ��� ���� �������� ���������� ������ ������ ����� ���
�������� ���������� ������ ������ ���� �������������
��� ������ �� ������� ��������� ��� � ������� ���� ��� ��� ��� ���� ��

����������� ������ ����������� ��������� ��� �������� �� ������� ���� ��� ���
������� ���� ��������� ��� ������������ ����� �� ��� ���� ������ �� ��� �����������
����� ��� ������ ������� ��� ��������� �� ��� �������� ������� ����� �������� ���
������ ������� ��� ������� ��� �������� ����������� ���������� �� ��� ��������
���� ������� ��� ������� ���� �� ����������� ����� ���
�� ����� �� ��� ���������� ������ ��� ��������� ����������

�� ���������� ���� ���� �� ������ ����
�� ���������� ���� ������ ���� �� ����
�� ����� ����������� ������� ������
�� ����� ����������� �� �����

�������� ��� ��� ��� ��� ��������� �� ������� ���� ���� ��� ������ �� ��������� ���
��� ������ ����� �������� ������ �� ����� ��� ������� �� ��� ������� �������� ��
��� �������� ����������� �� ��� ��� ��� �� ���� ���� �����������������������
��� ������ ��������� ���� �� ��� �������� ���������� �������
�� ��� ��� ��� ���� ���� ����������������������� ��� ������ ���� ��������

�� ������� ����� �� ���� ����� �� ��������� �� ������� ���� �� ��� ��� �� ������
�� ��� ���������� ��� ������� ���� �� � ������ �����
������ ��� ������� ���� ������ �� ��������� �� ��������� ���� ��� ��� ��

���� �� ������� ��� ���� ��������� ��� ���� ����� �� ��� ��� ���� ������ �� ���
����������� ��� ����� �� ��������� �� �� ������� ������� ��� ����� ������� ���
�������� �� �������� ��� ����� �� ��� ��� ��� ���� ���� ������� �����
��� ������� ������ ��� ��� ������ ��� �� ��� ������ ��� ��� �� ��������� ���

������� �� ��� �������� ��� ���� ��� ��������� �� ������ ��� ��� �� ���������
��� ������ �������� ��� ��� ��� �� ������ ���� ��� ���������� ��� �������
���� ����� ��� �� �������� ��� ���� ��� ��������� ��� ��� ���� ��� ������ ��
��� ����� ��������� �� ������� ���� ��� ��������� ���� ������ ��� ��� ���� ���
������ ������� �������� ��� ��� �� ������ ���� ��� ���������� ��� ������� ����
����� ���

�������� �� ����� ���� ��� ������ ������� ��� ����� �� ��� ����� ��� ���
������� �� ��������� ������� ����� �� ���������� ��� ���� ����� �� ������� ��
���� ����� �� ��� ����������� ������ �� ��� ����� �� ��� ���� ����� ��� ������
�������� ������� ������� ����� ��� ��� ��������� ���� ��� ����� �� ������� �� ���
���� ����� �� ��� ����������� ������ �� ��� ������
������� �������� ��� �������� ���� ��� ������� ������ ������ �� �� ���������

���� ��� ����� �� ���� ��� ��������� �� ��� ���� ������� �� �������� ��� ������
��������� ��� ��� ���� ��������� ���� � �������� �� ��� ����������� ��� �������
��������� ���� �� �������� ���� ����� ���������� ��� �������� ��� ������� �����
��� ��������� ��� �������� �� ����� ��� ������ ��������� �� ������� ����

145Revision Control System Using Delta Script of Syntax Tree ��

���� �������� ������� ����� �� ��������� ��� ����� �� ���� ��� ����� ��
�������� ��� ��� ������� ������� ��� ���� �� ����������� ��� ���� ��������� ��
��� ������� ������ �� ������� �� ��� ���������� ����� �� ���� �� ����������� �������
��� ������ ������� ������� ��� ����� �� ����� ��� ���������� ���� �������

������ ��� ��������� �������������

� ��� ����������� �� ���� ���� ��������� ���� ���� ������ �� ��� �����������
������� ������ ��� ������ ����� �� ����������

� ��� ����� �� ��� ��������� ��� ����� ������� ��� ���� ������ ��� ���� ����
��������� �� ��� ����� ��� ��������� ��� ��������� ��� ���� �������� ���
������ ������� ��� ���� �� ��� ���� ������ �� ��� ���� �� ��� ���� ��������
�����

� ����������

�� ���� �������� �� ���� ��� ��� ��������������� ������� �� ��� �������

��� ����������� �� ������ ������ �����

�� ������� ������� ��� ������ ��� ��������� ����� ��� ������ ����� ���� ���
��� �����
�� ����� �� ���� � ������ ����� �� �� ������ ��� ��������� ��� �� ���� ���

����� ������ ����� ���� ���� ���� �� ��������� ��� �������� �� �������� ����
���� ������ ���� �� ������ ��� ������� �� �� �� ���� ����������� �� ���������
������

������� � ��� �������� � �������� �� �������� ��� ��������
������� � ��� ������ ����� �������� � ��� ������
������� � ��� �������� � �������� �� �������� ��� ��������

��� ���� ������ ���� �������� �� ������� �� �� � ���� ����������� ���� ����� ��
������ ��� ����� �� �� �� �� ������� ����� ������ �� ��� ������� �� �� � ��� �����
��� ������� ��������� �� ��� ���� ���������� ����� ������������ ������� ���
�������� ��� �������� ����� � ��� ����� � ���� ��� ���������� �������
��� ������������ ������� ������ ������ ��� ������������� �� ������ �� �������

������ ���� �� �������� ����� �������� ������ �����
�� ��� ����� ����� ��� ������ ��������� ������ ��������� ���� �� ������

����� ������ ���� �� �������� ������� �������� �� ��� ���� ���� ����������� �������
��� ����������� ��� ��� ����� ������� �� ������ �� ��� ������ ��� � ������� ���������
��� �� ��� ��������� � ���� ������ �� ������
�� ���������� ���� �� ������ ������� ��� ��������� �� ��� ������ ��� ���

������� ����� ��� ��� ��������� ���� ���� ���������� �������

146 Yasuhiro Hayase et al.��

����� � ����� � ����� �

������� �
�������

�������
������

������� �
������� �������
������ ������

������� � �������
�������
������

��� ������ �� ������������ �������

����� � ����� � ����� �

������� � ������� �������

������� �
���� ����

�������
���������

������� � ������� �������

��� ������ �� ���� �������

����� �� ������ �� �������

��� ������ ����������� �� ����������� �� ������ ���������

������ �� ��� ���������� �� ��������� ��� �������� ������� �� ���� ����
��� ������� �������� ���� ��� ��������� �� ������ ���������� ��������� ���
�� ����� �� ��������� ��� ���� ������ �� ��� ������ �� ����� ���������� �� �� ��
������� �����������
������ ������ ���������� � ��� � ��������� ��� ���� ��� � �� ����� ���

������� ��������� � ��������� �� �������� � ��� ��������� � ��������� ��
�������� ���� ���� ��� ����� �� ��� ������ �� �������� ��� �� �������� ������
��� ����� �� ��� ������ �� �������� �� �� �� ���������� ���� ��������� � �������
��� �������� �� ��� ������ ��� ���� �� �� ��� ��� �� �� ���������� ���� ���������
� ������� ��� �������� ���� ������ ��� ����� ��� ����������� �� ��������� � ��
������� ����� ��� ��������� ���
��� ��� ������ ��������� � ������ �� ������ �� ��� ������ �� ��� �����������

�������� ���� ��� ��� �� ���������� �� �� ��������� ������ �� ���� ��� ��������
���������� ����� �� ��� ��� ���������� ���� ����� �� ��������� ���� ��� �����
��� ������� ���������
�� ���� �� ����� ���������� �������� ������ ��� ������� ��� ���������

���� ��� ���������� �� ��� ������� ������� ������ ���� ��� ������ ����������
��� ������� �������� ������ ���� ��� ������ ����������� ��� ��� ���� �� ���� ��
�����������

147Revision Control System Using Delta Script of Syntax Tree
��

������������ ����
������� ����� ������� �����

������� �� ������� ��

������ ��
������� �
������ �

����� �� ��� ������ �� ������� ������ ���������

����� �� ������� �� ����
������������ ������� ����� ������� �����

�������� �� �������� �� ����� ����� � ������� �
�� ��� ���� ����

�������� ������ ��� ������ � ������� �

��� ���� ������ � ������� �

���������� �������� ������ � ������� �

����������� ����� ������ ������� �
� ������� �

�������� ������� � ������� �

������ ������ ���� � ������� �

����� �� ������� ���� ������������ ������� �����

������ �� ��� ���������� ����� � ����� ��� ������ �� ��� ����������� ���
���� ������� ��� ��������� ���� ���������� �� ������������ �������� �� ���������
���� ������� ��� ��������� �� ���� �� ����� ������������ ������� �������
����� ������� ���� ������������ ������� ����� ��� ����� �� ����� ��
��� ������ ��� ��� ����� �� ���� ����� �� ����� ����� �������� ������ ��

���� �� ��� ����� �� ����� ��� ����� ���������� ������������� � ���� ������ ��
���������� ��� ��������� ���� ��� ������� ��������� ��� �������� ��� �� ������
�� ������� ������ ����� ��� ��� ������� �������������

� ������� �����

��� ���� ���� �������� ��� ��������� ����������� ��������� ���������� �������
��� �������� ���������
�� ���� ��� ��������� ������������ �� �������� ������� �� ������� ���������

��� ��������� �� ��������� ��������� �� ���������� ���������� ��� ���������������
��������
�������� ����������� ���� �������� ��� ��������� ����� ������� ����������

��� ��������� �� ������� �� ������������������ ���� ��� ��������������������
����� ��� ������� ������� ����� ��� ����������� �� ���������� ��� ������ �� ����
������ ���� ��� ��������� �� ����������� �� ��� ������� ������ ��� ������ ������
���� �� ��� ��������� ������� �� ���� ��� ������ ����� ������� ��� ������ ���
������ ��� �� ���� ���������� �� ������� �������

148 Yasuhiro Hayase et al.��

����� ������� �� ��� ��� �������� ��� �������� ������� ��������� ���������
��� ������ �������� ������ ��������� �����
���� ���������� ��� �� ������������ ������� ��� ������ �� ��� ���������

�� ������� ������� �� ����������� ��� ���������� ������� ��� ���������� �� ���
���� ������� ������� ��� ����������� ��� ���������� �� ��� ��������
������� ��������� ��� �������� ������ ������ ���� ��� ���������� �� �

������ ���� ���������� ��� ��������� �� � ������� ��� ��������� ������� ����
�������� ���� �� �� ��� �������� �� ��� ��� ����� ��� ��������� ��� �����������
�� ������ ���� �������� ������������� ���� ��� ����� ��������
���� ��� ������ ��� �� ��� ���������� �� � ������ ���� ������ ��� ���

�������� �� ��� �������� ��� ������� ��� �������� ����� ������� ��� ��� �������
��������� ��� ��� ������� �� ��� ��������� �� ��� ������� ��� ��������� ���
��� ��������� ������ ��� ������� ������ ������
������� ����� ��� ��� ������� ��� ������ �� ������ ��� ���� ���� ���� ��

��� ������� �� �������� ������ �� ��� ������ �� ��� ���� ��� ���� ��� �������
��� �������� �� �������

� ����������

���� ����� ����� ��� ������� �� ��� ������� �������� �� �������� �������� �������
�������� ��� �������� ��� ������� �������� ��������� �� ��� ������ �� ��� ������
���� �� ��� �������� �� ��� �������� ��� ��������� ��� ������ �� ��� ������� ����
������ ��������� ��� ������� �� �������� ��� �������� ��� ������� ������ ��
��������
��� ���� �� ��� ������ ��� �������� ��� ��������� ����� ���� ����� ���������

��������� �� ��� ��������� ������� ���� ���������� ��� �������� ���� �������
�������� ���� �� ��� ����������� �� �� ���� ��������� �� ����� ��� �������� �����
����� ���� ��� ������ �����
��������� �� ���������� ���� �� ���� �������� �� ����������� �� ���� ��������

�� ��������� ����
���

����������

�� ����������� ������������������������������
�� �� �������� �� �������� ��� �� ����� ������� ����������� ��� ��������� ����
��������� ������ ��� ������ ������ ���� ���������� ���������� �����

�� �� �� ��������� �� ���������� �� �������������� ��� �� ������ ������ ���������
�� �������������� ���������� ������������ �� ����������� �� ��� ��� ������
������������� ���������� �� ���������� �� ����� ����� �������� �����

�� ����� ������ �� �� �������� ��� �� �������� ������� ���������� �� ��� �����
������ ������� ����� �� �������� �������� ������������� �����

�� ����� ������ �� �� �������� ��� �� �������� ��� �������� ����������� ������
������� ������������ �����

�� �� �������� �� ������ ��� �� ����� ����������� �������������� �������� �� ���������
��� ������ �������� ����� ������ �������������� �����

149Revision Control System Using Delta Script of Syntax Tree ��

�� �� ���������� �� ��������� �� �������� ��� �� ��������� ��� ������� ��������
�� ��� �������������� �� ��������� ��������� �� ��������� ��� ��������� �� �����
������ �� ����������� ��������� ������� ������ �����

�� �� ����� � ���������������� ������ �� �������� �������� ���� ������ ������ �����
�������������� �����

�� �� �������� �� ��������� ��� ����� ���������� ����������������������� ������
��������� ��� ������� ������������� �� ����� ������ �������� ��������� �������
��� ��� ��� ���������� ��� ��� ��������� �������� ������� ���������� �����

��� �� ������������ ������������������ ������� �� ��������� �� �������� ���������� ��
����������� �� ��� ��� ������������� �������� �� �������� ������������ �������
����� ����� ������ ��� ����� ��� ���� ����� ��� ������

��� �� ����� ����������� ��������� ���������� ������� ��� ��������� ������ ������
������� �������������� �����

