Detecting Inconsistencies via Universal Reachability Analysis

Aaron Tomb
Galois, Inc., USA

ABSTRACT

Recent research has suggested that a large class of software bugs
fall into the category of inconsistencies, or cases where two pieces
of program code make incompatible assumptions. Existing ap-
proaches to inconsistency detection have used intentionally un-
sound techniques aimed at bug-finding rather than verification. We
describe an inconsistency detection analysis that extends previous
work and is based on the foundation of the weakest precondition
calculus. On a closed program, this analysis can serve as a full ver-
ification technique, while in cases where some code is unknown, a
theorem prover is incomplete, or specifications are incomplete, it
can serve as bug finding technique with a low false-positive rate.

Categories and Subject Descriptors D.2.4 [Software
Engineering]: Software/Program Verification—Assertion check-
ers, programming by contract

General Terms Verification, Reliability, Languages
Keywords Defect detection, weakest preconditions

1. INTRODUCTION

Software is almost guaranteed to contain bugs. Programmers in-
evitably have trouble holding in mind every detail of a program’s
components and their many potential interactions. The time pres-
sures of software development often exacerbate this problem, lead-
ing to an initial, rapid push to get something written, followed by
a clean-up phase in which the developers attempt to improve the
original codebase. Tools to verify code and help find bugs can be
valuable in this second phase, but many existing tools, especially
those that require information about the program’s intended behav-
ior, prove to be of limited use.

The problem occurs because specifications added during typi-
cal software development often take the form of independent asser-
tions scattered throughout a program, rather than a single, coherent
and interrelated contract. When testing is the primary form of qual-
ity assurance, these assertions can work well as runtime checks.
However, testing has low coverage when typical programs have an
effectively infinite state space.

Static program analysis tools can address the problem of cover-
age through mathematical reasoning about all possible program ex-
ecutions. However, when automated verification techniques are ap-
plied naively to programs that were not designed with verification
in mind, they typically yield large numbers of spurious warnings

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISSTA’12, July 15-20, 2012, Minneapolis, MN, USA

Copyright 2012 ACM 978-1-4503-1454-1/12/05 ...$10.00

287

Cormac Flanagan
University of California, Santa Cruz, USA

because they lack sufficient information, computational power, or
algorithmic sophistication to prove the necessary verification con-
ditions. These warnings tend to be unhelpful because they indicate
only failure to prove the absence of defects, rather than successful
proof of the presence of defects.

1.1 Inconsistencies

We show how partial specification information in the form of as-
sertions can be useful for static defect detection without incur-
ring large numbers of false positives and while remaining scalable.
While the approach described will not detect all errors that other
tools can uncover, it will detect an important class of errors we will
refer to as inconsistencies, with a low false-positive rate. In addi-
tion, once specification information becomes sufficiently compre-
hensive, the same implementation can be used for full verification.

Broadly, an inconsistency is any case in which an operation
at one point in a program depends on one assumption to ensure
correct operation, a second operation at a different point depends
on another assumption, and these two assumptions are in some
way incompatible. This idea has probably existed in the minds of
programmers for decades, but was popularized by Dawson Engler
in 2001 [5]. The idea was later successfully applied by Dillig et al.
to find potential null pointer dereferences [4].

Our analysis, which we call universal reachability analysis, is
a novel approach to inconsistency detection based on applying the
weakest precondition operator to several modified versions of an
input program. For a given program fragment, containing n two-
way conditionals, we generate 2n wedges. Each wedge is a variant
of the initial fragment in which a single conditional is constrained
to take only one of its two possible paths. One key characteristic
of this approach is that every program point is unconditionally
executed in at least one wedge, unless it is unreachable.

Once wedges have been generated, our analysis checks that each
wedge can, for at least one input, terminate without violating any
assertion, using the weakest precondition calculus. We say that a
statement contains fatal code if one of its wedges is non-terminable.

Our thesis is that the application of weakest precondition anal-
ysis to the problem of inconsistency detection has advantages not
present in other approaches. In particular, the ability to use the same
implementation for both bug-finding (with few false alarms) and
verification, depending on the completeness of the existing specifi-
cations, is novel.

1.2 Example

As an example, consider the C implementation of binary search
shown in Fig. 1, where the second recursive call has the third and
fourth arguments in the wrong order.'

U1t also, incidentally, has an integer overflow bug in the calculation of mid
which our analysis would not detect.

/%@ requires beg < end; */
int bsearch(int a[], int n, int beg, int end) {
int mid = (beg + end) / 2;
if(beg ==end) return —1;
if(a[mid] ==n) {
return mid;
} else if(a[mid] < n) {
return bsearch(a, n, mid, end);
} else{
return bsearch(a, n, mid, beg);
}

Figure 1: Example function containing an inconsistency.

This function has four wedges, one for each of the predicates
beg ==end, a[mid] ==n, a[mid] < n, and a[mid] > n.

Now let us extend the language with an assume statement. We
use assume statements to describe what conditions are imposed by
each wedge. The third wedge is then as follows, where we replicate
the precondition as an assume statement.

assume(beg < end);

int mid = (beg + end) / 2;
assume(beg # end);
assume(a[mid] # n);
assume(a[mid] > n);
assume(a[mid] > n);

return bsearch(a, n, mid, beg);

This wedge is guaranteed to crash because the recursive call is al-
ways invoked with its third argument greater than its fourth argu-
ment, which violates the precondition of the callee.

1.3 Benefits of Universal Reachability

Universal reachability analysis has several attributes that make it a
valuable addition to the arsenal of software defect-detection tools.

First, it has a low false-positive rate. In theory, universal reach-
ability analysis should generate no false positives, and warn only
about either possible crashes or dead code. In practice, engineer-
ing compromises lead to approximations in some cases. In addi-
tion, some true inconsistencies are not serious defects (e.g., explicit
checks for situations that can never occur).

In our experiments (Sec. 6), the rate of false positives that the
analysis reported due to imprecision was fairly low, but the rate of
unnecessary checks it reported was fairly high. We consider these
unnecessary checks to be bad programming style, and fixing code
to avoid them is feasible and likely advantageous.

A second benefit of universal reachability analysis is that it
can be used on partial programs — even programs that cannot be
executed. For example, it can analyze library code, separate from
any specific client.

A third benefit is the freedom to adjust computational resource
usage. At any point in the analysis, giving up is a sound (though in-
complete) option. It is possible to simply ignore a particular wedge
or a whole function, or to approximate proof obligations before at-
tempting to solve them. In the presence of approximations or time-
outs, verification may no longer be possible, but inconsistency de-
tection still is, though some inconsistencies may be missed.

The ability to approximate is connected to universal reachabil-
ity’s most significant shortcoming, however. The analysis is not
guaranteed to detect all possible assertion violations, only those
that are guaranteed to occur as a consequence of passing through

288

any single program point. While a test suite with full branch cov-
erage would detect the same set of assertion violations, universal
reachability has this defect detection power even if no tests exist.

A final point is that, from one perspective, universal reachability
detects dead code. It may seem that detecting unreachable code is
a minor benefit. However, dead code may point to subtle failures
in other areas, and therefore some programming guidelines, such
as parts of the DO178B standard used for software in airborne
systems [11], require that all code be reachable, and that both paths
of any conditional be meaningful and executable.

1.4 Contributions

This paper makes two key contributions to the state of the art in
automated software defect detection:

e A novel formalization of the notion of inconsistency, called
universal reachability analysis, built on the foundation of the
weakest precondition calculus.

e A collection of experimental results showing the ability of this
new analysis to detect bugs with a low false positive rate using
reasonable computational resources.

2. LANGUAGE

Fig. 2 shows the syntax of a language we call GC that we use
to describe universal reachability. GC' is a first-order imperative
language similar to those languages considered by Dijkstra, Floyd,
and Hoare [3, 9, 10].

The language includes variables, values, and stores. Variables
(written x, y, or z) are unique identifiers drawn from an infinite
supply. Values are left unspecified, and indicated by the metavari-
able v. A store 0 is a functional mapping used to describe the cur-
rent values of program variables in a particular concrete execution.
We use the standard functional update operation to model changes
to the store.

Predicates (written P, Q, N, X, or W) are functional mappings
from stores to Boolean truth values. A predicate in our context is
a characteristic function that describes the subset of all possible
stores that satisfy a particular condition.

A program is a collection of functions, each of which consists
of a name, a precondition P, a normal postcondition IV, an excep-
tional postcondition X, and a body s. The annotations P, N, and
X represent the claim that when invoked in a state satisfying P,
the body s will evaluate either to skip in a state satisfying N or
to raise in a state satisfying X. We use the global variable p in
the following to refer to the program under consideration, to avoid
including it as an extra parameter to every definition. We will then
say (fun f() P { s } N X) € p to refer to definitions within the
current program.

Intermediate specifications within function bodies are encoded
using static assumptions (written assume P) and dynamic asser-
tions (written assert P). An assumption trims the execution state
space to that in which P is true, providing a way to encode condi-
tional execution. An assertion is a runtime check, and the program
will go wrong if P is not true during execution. For either an as-
sertion or assumption statement, P will be true after the execution
of the statement, if execution proceeds. We also have a generaliza-
tion to assignment: the havoc(x) instruction assigns an arbitrary,
unknown value to x. The primary purpose of this instruction is to
help support our analysis of loops and procedure calls.

Alternative paths of execution are encoded using the non-
deterministic choice operator (written s1 [s2). This operator
chooses arbitrarily to execute either s; or s2. The “if” construct

Program : p =d"
Function : d =fun fOP{s}NX
Instruction : 1 n=x:=e€
| assert P
| assume P
| 0
| havoc(z)
Statement : s n=1
| sOs
| skip
| s;s
| raise
| s!s
| s
Variable : x,vy, z
Value : v = ...
Store : 0 Variable — Value
Expression : e Store — Value
Predicate : P,N, X, W Store — Boolean
Context : C = e
| C;sls; C
| Cls|s!C
Evaluation Context :
E =e|E;s|E!s

Figure 2: Syntax for GC

found in most languages can be encoded using a combination of
assumption and non-deterministic choice.

if P then s; else 52 = (assume P; s1) O (assume =P ; s2)

Iteration is encoded using the loop operator (written s*). This
operator executes the statement s an arbitrary number of times.
Loops that terminate when a particular condition (or its negation)
occur, as found in most programming languages, can be encoded
using assumptions.

while Pdos = (assume P; s)*; assume ~P

We include procedure definitions and procedure calls so that we can
reason about procedure specifications. For simplicity in the formal
semantics, all variables are global; there are no local variables or
arguments. Locals and arguments (and the rest of the C language)
are supported in the implementation described in Sec. 5, however.

Finally, GC supports exceptions and recovery from exceptions.
The raise statement throws an exception. The statement s1 ! so
executes s2 if s1 evaluates to raise. Note that exceptions are not
the same as assertion failures. We consider any failed assertion to
indicate a bug in the program, whereas a program that reduces to
raise is acceptable.

Programs can terminate (or fail to terminate) in several ways. If
application of the evaluation rules yields a state where the statement
is skip, the program has terminated normally. If the statement is
raise, the program has terminated exceptionally. the evaluation
rules will not allow execution to proceed in either of these cases.

A program is stuck if it is in any state where the statement is
neither raise nor skip, and none of the evaluation rules apply. A
stuck program can arise in any state where the current statement
is an assertion or assumption, and the associated predicate is not
true when applied to the current store. If the program is stuck when
the current statement is an assertion, we call it an assertion failure.
Finally, a program diverges if there is no finite sequence of eval-

289

uation rule applications that will yield an assertion failure, normal
termination, or exceptional termination. Divergence includes stuck
programs in which the current statement is an assumption.

In some cases, it can be useful to describe statements within
the context of a larger, enclosing statement. For this, we define
two forms of statement context in Fig. 2, normal contexts, C', and
evaluation contexts, £/, both of which contain a hole where a sub-
statement can fit. A normal context can be empty (e), can refer to
either substatement of a sequencing statement (C'; sor s ; C) or of
an exception handler (C'! s or s ! C). Evaluation contexts are the
subset of normal contexts in which the statement filling the hole
can be immediately evaluated.

Finally, the targets(s) function returns the set of variables as-
signed by s (where the targets of a call are the targets of the callee’s
body). It is used in conjunction with havoc(x) to obscure the val-
ues of the variables assigned by s.

3. UNIVERSAL REACHABILITY ANALYSIS

Intuitively, a program is universally reachable if every statement
(and sub-statement) within it can possibly be executed, starting
from at least one initial state. To reason about this property, we
first introduce a formal notion of evaluation.

Definition 1 (Evaluation). The notation 0,s — 0’,s' means that,
starting in a state 0, statement s can evaluate in one step to s,
vyielding a new store 0. The notation 0, s —* 0’ s’ is the reflexive,
transitive closure, indicating that 0, s can evaluate to 0’ s" in zero
or more steps. The full definition of this relation is available in the
first author’s dissertation [17].

Next, we consider the conditions in which it is possible for a
sub-statement s’ of s be evaluated during the evaluation of s. For
this to happen, it must be possible for s’ to find its way into an
evaluation context. If this is impossible then s’ is dead code.

Definition 2 (Dead Code). A sub-statement s’ of s is dead in s if
there do not exist stores 0, 0" and an evaluation context E such that
0,s —=* 0, E[s'].

The notion of fatal code generalizes dead code. A substatement
s’ of s is fatal if an execution of s cannot execute s’ and then
terminate properly, either in skip or raise.

Definition 3 (Fatal Code). A sub-statement s’ of s is fatal if there
do not exist stores 0, 0', 0", an evaluation context F, and a state-
ment s € {skip,raise} such that

97 s _>* 9/7 E[S/] _)* 9//7 S//
Finally, we extend this notion to consider the case where none
of the sub-statements of a given statement are fatal code.

Definition 4 (Universally Reachable). A statement s is universally
reachable if no sub-statement in s is fatal.

3.1 Wedge Calculation

We compute universal reachability by rewriting each function body
into several versions, or wedges. Informally, a wedge is a modified
form of a statement in which one branch of a chosen choice state-
ment is forced to be taken. This modification requires also that any
enclosing choice statements are forced to take the path that leads
to the chosen choice statement. For every choice statement there
are two wedges. Note that wedges are not the same as paths: the
number of wedges in a program grows linearly with the number of
choice statements in a program while the number of paths grows
exponentially in the number of choice statements.

We formalize the preceding intuitive notion of wedges with the
function wedges(C, s) shown in Fig. 3. This function computes all

wedges, S1 ..
context C, yielding the collection of wedges C[s1] . ..
wedges(e, s) computes all wedges of s.

. Sn, of s and inserts each of them into the enclosing
C'[sn]. Thus,

wedges : Context X Statement — oStatement
wedges(C, i) = {C[i]}
wedges(C, skip) = {C|[skip]|}
wedges(C, raise) = {C[raise]}
wedges(C, s1; s2) = wedges(Cle; s2], s1)
U wedges(C[(s1! L) ; o], s2)
wedges(C, s1 ! s2) = wedges(Cle ! s3], s1)
U wedges(C[(s1; L) !e],s2)
wedges(C,s1 O s2) = wedges(C, s1) U wedges(C s2)
wedges(C, s*) = wedges(C[(s* ! L) ; o ; s],s)

Figure 3: Wedge Computation

To calculate the wedges of an instruction, skip, or raise, in a
context C', we simply insert the statement into C'.

To calculate the wedges of a sequence, s1 ; s2, we calculate
the wedges of s; in extended context where it is followed by
s2. To calculate the wedges of sz, however, we use the context
C’[sl 'L o] to ensure that s; does not raise an exception; if
it does, the wedge will diverge, since L represents the divergent
computation assume false.

To calculate the wedges of an exception handler, s; ! s2, we use
a similar approach. In this case, we need to account for the fact that
s1 may evaluate to skip, in which case the exception handler will
be skipped.

To calculate the wedges of a choice statement, s; O s2, we
calculate the wedges of each of its branches in the same context
as the entire statement. This has the effect of discarding s2 in one
subset of wedges, and discarding s; in the other subset of wedges.

To calculate wedges in the presence of loops, we need to ensure
that the selection of a particular choice branch occurs on an arbi-
trary loop iteration. Otherwise, the selection of a particular choice
may introduce artificial inconsistencies. Often, loop bodies contain
conditional branches that may be possible only on certain loop it-
erations, such as the first iteration or alternating iterations.

To understand how we perform wedge calculation at an arbitrary
iteration, consider a loop s™ with body s. To ensure that a wedge of
s occurs in an arbitrary iteration of s*, we first calculate the wedges
of s. For each of these wedges, s’, we add an arbitrary number of
loop iterations occurring both before and after s’, and require that
the preceding iterations terminate normally:

(s"11);s;s"
After computing all wedges of a function body s, we next ensure

that each wedge is terminable, that is, it can be fully reduced to
skip or raise.

Definition 5 (Terminable). A statement s is terminable if there exist
stores 0, 0', and a statement s' € {skip,raise} such that

0,s =>*¢,s
Though similar in style to universal reachability, this property
is easier to check. In particular, it does not refer to sub-statements,
but only to the overall statement in question.
Our key theorem is then that we can use terminability of the

wedges of a statement to decide whether the original statement is
universally reachable.

Theorem 1. The following are equivalent for any statement s:

1. s is universally reachable

290

2. Vs' € wedges(e,s), s is terminable

Proof. By induction on the structure of s.

3.2 Termination Analysis via Weakest

Preconditions

It now remains to compute whether or not each wedge of a state-
ment is terminable. We decide the terminability of each wedge with
a combination of a weakest precondition calculation and an auto-
mated decision procedure.

The weakest precondition operation we use for termination
analysis (Fig. 4) differs slightly from the traditional definition. We
add a third predicate argument, W, representing the postcondition
for the case where the statement fails an assertion (or goes wrong),
and modify the interpretation of assertions to take this extra post-
condition into account.

wp : Statement X Predicate X Predicate X Predicate — Predicate

S wp(s, N, X, W)

x:=e Nz :=¢]

havoc(z) Vz'.N[z:=1']

skip N

assert P (PAN)V (=PAW)

assume P P =N

S1; S2 wp(s1, wp(s2, N, X, W), X, W)
s1 O 82 wp(s1, N, X, W) A wp(s2, N, X, W)
raise X

s1 ! 82 wp(s1, N, wp(s2, N, X, W), W)
s* Ifp(AP. N Awp(s, P, X, W))
f() wp(5l7N7 X, W)

iffun fOP{s}N' X' €p
and s’ = assert P ; havoc(targets(s));
assume N’ O (assume X' ; raise)

Figure 4: Weakest Preconditions for Universal Reachability

Intuitively, W describes the permitted states for an assertion
violation. If W is false then the treatment of assertions matches
that in the traditional definition of weakest preconditions. However,
if W is true, wp(assert P, N, X, W) simplifies to P = N, and
treats assertions with the traditional semantics for assumptions.

If we treat assertions with the semantics of assumptions, we
cannot prove that a statement will fail an assertion, but we can
prove that a statement will either fail an assertion or an assumption.
An instance of this situation indicates either an assertion that will
always fail or a branch that cannot be taken.

While either of these cases is fairly uninteresting when consid-
ering an entire function body, they are more likely to indicate inter-
esting bugs when considering wedges. While a function that always
fails during execution would almost certainly be discovered dur-
ing testing, it may be more difficult to discover a particular branch
that will always lead to failure, especially when the conditions that
lead to the branch being taken are complex and hard to induce on
demand. A significant fraction of the code in typical software sys-
tems is devoted to handling errors, and this code is often the least
well-tested portion of a system, depending heavily on details of the
execution environment [2].

Next, to decide the terminability of a statement s, we compute
the predicate wp(s, false, false, true). We call the result of this
particular weakest precondition calculation a failure condition. A
failure condition which is always true indicates fatal code.

Theorem 2. [fwp(s,false, false, true) is valid and s contains
no call instructions then s is not terminable.

Proof. A direct consequence of Theorem 2. O

The proof of the above theorem relies in part on the following
standard result that the weakest precondition calculation correctly
reflects the underlying operational semantics. Here, we assume the
absence of function calls, since function specifications generally
only overapproximate the actual behavior of the function body.

Theorem 3. If wp(s, N, X, W) P and s contains no call
instructions and there exist stores 0 and 0’ and a statement s’ such
that 0,s —* 0',s', where s' € {skip,raise}, and 0 satisfies P
then one of the following cases holds:

1. s’ = skip and ¢’ satisfies N
2. s’ = raise and 0’ satisfies X

O

Proof. By induction on the structure of s.

We can now combine the previous three theorems to arrive at the
following primary result that states that an algorithmic approach to
detecting fatal code is sound.

Theorem 4. If a statement s contains no call instructions and there
exists an s' € wedges(e, s) such that wp(s’, false, false, true)
is valid then s is not universally reachable.

Proof. A straightforward consequence of Theorems 1 and 2. O

To determine validity automatically, we depend on a decision
procedure that is sound (though not necessarily complete).

3.3 Verification

Although we have presented our analysis as a defect-detection
mechanism so far, one advantage of using an approach based on
weakest preconditions is that it generalizes to full verification when
sufficient function specifications are available.

For example, if the specifications present in a program are
sufficiently complete to prove P = wp(s, N, X, false) is valid
for a function fun f() P { s } N X, then we can guarantee that
the function meets its specification. When we cannot verify this
strong correctness property, universal reachability analysis can still
determine whether the function is guaranteed to violate the known
components of its specification.

3.4 Loops and Approximation

Sec. 3.2 provided a semantics for loops that depends on a fixpoint
construct in the logic:

wp(8*3N7X7 W)

Ifp(AP. N A wp(s, P, X, W))

This is a precise encoding; the theorems from the previous sections
all hold. However, existing automated decision procedures do not
typically support fixpoint operations. Since we want to support au-
tomatic defect detection, we need a more tractable approximation.

We begin by defining an approximation relation over statements
that allows us to say when the behavior of one statement over-
approximates the behavior of another.

Definition 6 (Statement Approximation). A statement s over-
approximates a statement s', written s 2 ', if and only if for all
predicates N, X, and W, wp(s, N, X, W) = wp(s', N, X, W).

291

Note that if s overapproximates a wedge s’ and s is not ter-
minable (i.e., wp(s, false, false, true) is valid), then s’ is also
not terminable (i.e., wp(s’, false, false, true) is therefore also
valid). Here we can safely overapproximate wedges without intro-
ducing false inconsistencies. Moreover, the notion of overapproxi-
mation is closed under contexts: if s J s’ then C[s] J C[s’].

Given a notion of statement approximation, we can then rewrite
s™ with an approximate version that guarantees that we get no false
positives. One common loop approximation is to “unroll” some
small number of times. For example, unrolling s* two times:

skip O s O (s;5)

In the context of other analyses, unrolling is often a reasonable ap-
proximation. However, it is an under-approximation, and therefore
can lead to false positives in universal reachability analysis.

s" Jskip O s O (s;)

Intuitively, the reason unrolling a finite number of iterations can
lead to false positives is that the body of the loop may contain code
that executes, for example, only on the fifth iteration. Our preferred
approach, with no false positives, is use havoc(targets(s)) to
replace all store elements updated by the loop body s with arbitrary
values, obscuring which iteration is occurring. Unrolling the body
once, and inserting havoc(targets(s)), we have:

skip O (havoc(targets(s)); s) 3 s™

We can also unroll more than once:

skip
O havoc(targets(s)); s *
s
O havoc(targets(s));s; =

havoc(targets(s)); s

but this does not buy us anything. The weakest precondition of the
loop unrolled twice is the same as the weakest precondition when
unrolled only once, due to the havoc statements.

One disadvantage of havoc statements is that they may obscure
too much information, leading to false negatives. Ideally we would
use a loop invariant, /, to describe what condition is true on every
loop iteration:

assume [

havoc(targets(s));
assume [;

s;

assume [

If the loop invariant [is too weak (e.g., true), then we may miss
instances of fatal code, but we will get no false positives. If the loop
invariant is too strong (e.g., false), then one of the assertions may
fail, which can lead to incorrect reports of fatal code.

3.5 Procedures

In the presentation so far the weakest precondition function uses
the provided specification of the target function when analyzing a
function call. In the absence of complete procedure specifications,
this approach could seem overly imprecise.

To address this imprecision we could inline target functions
and perform wedge calculation across procedure boundaries. Un-
fortunately, this can result in large numbers of false positives. The
problem arises because most procedures represent abstractions, in-
tended to be used in a variety of conditions. In the context of any
specific function call, only some subset of these conditions are
likely to hold, and therefore some portions of the target function
body will be dead code. If the function body were inlined, each

branch in the target function that could not be taken in one specific
context where it is called would be flagged as inconsistent.

The problem of inlining procedures arises when using macros in
C, as well. Many macros are treated as small, inline procedures, and
they often contain conditionals that will be forced to take a single
path in the specific context where they occur. The results in Sec. 6
show that macros are the most significant cause of uninteresting
inconsistencies when analyzing C code.

4. BOUNDARY CONDITIONS

The wedges function presented in Sec. 3.1 creates one wedge for
each alternative branch in the program. Each wedge represents the
subset of the program’s state space that is possible if the chosen
branch is taken. We can then ask whether or not it is possible for
that wedge to terminate successfully.

However, other subsets of the program state space can be inter-
esting, as well. One particularly common type of error occurs when
comparisons are “off by one” and therefore succeed on values that
are either just below or just above the correct boundary. It turns
out that our existing wedge calculation technique applies with few
modifications to this situation.

void overflow(int n) {
int a[n]; int i;
for(i =0; i <n; i++) a[i] = 0;

Figure 5: Simple Array Clearing Program

Consider the program in Fig. 5 which clears the contents of
an array (as well as one element outside of the array). One of
the wedges of this program will include the following fragment,
corresponding to the execution of the loop body while the loop
condition is true:

assume(i < n);
ali] = 0;

For deterministic programming languages, we can associate a con-
dition with every wedge. In the above case, the condition for the
wedge described above is ¢ < n.

If we suspect that errors are common on the boundary condi-
tions of inequalities, we may want to consider the wedge that rep-
resents a smaller, more targeted subset of the state space. Consider
a wedge identical to the one above, but with the condition replaced
with i == n. If we check the terminability of this new wedge (as-
suming that array accesses are guarded with bounds checks), we
will find that it will always fail, accessing an array element one
past the end of the array.

Formally, we modify the definition of the wedge calculation
function by extending the rule for choice statements in the case
where the immediate sub-statements begin with assumptions. Fig. 6
shows the modified case for wedges(C, s) function, along with a
pair of auxiliary functions.

As we will see in Sec. 6.7, this approach is particularly good
at detecting buffer overflows, but results in false positives in some
circumstances. Consider, for instance, the following code that per-
forms different operations for zero, positive and negative numbers.

if (x==0) { .. }elseif (x >0){ ... }else{ .. }

This program fragment has two choice statements, one with a
branch for x == 0 and a branch for x #0, and one with a branch
for x > 0 and a branch for x <0. Note, however, that the latter
two branches operate in a context where the x #0 branch has been

292

U

wedges(C,s1 O s2) wedges(C, s1) U wedges(C, s2)

bwedge(C, s1) U bwedge(C, s2)

bwedge : Context X Statement — oStatement
Classume P’;s'|} if s = assume P; s’
b b

bwedge(C, s) = and bcond(P) = P’

0 otherwise
becond Predicate — Predicate
beond(e1 < e2) = (e1=ez—1)
becond(er > e2) = (e1=ea+1)
beond(e1 < e2) = (e1 =e2)
becond(e1 > e2) = (e1 =e2)

Figure 6: Boundary Condition Wedge Calculation

taken, so x #0 is necessarily true. Therefore, when we take the
x <0 wedge and specialize it to x ==0, we get a contradiction
that does not represent fatal code in the original program.

5. IMPLEMENTATION

To validate the utility of universal reachability analysis, we devel-
oped a prototype implementation called Curate that can check for
inconsistencies in C programs.

Architecture Curate begins by transforming C into an unstruc-
tured form of GC'. Once the original C source has been translated
into the intermediate language, we eliminate loops and insert havoc
instructions. We then translate the loop-free function bodies into
passive form [8]. Finally, we calculate the wedges of each func-
tion body according to a variant of the wedge calculation algorithm
from Sec. 3.1 modified to work on unstructured programs, calcu-
late the weakest precondition of each wedge and use Yices [12] to
check the validity of this precondition.

Memory Model We treat the entire heap of the program as a
single array, mapping unbounded integers to unbounded integers.
Local variables become variables in the syntax of the intermediate
representation, unless their address is taken, in which case we in-
troduce a variable representing the address of the original variable,
and use the address variable to index into the heap array. We have
not noticed false positives caused by this approximation in our ex-
perimental results, but it may lead to false negatives.

Loops Loops introduce back edges in the control flow graph.
We remove back edges and insert a havoc instruction at each loop
head. This havoc instruction overwrites any variable written in the
loop body. We calculate the loop body by determining the set of
instructions that are reachable from the target of the back edge and
that can reach the source of the back edge. This approach correctly
obscures which iteration is currently under analysis.

Procedures The current Curate implementation performs intra-
procedural analysis. When encountering call, the target procedure
is assumed to have precondition true, and to potentially modify
any element of the heap.

6. EXPERIMENTAL RESULTS

We compared Curate with the Saturn null pointer analysis [4] and
the Clang Analyzer [15]. The results show that Curate runs in
less time than the comparable Saturn null pointer analysis, while
usually finding a larger number of inconsistencies, although Saturn

does discover one class of inconsistency that Curate does not. The
Clang Analyzer runs much more quickly than either Curate or
Saturn, but discovers primarily shallow bugs, most of which will
not lead to run-time errors. The warnings given by Clang only
overlap with either Saturn or Curate in a handful of cases.

6.1 Benchmarks

We chose several programs on which to evaluate universal reach-
ability. We included our chosen benchmarks from Dillig et al. [4]
our collection: MPlayer 1.0pre8, OpenSSL 0.9.8b, Samba 3.0.23b,
OpenSSH 4.3p2, and Sendmail 8.13.8. We skipped the Pine and
Linux benchmarks of Dillig ef al. because they presented parsing
or type-checking difficulties to one or more of the tools included in
our comparison.

Next we include a set of widely-used programs chosen inde-
pendently. Some of these are known to have particular bugs. These
benchmarks include BC 1.06, SpiderMonkey 1.70, NCompress
4.2.4, PCC 0.9.9, Squid 2.3STABLEI, and LibTIFF 3.7.0.

Finally, we include a set of small programs published by the SA-
MATE project [14] with the purpose of benchmarking automated
defect-detection tools. This collection consists of more than 1500
simple C files that contain instances of common security bugs.

6.2 Experimental Setup

Before running the benchmark programs through each of the anal-
ysis tools, we set up an experimental framework to ensure that we
could reasonably compare the results between benchmarks and be-
tween tools.

System Configuration We performed all experimental eval-
uation on a workstation running Mac OS X 10.6.5 with 8GB of
RAM and a 4-core 2.5GHz Intel i5 processor.

Pre-processing We pass each program through the C prepro-
cessor (CPP) once, and use the preprocessed version as the input to
each of the analysis programs.

Exit Functions One critical consideration for both Saturn’s
null pointer analysis and universal reachability analysis is the detec-
tion of exit functions. The implementation of the assert function
in C often consists of a conditional that aborts the program if the
assertion evaluates to false, and continues execution otherwise.
Knowing that the function call terminates the program is essential
to avoiding false positives for both analyses.

Saturn includes an analysis to detect exit functions, and the
result of this analysis, if available, is automatically used by the null
pointer analysis. Therefore, we ran Saturn’s exit function analysis
on all of the benchmarks in advance, and used its results as input to
Curate, as well.

Time Limits We ran both Saturn and Curate with a timeout
value of 120 seconds.

Source Code Changes Because each tool uses a different
front end to parse and type-check the C source code, we needed
to make some minor modifications to the source code, after pre-
processing, so that all tools could successfully load it. The modi-
fications we made included adding function prototypes, removing
complex static global initializers, limiting each benchmark to a sin-
gle main function, and other minor changes to allow all the code to
be processed by all of the tools.

6.3 Warning Categories

We classified each warning produced by any of the three tools into
one of the following categories. The first collection of categories

293

represents likely bugs, or at least awkward code. The second col-
lection represents various types of dead code that can be detected
by universal reachability analysis. The third represents false posi-
tives, largely caused by engineering tradeoffs in each of the tools.
For each category, we give an abbreviation used in the tables of ex-
perimental results. For a few cases, we were not able to determine
the cause of the inconsistency warning (typically due to the com-
plexity of the associated source code). We place these few warnings
in the “Unknown” category.

For the Samba benchmark, we give only the total number of
warnings produced by each tool, as the combined number of warn-
ings produced by the three tools was prohibitively high to allow for
manual categorization.

6.3.1 True Errors

We refer to warnings that indicate bugs or awkward programming
practices as true errors, of the following types.

Bug-Causing Inconsistency (Inc.) The most interesting
inconsistency warnings indicate cases where some path through the
function under analysis could lead to either an assertion failure or
an incorrect result. This category includes any indication that an
assertion failure is certain within a normal wedge (as opposed to a
boundary condition wedge, as described next), even if the rest of
the program never calls the function under analysis with arguments
that would lead to a crash. It also includes cases where an assertion
failure may not occur, but where the code will clearly operate
incorrectly. When the Clang Analyzer discovers a potential null
pointer dereference that coincides with one discovered by either
Saturn or Curate, we include it in this category.

Boundary Condition Inconsistency (Bound.) 1f Curate
discovers a potential assertion failure using boundary condition
specialization, described in Sec. 4, it falls into this category.

Programmer Confusion (Confus.) Some cases of dead
code detected by Curate or Saturn will not lead to assertion fail-
ures, but clearly indicate confusion or misunderstanding on the part
of the author of the function under analysis. This category includes
cases where dead code exists because a feature has not been com-
pletely implemented, and therefore parts of the implementation are
temporarily unreachable.

Other Tool Warning (Other) Saturn’s null pointer analysis
includes a number of heuristics that fall outside of the scope of
universal reachability analysis. In addition, it performs an inter-
procedural analysis, while Curate is intra-procedural. The Clang
Analyzer also produces warnings for a number of problems that
are outside of the scope of our comparison.

6.3.2 Dead Code

Some cases of inconsistency indicate dead code that is intentional
or unavoidable, such as that which arises in code intended to run on
multiple platforms.

Trivial Impossible Cases (Trivial) Some code, including
infinite loops and nested conditionals without a final else clause,
include branches with necessarily unsatisfiable conditions.

Configuration Dead Code (Config.) Some dead code oc-
curs as a result of comparisons between values that are constant at
compile time but that may vary across system configurations.

Macro Instantiation (Macro) Macros, like functions, typi-
cally represent abstractions and are written to apply in a wide va-
riety of situations using conditional statements. In any particular
context, some wedges of the expansion of a macro may contain
dead code, and therefore lead to inconsistency warnings.

6.3.3 False Positives

Finally, some warnings reported by our tool are false positives in
that they do not indicate fatal code. These occur due to heuristics,
engineering compromises, or bugs in the implementation.

Boundary Condition False Positive (Bound.) As de-
scribed in Sec. 4, the boundary condition extension to our analy-
sis can result in false positives when a specialized wedge condition
implies a condition already covered by an earlier branch.

Unsupported (Uns.) Some warnings occur as the result of
explicitly unsupported language features. In our case, this in-
cludes multi-dimensional arrays, floating point arithmetic, non-
linear arithmetic, bit-level operations, overflow, and conversion be-
tween signed and unsigned values. These warnings would be avoid-
able with a more complete implementation. We also include in this
category some cases where programmers intentionally stretch the
boundaries of the semantics of C, but in ways that cannot cause
runtime failures. Examples include taking the address of a field of
a dereferenced null pointer (e.g., &(((struct s x)NULL)—fld)) to
calculate the offset of a field, and taking the address of an array el-
ement at an out-of-bounds index (e.g., &(a[sizeof(a)])) but never
dereferencing the result.

6.4 Small Examples

We first ran all three tools on a collection of small examples, each
intended primarily as an illustration of a program inconsistency. In
Tbl. 1 we show the number and category of warnings produced by
each of the three tools.

As these examples were written to illustrate using universal
reachability errors, Curate generates warnings about all of them
(along with one case of trivial dead code in the binary search ex-
ample). Saturn also warned about the inconsistency in the doubly-
linked list example, but the Clang Analyzer was unable to detect
any of the errors.

Table 1: Warnings from Small Examples

Benchmark Type Curate Saturn Clang
bsearch Inc. 1 0 0

Trivial 1 0 0
dblfree Inc. 1 0 0
list Inc. 1 1 0
oom Inc. 1 0 0
overflow Bound. 1 0 0
unstructured Inc. 1 0 0
useafterfree Inc. 1 0 0
Total All 8 1 0

6.5 Saturn Benchmarks

Tbl. 2 shows the results of running each tool on a subset of the
benchmarks from Saturn’s null pointer analysis. In this table, we
omit rows in which all entries are zero. For each benchmark, we
list the number of preprocessed lines of code (PLOC) it contains.
We write a hyphen in entries that are not supported by a tool.
Some of the entries for Saturn and Curate are of the form S+U,
where S is the number of warnings shared between the two tools,
and U is the number of unique warnings generated by the tool.
The entries for Clang in the “Inc. Error” category are of the form
S + C + B, where S is the number shared with Saturn, C' is the
number shared with Curate, and B is the number shared with both.

294

Table 2: Warnings from Saturn Benchmarks

Type Curate Saturn Clang
MPlayer, 2,552,948 PPLOC
True errors Inc. 6427 6+13 24340
Confus. 1+39 1+8 -
Other 0 58 1149
Dead code Trivial 4 0 -
Config. 1 0 -
Macro 7 2 -
False positives ~ Uns. 14 1 -
Unknown Unk. 3 0 -
openssh, 907,011 PPLOC
True errors Inc. 1 0 0
Confus. 1 0 -
Other 0 4 72
Dead code Trivial 1 0 -
Config. 1 0 -
Macro 0 1 -
openssl, 3,084,124 PPLOC
True errors Inc. 4+5 4+2 24342
Confus. 36 6 -
Other 0 138 517
Dead code Trivial 6 0 -
Config. 2 0 -
Macro 159 0 -
False positives ~ Uns. 3 0 -
Unknown Unk. 4 1 0
samba, 10,765,507 PPLOC
Unknown Unk. 834 219 320
sendmail, 498,941 PPLOC
True errors Inc. 0 0 0
Confus. 4 0 -
Other 0 23 151
Dead code Trivial 1 0 -
Config. 2 0 -
Macro 3 0 -
False positives Uns. 8 1 -
Unknown Unk. 8 0 -

On this set of benchmarks, Curate detects some of the same
inconsistencies as Saturn, as expected, along with many additional
inconsistencies. The additional inconsistencies all fall outside of
the domain of Saturn’s analysis, either because they involve non-
pointer variables, or because they rely on function preconditions or
logical theories not included in Saturn’s null pointer analysis.

Saturn also detects a few errors that Curate misses. Some of
these are because Saturn’s null pointer analysis includes a number
of heuristics that fall outside of the domain of pure inconsistencies.
These errors are listed in the “Other” category. However, Saturn
also detects a few true inconsistencies that Curate misses: 13 for
MPlayer and 2 for OpenSSL.

The inconsistencies detected by Saturn and not Curate occur
for two reasons. The first is that the translation Curate uses for
the C short-circuit operators (&&, ||), is semantically correct, but
obscures inconsistencies from universal reachability analysis. We
could have modified the translation of short-circuit operators to
match that of the if statement, but we decided to maintain the

existing approach because it illustrates an important disadvantage
of universal reachability analysis: semantically-correct transforma-
tions that change the branching structure of a program can affect
what inconsistencies are detected.

The second reason is that Saturn’s analysis detects a class of
inconsistencies that are not instances of fatal code but still often in-
dicate real defects. We describe this class of inconsistencies further
in Sec. 7.1.

Along with a slightly higher number of true defects, Curate also
reports a higher number of arguably spurious warnings. Some are
false positives resulting from engineering compromises, while oth-
ers simply indicate dead code. Excluding false positives arising
from macro expansion, however, the rate of spurious or uninter-
esting warnings is low, and could be made lower in a production-
quality implementation.

6.6 Other Open Source Package Benchmarks

Tbl. 3 shows the results of the tools on our additional selection
of open source benchmarks. In this collection of benchmark pro-
grams, we observe similar patterns to those in the previous set. The
Clang Analyzer generates more warnings than either of the incon-
sistency detectors, except in the case of SpiderMonkey (js). Curate
detects two significant inconsistencies missed by Saturn’s null anal-
ysis (on SpiderMonkey), and Saturn detects two significant incon-
sistencies missed by Curate (on BC and PCC). Excluding macros,
the number of spurious warnings is relatively low overall.

6.7 SAMATE Benchmarks and Boundary
Condition Specialization

Finally, Tbl. 4 shows the warnings produced for the collection
of small benchmarks from NIST’s SAMATE team. Curate and
Saturn both discover a number of true inconsistencies, but Curate
discovers more. Curate is able to discover a number of cases of null
pointer and freeing already-freed pointers. The null dereferences
are also detected by both Saturn and the Clang Analyzer.

The Clang Analyzer also generates a large number of warnings
outside of the realm of inconsistency analysis. Most of these indi-
cate values written and then never read.

Beyond the results of normal inconsistency detection, the SA-
MATE collection particularly highlights the benefits of boundary
condition specialization. We show the results of this specialization
for all benchmarks in 5. The majority of the SAMATE test cases
include buffer overflows of varying complexity. Almost all of them
are detectable through intra-procedural analysis, and involve local
arrays of known size. This is the condition in which boundary con-
dition specialization excels, and we see that Curate can detect the
majority of the buffer overflow defects. Although the buffers in
these test cases are all of constant, known sizes, universal reach-
ability analysis is able to detect overflows in more complex cases
as long as the relationship between program variables and buffer
sizes is known.

Overall, these results suggest that boundary condition special-
ization, and potentially other variants of universal reachability anal-
ysis, can detect interesting bugs, even though it leads to large num-
bers of false positives in some cases. Indeed, the largest collections
of spurious warnings generated by Curate other than those caused
by macro expansion result from boundary condition specialization.
Boundary condition specialization discovered 2 real errors in the
Saturn benchmarks and 96 false positives, and 7 real errors in the
other open source benchmarks along with 15 false positives.

295

Table 3: Warnings from Other Open Source Packages

Type Curate Saturn Clang

bc, 42,607 PPLOC

True errors Other 0 1 24

False positives ~ Uns. 2 0 -

js, 309,428 PPLOC

True errors Inc. 2 0 0
Confus. 16 1 -
Other 0 96 99

Dead code Config. 2 0 -
Macro 11+28 11+5 -

False positives ~ Uns. 5 1 -

Unknown Unk. 0 3 -

ncompress, 2,915 PPLOC

No warnings

pcc, 72,948 PPLOC

True errors Inc. 0 1 0+1+0
Other 0 22 35

Dead code Trivial 1 0 -
Config. 2 0 -
Macro 1 0 -

False positives ~ Uns. 1 2 -

squid, 807,286 PPLOC

True errors Inc. 1+0 140 1+1+1
Confus. 4 0 -
Other 0 20 243

Dead code Trivial 2 0 -
Macro 1+21 +1 -

tiff, 172,842 PPLOC

True errors Inc. 0 0 0
Confus. 3 0 -
Other 0 3 56

Dead code Trivial 1 0 -
Macro 3 1 -

Table 4: Warnings from SAMATE Benchmarks

Type Curate Saturn Clang
True errors Inc. 6+16 6+0 6
Confus. 1 0 0
Other 0 20 377
False positives ~ Config. 2 0 0

6.8 Performance

Along with defect detection rates, we also measured the time taken
to perform various aspects of universal reachability analysis. First,
we measured the total time taken, per benchmark, for each of the
three tools. We also instrumented Curate to record the time taken
to analyze each function.

The elapsed times for all three analysis tools appear in Fig. 6.
The times for Saturn and Curate include only analysis time, and
are calculated using timing routines built in to the tools. Parsing
time (for Curate) and database construction time (for Saturn) are
not included. Similarly, the time to do exit function analysis, the
results of which are shared between the two tools, is not included.

Table 5: Warnings from Boundary Condition Specialization

False Positives
62
5

Benchmark True Errors
MPlayer 2
openssh
openssl
samba
sendmail
bc

js
ncompress
pcc

squid
tiff
SAMATE

(i}
N
[}

SO OO = NDO

(=] SRR -

836

Table 6: Overall Analysis Time

Analysis Time (H:M:S)/Timeouts

Benchmark Curate Saturn Clang
MPlayer 10:46:55 258 8:49:38 170 | 22:34
openssh 14:41 4 45:23 14 1:31
openssl 1:16:01 15 | 10:46:39 191 3:44
samba 1:44:51 12 | 33:59:38 738 10:23
sendmail 1:12:59 26 3:59:20 88 5:22
bec 3:56 1 23:11 12 0:21
js 1:13:46 25 5:00:36 137 2:59
ncompress 2:29 0 0:39 0 0:03
pcc 18:45 7 46:35 20 0:57
squid 10:34 1 1:57:25 50 1:43
tiff 13:14 4 28:48 7 1:02
SAMATE 4:57 0 24:29 0 0:56
Total 17:23:08 353 | 67:22:21 1427 | 51:35

The time taken by the Clang Analyzer, however, is elapsed time as
reported by the Unix time command.

These numbers align closely with the engineering choices of
each tool. Saturn performs inter-procedural analysis and uses a
SAT solver to check for inconsistencies. Curate performs an intra-
procedural analysis, and uses an SMT solver, which can solve cer-
tain queries more efficiently. Finally, the Clang Analyzer performs
a well-engineered but coarse symbolic execution that is very effec-
tive at finding simple bugs.

Universal reachability analysis of a statement requires analysis
of a number of wedges, each of which is similar in size and struc-
ture to the original statement.

‘We measured the total time taken to perform universal reacha-
bility analysis on each function body. The measured time includes
the total time to analyze all of the wedges. The distribution of anal-
ysis times, in seconds, appears in Fig. 7. In this histogram, the first
bar represents 98% of function bodies, all of which took less than
one second to analyze. We show them compared to the function
20002~ *-® for reference.

296

100000 —
0y]
3]
o 10000
S T
%) il
o |

1000 |
% i
E 1
3 100 Hfil\
]]
St
o 4
5 10
2]
=
Z]

50

75

Elapsed Time (s)

Figure 7: Distribution of Function Analysis Times

7. RELATED WORK

7.1 Inconsistency Analysis

The work presented in this paper is inspired by previous work on
semantic inconsistencies. Much of the current work in this area
builds on the 2001 paper by Engler et al. [5], which discusses
contradictions between the beliefs implied by particular constructs
in source code. Most of the inconsistency-detection tools derived
from this research use symbolic execution as a core analysis.

One of the key works building on Engler’s research, by Dillig,
et al. [4] operates on the same overall principle, namely searching
for cases where code indicates contradictory programmer beliefs.

The class of bugs detected by our analysis overlaps significantly
with the work of Dillig er al.. The inconsistencies discovered by
their analysis can be divided into sequential and non-sequential
inconsistencies. A sequential inconsistency is one in which two
program points that can execute in sequence along a single path
make conflicting assumptions. For example, consider the following
fragment of C code:

if(x) y = #x;
Z = *X;

The first assignment suggests that x is allowed to be null. However,
the second assignment will only succeed if x is non-null. A non-
sequential inconsistency, on the other hand, is one in which two
program points that may not both execute along the same path make
conflicting assumptions. For example:

if (cl) { if (x) y = *x; }
if (c2) {y =#x; }

Here, the fact that the dereference is guarded by a null check in
one case but not the other suggests an error. However, consider the
wedge in which the else branch of the null check executes. It is
still possible for this wedge to terminate, because it is possible that
c2 is false, and therefore the second dereference never occurs.

Any sequential inconsistency discovered by the analysis of Dil-
lig et al. will also be discovered by our analysis. Non-sequential
inconsistencies will be discovered by their analysis but not ours.

Note that sequential inconsistencies will either lead to asser-
tion failures or involve dead code. Parallel inconsistencies may be
neither. They suggest the possibility of conflicting programmer be-
liefs, but in our experience led to more false positives than true
bugs, though some did indicate significant bugs.

7.2 Static and Dynamic Contract Checking

Many programming languages and external analysis tools have
adopted the use of one of a variety of contract systems.

Systems such as ESC/Java [7] and Spec# [1] adopt the technique
of adding contracts to implementation code, but try to statically
verify that the contracts hold, using an automated theorem prover,
rather than depending on dynamic checks. Tools of this sort depend
on extensive contract annotations and generate many false positives
on unannotated programs.

The Eiffel language [13] also emphasizes function contracts, in
which specifications written in Eiffel code accompany the imple-
mentation. This technique allows for very expressive specifications,
but executes specification code dynamically, and therefore detects
errors late in the development process.

7.3 Flexible Type Systems

Hybrid type checking [6] also uses an undecidable dependent type
system, and has a similar philosophy to universal reachability anal-
ysis in that it rejects a program only if it can prove the program vio-
lates its specification. If the type checker cannot prove type sound-
ness, but cannot disprove it either, it resorts to dynamic checking.

Gradual type systems take a similar approach, focusing on the
latter benefit of allowing any degree of annotation along a spec-
trum, from completely dynamic to completely static [16]. In grad-
ual type systems, type checking has typically been decidable, but
some components may be untyped (or marked implicitly with the
type Dynamic). Interfaces between code that has statically-known
types and code that uses dynamic types require runtime casting op-
erations that may fail.

8. SUMMARY

Automated tools for detecting inconsistencies in software can re-
veal serious bugs. We argue that axiomatic semantics can form
the basis of an elegant and extensible technique for inconsistency
detection that generalizes previous approaches. Our approach re-
tains the benefits of previous inconsistency-detection techniques,
and brings advantages of its own.

We have attempted to generalize and formalize existing ap-
proaches to inconsistency analysis by building on the foundation
of axiomatic semantics, resulting in universal reachability analysis.
This approach to inconsistency detection has a number of desirable
properties that go beyond those of inconsistency analysis:

e The definition of the analysis is strongly connected to the se-
mantics of the underlying language. Therefore, we can prove
that the analysis correctly captures the details of the program
being analyzed.

e The same implementation can be used for both inconsistency
detection and deductive verification. Under-specified code can
be checked for obvious mistakes, and fully-specified code can
be verified, simply by varying the parameters to the analysis.

297

9. ACKNOWLEDGEMENTS

This work was supported in part by the National Science Founda-
tion under grants CNS-0905650 and CCF-1116883.

10. REFERENCES

[1] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#
programming system: An overview. In Proceedings of the Interna-
tional Workshop on the Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices, 2004.

[2] Flaviu Cristian. Exception handling. In Dependability of Resilient
Computers, pages 68-97, 1989.

[3] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Inc.,
October 1976.

[4] Isil Dillig, Thomas Dillig, and Alex Aiken. Static error detection
using semantic inconsistency inference. In PLDI ’07: Proceedings
of the 2007 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 435-445, New York, NY, USA,
2007. ACM.

Dawson Engler, David Y. Chen, Seth Hallem, Andy Chou, and Ben-
jamin Chelf. Bugs as deviant behavior: a general approach to inferring
errors in systems code. SIGOPS Operating Systems Review, 35(5):57—
72, October 2001.

Cormac Flanagan. Hybrid type checking. In Proceedings of the ACM
Symposium on the Principles of Programming Languages, pages 245—
256, January 2006.

[7] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nel-
son, James B. Saxe, and Raymie Stata. Extended static checking for
Java. In Proceedings of the ACM Conference on Programming Lan-
guage Design and Implementation, pages 234-245, June 2002.

[5

—_

[6

[t}

[8] Cormac Flanagan and James B. Saxe. Avoiding exponential explosion:
Generating compact verification conditions. In Proceedings of the
ACM Symposium on the Principles of Programming Languages, pages
193-205, January 2001.

[9] Robert W. Floyd. Assigning meanings to programs. In Proceedings of
the American Mathematical Society Symposia on Applied Mathemat-
ics, volume 19, pages 19-31. American Mathematical Society, Provi-
dence, R.I., 1967.

[10] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576-580, October 1969.

[11] RTCA Inc. DO-178B, software considerations in airborne systems and
equipment certification.

[12] SRI International. Yices SMT solver.
http://yices.csl.sri.com/.
[13] Bertrand Meyer. Eiffel: The Language. Prentice-Hall, 1992.

[14] National Institute of Standards and Technology. SAMATE: Software
Assurance Metrics And Tool Evaluation.
http://samate.nist.gov/.

[15] The LLVM Project. Clang static analyzer.
http://clang-analyzer.llvm.org/.

[16] Jeremy G. Siek and Walid Taha. Gradual typing for functional lan-
guages. In Scheme and Functional Programming Workshop, Septem-
ber 2006.

[17] Aaron Tomb. Program Inconsistency Detection: Universal Reachabil-

ity Analysis and Conditional Slicing. Ph.D. dissertation, University of
California, Santa Cruz, 2011.

